JPH0630782A - Method for enzymatic reaction - Google Patents

Method for enzymatic reaction

Info

Publication number
JPH0630782A
JPH0630782A JP18769492A JP18769492A JPH0630782A JP H0630782 A JPH0630782 A JP H0630782A JP 18769492 A JP18769492 A JP 18769492A JP 18769492 A JP18769492 A JP 18769492A JP H0630782 A JPH0630782 A JP H0630782A
Authority
JP
Japan
Prior art keywords
enzyme
treatment
solution
enzymatic reaction
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18769492A
Other languages
Japanese (ja)
Inventor
Akio Karigome
昭夫 刈米
Ryuzo Hayashi
隆造 林
Yoshio Hashizume
義雄 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP18769492A priority Critical patent/JPH0630782A/en
Publication of JPH0630782A publication Critical patent/JPH0630782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To simply carry out enzymatic reaction by using city water subjected to at least one residual chlorine eliminating treatment selected from boiling treatment, aeration treatment and addition of thiosulfate. CONSTITUTION:In a method of enzymatic reaction utilizing an isolated or immobilized oxidation-reduction enzyme, a solution prepared by using city water subjected to at least one residual chlorine eliminating treatment selected from boiling treatment, aeration treatment and addition of thiosulfate is used as an aqueous solution to be brought into contact with the enzyme. The aqueous solution is used as a mobile phase in measuring the concentration of a substrate of a flow method and sent to a measuring cell 5 attached to an enzyme electrode 7 by an injector 3. A voltage higher than a reference electrode 8 is impressed to a potensiostate 11 and an active substance of electrode formed or consumed by the enzymatic reaction is electrochemically detected and subjected to data treatment by a computer 14. The enzymatic reaction is simply carried out in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、遊離または固定化され
た少なくとも1種の酸化還元酵素を利用した酵素反応方
法であり、特に簡便な工程で実施できる酵素反応方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an enzymatic reaction method utilizing at least one oxidoreductase which is free or immobilized, and particularly to an enzymatic reaction method which can be carried out in simple steps.

【0002】[0002]

【従来の技術】酵素は生物が営む数多くの反応について
それぞれ存在し、その生物が生存可能な温和な条件下で
円滑に反応を進行させる触媒である。従って、常温常圧
下で目的の反応のみを進行させることが容易であり、酵
素の持つ基質特異性ならびに反応特異性は製造、分析な
どの各分野において広く利用されている。
2. Description of the Related Art Enzymes are catalysts that exist for many reactions carried out by living organisms and smoothly proceed under mild conditions in which the living organisms can survive. Therefore, it is easy to proceed only the desired reaction under normal temperature and normal pressure, and the substrate specificity and reaction specificity of the enzyme are widely used in various fields such as production and analysis.

【0003】例えば、食品製造分野においては転化糖の
生産、水あめの生産などに物質生産用触媒として応用さ
れており、また医薬品製造分野においても有用物質の物
質生産用触媒として用いられることが多い。さらに、食
品分析や医療分析などの分野では、被測定物質を検出器
で検出する被検出物質に変換するための分析用触媒とし
て広く用いられている。
For example, it is applied as a substance-producing catalyst in the production of invert sugar and starch syrup in the field of food production, and is often used as a catalyst for the production of useful substances in the field of drug production. Further, in fields such as food analysis and medical analysis, it is widely used as an analysis catalyst for converting a substance to be measured into a substance to be detected by a detector.

【0004】これらの利用範囲の拡大は、酵素反応が優
れた基質特異性をもつために従来用いられてきた化学的
方法よりも反応効率に優れている、温和な条件下で反応
が進行するのでエネルギー収支に優れている、などの利
点によるものである。さらに近年では、優れた性質を持
つ酵素のスクリーニング、遺伝子組み換えによる酵素製
造量の増大、タンパク質工学による酵素の性質改変、よ
り反応効率に優れる酵素固定化方法の開発などの利用技
術の進展にともない適応範囲はさらに拡大しつつある。
The expansion of the range of utilization of these is because the reaction proceeds under mild conditions in which the enzymatic reaction has a higher reaction efficiency than the chemical methods conventionally used because of its excellent substrate specificity. This is due to advantages such as excellent energy balance. Furthermore, in recent years, adaptation has been made with the progress of utilization technologies such as screening for enzymes with excellent properties, increasing the amount of enzyme production by genetic recombination, modifying the properties of enzymes by protein engineering, and developing enzyme immobilization methods with better reaction efficiency. The range is expanding further.

【0005】分析用触媒に用いられている酵素は多種多
様であるが、なかでもEC1群の酸化還元酵素は、基質
と反応する際に物理的、化学的あるいは電気化学的に検
出可能な物質の増減を伴う場合が多く有用な酵素であ
る。このような酵素には、グルコースオキシダーゼ(E
C 1.1.3.4)、ガラクトースオキシダーゼ(E
C 1.1.3.9)、ピラノースオキシダーゼ(EC
1.1.3.10)、アルコールオキシダーゼ(EC
1.1.3.13)、アルデヒドオキシダーゼ(EC
1.2.3.1)、キサンチンオキシダーゼ(EC
1.2.3.2)、ピルビン酸オキシダーゼ(EC
1.2.3.3)、ラッカーゼ(EC 1.10.3.
2)、アスコルビン酸オキシダーゼ(1.10.3.
3)などがあり、各種測定キット・各種測定装置に分析
用触媒として用いられている。
There are various types of enzymes used as analytical catalysts. Among them, the EC1 group oxidoreductase is a substance that can be detected physically, chemically or electrochemically when it reacts with a substrate. It is a useful enzyme in many cases with increase and decrease. Such enzymes include glucose oxidase (E
C 1.1.3.4), galactose oxidase (E
C 1.1.3.9), pyranose oxidase (EC
1.1.3.10), alcohol oxidase (EC
1.1.13), aldehyde oxidase (EC
1.2.3.1), xanthine oxidase (EC
1.2.3.2), pyruvate oxidase (EC
1.2.3.3), laccase (EC 1.10.3.
2), ascorbate oxidase (1.10.3.
3), etc., which are used as analytical catalysts in various measuring kits and various measuring devices.

【0006】さらに、これらの酵素と他の酵素、すなわ
ちEC2群の転移酵素、EC3群の加水分解酵素、EC
4群の除去付加酵素、EC5群の異性化酵素、EC6群
の合成酵素と適宜組み合わせて適用することにより分析
対象はますます広がり大きな期待を寄せられている。酸
化還元酵素の利用形態としては、各分析試薬メーカーが
販売している測定キットのように溶液状酵素として発色
試薬等と組み合せて利用する方法、分析機器メーカーが
販売している測定装置のように固定化酵素とし酵素反応
の検出装置と組み合せて利用する方法などがあり、一般
分析においてはアミラーゼ類やグルコシダーゼ類の酵素
実験における生成物の定量や、食品中のグルコース、ス
クロース、マルトース、マルトオリゴ糖、エタノール、
L-乳酸、亜硫酸の定量などに、医療分析においては、尿
や血液中のグルコース量を知るために用いられている。
Furthermore, these enzymes and other enzymes, namely, transferases in the EC2 group, hydrolases in the EC3 group, EC
It is expected that the scope of analysis will become wider and larger by applying it in combination with the removal and addition enzyme of group 4, the isomerase of group EC5, and the synthase of group EC6. The oxidoreductase can be used as a measurement kit sold by each analytical reagent manufacturer, such as a method in which it is used in combination with a coloring reagent as a solution enzyme, and a measurement device sold by an analytical instrument manufacturer. There are methods such as using as an immobilized enzyme in combination with an enzyme reaction detection device, and in general analysis, quantification of products in enzyme experiments of amylase and glucosidases, glucose in foods, sucrose, maltose, maltooligosaccharides, ethanol,
It is used to know the amount of glucose in urine and blood in medical analysis such as the determination of L-lactic acid and sulfite.

【0007】一般に酵素は触媒作用を期待して用いられ
る物質であるから、溶液状酵素を用いる場合でもその消
費量は少なく、さらに固定化等の技術が酵素の再利用を
可能にするために処理装置や分析装置のランニングコス
トを低下させることが可能である。このように酵素を用
いる反応方法は、低ランニングコストであり操作が簡単
である半面、生体触媒であるがゆえに様々の制限が加わ
ることがある。例えば、穏和な条件下での使用は可能で
あっても、極端な高温、高圧、低pH、高pHなどの条
件下では酵素蛋白質そのものが変性してしまったり、酵
素活性が失われたりして阻害や失活が引き起こされる。
また、溶液中に痕跡量含まれる酸化物質や還元物質も、
酵素の活性を司る活性中心部位や酵素蛋白の構造自体に
変化を及ぼす場合もあり、これら制限は酵素がタンパク
質であることから遊離酵素のみならず、程度の差はあれ
固定化酵素を用いる場合にもあてはめられる事項であ
る。
[0007] In general, the enzyme is a substance that is used in the expectation of catalytic action, so that the amount of consumption is small even when using a solution-type enzyme, and further, techniques such as immobilization are processed to enable reuse of the enzyme. It is possible to reduce the running cost of the device and the analysis device. As described above, the reaction method using an enzyme has low running cost and is easy to operate, but may be subject to various restrictions because it is a biocatalyst. For example, even if it can be used under mild conditions, the enzyme protein itself may be denatured or the enzyme activity may be lost under conditions such as extremely high temperature, high pressure, low pH, and high pH. Inhibition and deactivation are caused.
In addition, oxidizing and reducing substances contained in trace amounts in the solution,
In some cases, the active center site that controls the activity of the enzyme and the structure of the enzyme protein itself may change.These restrictions are not limited to the free enzyme because the enzyme is a protein, but to a different extent when using immobilized enzymes. This is also a matter that can be applied.

【0008】通常このような問題点を克服するために、
酵素にとって適当な反応用水系溶液を用いて、必要なら
ば溶液温度を制御しつつ酵素反応を進行させることは必
須となっている。さらに酵素分析など、酵素反応の速度
や安定性に精密さが求められる場合には、酵素反応用溶
液にはpHの安定性を持つ緩衝液が用いられることも多
く、いずれの場合にしろ反応用水系溶液には酵素に悪影
響を与えない性質が求められる。
Usually, in order to overcome such problems,
It is essential to use an aqueous reaction solution suitable for the enzyme and to proceed the enzymatic reaction while controlling the solution temperature if necessary. Furthermore, when precision in the rate and stability of the enzyme reaction is required, such as in enzyme analysis, a buffer solution with pH stability is often used as the enzyme reaction solution. The system solution is required to have the property of not adversely affecting the enzyme.

【0009】このような理由があるために、酵素を物質
生産用触媒、分析用触媒のいずれに用いる場合でも酵素
の触媒としての性質を失わしめたり阻害するような物質
が反応用溶液中に存在することは許されず、特に精密さ
を要求される酵素分析などでは蒸留水や著しい場合には
超純水などを用いて反応用水系溶液が調製されている。
これは一般の水道水等の用水中に、ごく微量ではあるが
酵素を失活させたり活性を阻害するような物質が存在し
ているために実用に耐えないからである。蒸留水や超純
水はその調製に多くの人力とエネルギーを必要とするた
めに、酵素分析に占める用水に必要な費用の割合は大き
なものとなっていた。
For these reasons, there is a substance in the reaction solution that loses or inhibits the catalytic property of the enzyme, regardless of whether the enzyme is used as a substance production catalyst or an analysis catalyst. It is not allowed to do so, and particularly in the case of enzyme analysis requiring precision, distilled water or, in extreme cases, ultrapure water is used to prepare the reaction aqueous solution.
This is because practical water cannot be put to practical use because there is a very small amount of a substance that deactivates an enzyme or inhibits the activity in water such as tap water. Since distilled water and ultrapure water require a lot of human power and energy for their preparation, the ratio of the cost required for water to the enzyme analysis was large.

【0010】[0010]

【発明が解決しようとする課題】しかしこのように蒸留
水や超純水などを用いることによって、用水に多大の人
力やエネルギーを消費することは、簡単に行える酵素反
応の準備に労力を要することになり、より簡便に酵素反
応を行うことの障害となっていた。つまり、従来行われ
ている方法では本来簡便に行われるべき酵素反応の利点
を充分に活かすものとはいえなかった。
However, the use of distilled water, ultrapure water, etc. in this way consumes a great deal of human power and energy for water, which requires labor to prepare an enzyme reaction that can be easily carried out. This has been an obstacle to more easily performing the enzyme reaction. In other words, it cannot be said that the conventionally performed method does not fully utilize the advantages of the enzymatic reaction, which should be simply performed.

【0011】本発明は、物質生産触媒、分析触媒として
特に有用である酸化還元酵素に関し、遊離または固定化
された少なくとも1種の酵素を含む酵素反応系に用いる
水系溶液に注目し、特に簡便な工程で実施できる酵素反
応方法を提供することを目的とする。
The present invention relates to an oxidoreductase which is particularly useful as a substance production catalyst and an analysis catalyst, and pays attention to an aqueous solution used in an enzyme reaction system containing at least one enzyme that is free or immobilized, and is particularly simple. It is an object of the present invention to provide an enzymatic reaction method that can be performed in steps.

【0012】[0012]

【課題を解決するための手段】本発明は、遊離または固
定化された酵素を利用する反応方法であり、酵素に接す
る水性媒体として煮沸処理、曝気処理、チオ硫酸塩の添
加処理より選ばれる少なくとも1つの脱残留塩素処理を
施した水道水を利用する酵素反応方法である。本発明
は、遊離または固定化された酵素を利用する反応方法で
あり、煮沸処理、曝気処理、チオ硫酸塩の添加処理より
選ばれる少なくとも1つの脱残留塩素処理を施した水道
水を用いて調製した溶液を酵素に接する水系溶液として
使用する酵素反応方法。
The present invention is a reaction method utilizing free or immobilized enzyme, and at least selected from boiling treatment, aeration treatment and thiosulfate addition treatment as an aqueous medium in contact with the enzyme. This is an enzymatic reaction method that uses tap water that has been subjected to one residual chlorine treatment. The present invention is a reaction method utilizing a free or immobilized enzyme, which is prepared by using tap water subjected to at least one de-residual chlorine treatment selected from boiling treatment, aeration treatment and thiosulfate addition treatment. An enzyme reaction method using the prepared solution as an aqueous solution in contact with an enzyme.

【0013】また、脱残留塩素処理が、水道水にチオ硫
酸塩を添加することによって行われる上記の酵素反応方
法を開示する。本発明は、酵素が固定化された酸化還元
酵素であり、水系溶液がフロー方式の基質濃度測定に用
いる移動相であり、酵素反応方法が、試料中の基質と酸
化還元酵素の反応で生成または消費される電極活性物質
を電気化学的に計測することによるフロー方式の基質測
定方法である上記の酵素反応方法を開示する。
Further, the above-mentioned enzymatic reaction method wherein the residual chlorine removal treatment is carried out by adding thiosulfate to tap water is disclosed. The present invention is an oxidoreductase in which an enzyme is immobilized, an aqueous solution is a mobile phase used for measuring a substrate concentration in a flow system, and an enzyme reaction method is produced by a reaction between a substrate in a sample and oxidoreductase. Disclosed is the above-mentioned enzyme reaction method, which is a flow-type substrate measurement method by electrochemically measuring the consumed electrode active substance.

【0014】[0014]

【作用】酵素に接する水系溶液としては、フロー方式の
測定における移動相、酵素電極の固定化酵素等の洗浄
液、酵素を利用したバッチ式測定における反応用溶液等
を例示できる。本発明で水系溶液とは、本発明特定の方
法で脱残留塩素処理した水道水に単に試料を溶解したサ
ンプル溶液等も含めた概念であり、必ずしも緩衝液とは
限らない。
The aqueous solution in contact with the enzyme can be exemplified by a mobile phase in a flow-type measurement, a washing solution for an enzyme immobilized on an enzyme electrode, a reaction solution in a batch-type measurement using an enzyme, and the like. In the present invention, the aqueous solution is a concept including a sample solution in which a sample is simply dissolved in tap water dechlorinated by the method specific to the present invention, and is not necessarily a buffer solution.

【0015】理論的には酵素反応を行うための水系溶液
には、たとえ微量といえども酵素反応に直接機能的に関
与しない物質は存在しないことが望ましい。酵素反応に
とっての不純物はしばしば酵素の活性を失わしめる場合
がある。固定化酵素の場合、遊離酵素に比較して固定化
処理を施した影響により多少その性質を変化させる場合
も見受けられるが、基本的には遊離酵素の性質が反映さ
れるためにやはり水系溶液の不純物によってその失活が
おこる。この失活現象が安定に酵素反応を利用するうえ
での障害となるために、その製造には細心の注意を要す
る。
Theoretically, it is desirable that the aqueous solution for carrying out the enzymatic reaction does not contain a substance which is not directly functionally involved in the enzymatic reaction, even if the amount is very small. Impurities for enzymatic reactions can often lead to loss of enzyme activity. In the case of an immobilized enzyme, it can be seen that the properties of the immobilized enzyme may be changed to some extent by the effect of immobilization treatment as compared with the free enzyme, but basically, the properties of the free enzyme are reflected, so that the aqueous solution Impurities cause its deactivation. Since this inactivation phenomenon hinders stable utilization of the enzymatic reaction, its production requires careful attention.

【0016】例えば、酸化還元酵素の一つであるグルコ
ースオキシダーゼの場合、その活性を失わせるような物
質としては、8−ヒドロキシキノリン、セミカルバジ
ド、硝酸ナトリウムなどがあ。しかし、これはほんの一
例であって、タンパク質自体に変性をもたらすような強
酸、強アルカリは論を待たず、微量の金属イオンあるい
は酸化物質または還元物質などによっても失活や阻害が
起こってしまう。
For example, in the case of glucose oxidase, which is one of the redox enzymes, 8-hydroxyquinoline, semicarbazide, sodium nitrate and the like are substances that lose their activity. However, this is just an example, and strong acids and strong alkalis that cause denaturation of the protein itself do not need to be waited for, and even a trace amount of a metal ion, an oxidizing substance, or a reducing substance causes deactivation and inhibition.

【0017】このような問題を避けるために従来では反
応用溶液等の用水には蒸留水や超純水が用いられてき
た。しかし蒸留水や超純水を用いると、用水の準備に費
やす労力と費用は大きなものとなり簡便に酵素反応を行
う妨げとなる。一方用水のうちで最も簡便に入手可能な
ものは水道水であり、水道水は飲用しても生命現象を損
なうことのないように厚生省令に水質基準が決められて
いるので水質的にも安定しているが、酸化還元酵素を含
む酵素反応系の反応用溶液等として用いた場合には、酸
化還元酵素を失活させてしまうという問題があった。
In order to avoid such problems, conventionally, distilled water or ultrapure water has been used as the water for the reaction solution or the like. However, if distilled water or ultrapure water is used, the labor and cost of preparing the water becomes large, which hinders easy enzymatic reaction. On the other hand, tap water is the most easily available water, and tap water is stable in terms of water quality because the water quality standards are set by the Ordinance of the Ministry of Health and Welfare so that it does not damage life phenomena even if it is drunk. However, when used as a reaction solution of an enzyme reaction system containing an oxidoreductase, there is a problem that the oxidoreductase is inactivated.

【0018】この現象は水道水中に存在する痕跡量の残
留塩素が存在するために酸化還元酵素の活性中心が影響
を受けていることが原因と推定できる。これは、水道水
を原材料として蒸留処理を施した蒸留水を反応用溶液等
の用水として用いた場合にはグルコースオキシダーゼな
ど酸化還元酵素の酵素活性が影響を受けない事実から推
定することができる。
This phenomenon can be presumed to be due to the fact that the active center of the oxidoreductase is affected by the presence of trace amounts of residual chlorine present in tap water. This can be inferred from the fact that the enzymatic activity of oxidoreductase such as glucose oxidase is not affected when distilled water obtained by subjecting tap water to the raw material as distilled water is used as water for the reaction solution or the like.

【0019】前述の蒸留等の処理は残留塩素の影響を除
去するのに簡便な手段のひとつではあるが、水を一旦部
分蒸発させて水蒸気を回収するために多くのエネルギー
を消費するという問題点がある。従って水道水中に含ま
れる痕跡量の残留塩素を酵素にとって無害な物質に変換
してしまうか、除去してしまえば蒸留に要するエネルギ
ーの消費を伴うことなく反応用溶液等の製造が可能とな
るが、残留塩素を酵素にとって無害な物質に変換するよ
うな手段、または簡便に除去する方法が必要となる。
The above-mentioned treatment such as distillation is one of the simple means for removing the influence of residual chlorine, but it consumes a lot of energy in order to partially vaporize water and recover water vapor. There is. Therefore, if the trace amount of residual chlorine contained in tap water is converted into a substance harmless to the enzyme, or if it is removed, it becomes possible to produce a reaction solution without consuming the energy required for distillation. A means for converting residual chlorine into a substance harmless to the enzyme, or a method for simply removing it is required.

【0020】有効と思われる手段には、例えば水道水中
に含まれる痕跡量の酸化物質または還元物質と反応する
ような化合物を添加すれば可能ではあるが、添加する化
合物と酸化物質または還元物質との反応生成物が酵素活
性に対して悪影響がなく、かつ剰余の前記添加した化合
物が酵素にとってなんら悪影響を与えない性質を持って
いなければならないために、その選定には困難がともな
い一般には実施されていなかったのが現状であった。
A means that seems to be effective is possible, for example, by adding a compound that reacts with a trace amount of an oxidizing substance or a reducing substance contained in tap water. Since the reaction product of 1 has no adverse effect on the enzyme activity and the surplus of the added compound does not have any adverse effect on the enzyme, its selection is generally carried out without difficulty. The current situation was that they did not.

【0021】そこで本発明では水質的に安定しており、
入手も容易な水道水を用水として用い、簡単に実施可能
な脱残留塩素処理を実施した水系溶液より酵素反応用溶
液等を製造する。用いる水道水は水質基準に適合した水
であるので、ろ過等の前処理なしに用いることができ
る。もちろん何らかの前処理を行っても本発明の実施を
妨げるものではない。
Therefore, in the present invention, the water quality is stable,
Using easily available tap water as water, an enzyme reaction solution and the like are produced from an aqueous solution that has been subjected to a residual chlorine treatment that can be easily performed. Since the tap water used is water that meets the water quality standards, it can be used without pretreatment such as filtration. Of course, any pretreatment does not hinder the practice of the present invention.

【0022】脱残留塩素の手段としては、水道水の煮
沸、水道水の曝気、水道水へのチオ硫酸塩の添加の
いずれかまたはこれらを組み合わせた処理を行う。脱残
留塩素の手段に水道水の煮沸を適用する場合、3〜30
分程度、通常は5分程度沸騰状態を維持すればよい。通
常、水道水を煮沸し放冷した用水を用いて緩衝液等の酵
素反応用溶液を調製すれば良いが、緩衝剤等の添加物に
影響を与えないならば、各成分を添加、調製後に煮沸・
放冷を行うことも可能である。
As means for removing residual chlorine, any one of boiling of tap water, aeration of tap water, addition of thiosulfate to tap water, or a combination thereof is performed. When tap water boiling is applied as a means for removing residual chlorine, it is 3 to 30.
The boiling state may be maintained for about 5 minutes, usually about 5 minutes. Usually, it is sufficient to prepare a solution for enzyme reaction such as a buffer solution using tap water that has been boiled and allowed to cool, but if it does not affect additives such as a buffer agent, add each component, after preparation Boiling
It is also possible to allow it to cool.

【0023】また、脱残留塩素の手段に水道水の曝気を
適用する場合、水道水の総体積、温度、気体流量、気体
と水道水の接触面積等の因子に左右されるために一概に
曝気時間は決められないが、通常溶存気体の置換に適用
される手法で充分である。用いる気体は残留塩素の置換
が目的であることを考慮すれば、塩素ガスはもちろん適
さない。また溶解することにより、酵素反応用溶液の成
分と反応を起こす可能性のあるもの、例えば二酸化炭素
ガスなども好ましくない。従って、好ましく用いること
のできる気体は、窒素ガス、酸素ガス、空気などであ
り、特に空気は費用的な面からより好ましく用いられ
る。
When tap water is aerated as a means for removing residual chlorine, it is generally aerated because it depends on factors such as the total volume of tap water, temperature, gas flow rate, and contact area between gas and tap water. The time is not fixed, but the method usually applied to the replacement of the dissolved gas is sufficient. Considering that the purpose of the gas used is to replace residual chlorine, chlorine gas is not suitable. In addition, substances that may react with the components of the enzyme reaction solution when dissolved, such as carbon dioxide gas, are not preferable. Therefore, the gas that can be preferably used is nitrogen gas, oxygen gas, air and the like, and air is more preferably used from the viewpoint of cost.

【0024】脱残留塩素の手段に水道水へのチオ硫酸塩
の添加を適用する場合、添加することのできるチオ硫酸
塩は水溶性塩であれば種類を選ばないが、チオ硫酸ナト
リウム、チオ硫酸カリウムなどが好ましく用いられる。
剰余のチオ硫酸塩は酸化還元酵素に対して悪影響を与え
ることはないが、酵素反応用溶液等のイオン強度等を考
慮すれば、添加濃度は0.01〜50p.p.m.程度
の範囲が望ましく、より好ましくは0.1〜1p.p.
m.程度の範囲である。添加されたチオ硫酸塩によっ
て、水道水中の塩素が還元されることによって酸化還元
酵素の活性に悪影響を与えない物質に変換される。
When the addition of thiosulfate to tap water is applied to the means for removing residual chlorine, the thiosulfate that can be added is not limited as long as it is a water-soluble salt, but sodium thiosulfate and thiosulfate can be used. Potassium and the like are preferably used.
The excess thiosulfate does not adversely affect the oxidoreductase, but considering the ionic strength of the enzyme reaction solution and the like, the addition concentration is 0.01 to 50 p. p. m. The range is preferably about 0.1 to 1 p. p.
m. It is a range of degrees. The added thiosulfate reduces chlorine in tap water and converts it into a substance that does not adversely affect the activity of oxidoreductase.

【0025】本発明による製造方法により、脱残留塩素
処理を施した水道水を用いて作った酵素反応用溶液等は
酸化還元酵素の活性を損なうことなく酵素分析等の精密
な酵素反応測定に用いることが可能である。水系溶液を
フロー方式の測定に用いる移動相とする場合は、水道水
に煮沸処理、曝気処理、またはチオ硫酸塩の添加処理を
少なくとも1つ実施してリン酸−NaOHやTris−
HCl等、通常酵素反応に用いられる緩衝液に調製す
る。また、バッチ式測定における反応用溶液とする場合
も、同様に脱塩素処理を施した水道水を用いて緩衝液を
調製して用いる。
The enzyme reaction solution prepared by using tap water that has been subjected to dechlorination treatment by the production method of the present invention is used for precise enzyme reaction measurement such as enzyme analysis without impairing the activity of oxidoreductase. It is possible. When an aqueous solution is used as the mobile phase for the flow measurement, tap water is subjected to at least one boiling treatment, aeration treatment, or thiosulfate addition treatment to perform phosphoric acid-NaOH or Tris-
Prepare a buffer such as HCl that is usually used for enzyme reaction. Also, when using as a reaction solution in batch type measurement, a buffer solution is similarly prepared by using dechlorinated tap water.

【0026】水系溶液を酵素電極等の洗浄液とする場合
は、水道水に煮沸処理、曝気処理、またはチオ硫酸塩の
添加処理のうち少なくとも1つの脱塩素処理を施したも
のをそのまま用いるか、あるいは必要ならば緩衝液に調
製して用いる。その他測定装置の洗浄液、試料の希釈用
溶液等に利用できる。また、遊離の酵素を利用する場合
は、水系溶液を酵素の希釈用溶液、保存用溶液等として
利用できる。
When an aqueous solution is used as a cleaning solution for enzyme electrodes and the like, tap water which has been subjected to at least one dechlorination treatment among boiling treatment, aeration treatment and thiosulfate addition treatment is used as it is, or If necessary, prepare it in a buffer and use it. It can also be used as a cleaning solution for measuring devices, a solution for diluting a sample, and the like. When a free enzyme is used, an aqueous solution can be used as a solution for diluting the enzyme, a storage solution, or the like.

【0027】酵素反応法としては、前記した酸化還元酵
素を用いた測定、例えば、グルコースオキシダーゼを用
いたグルコースの測定、アルコールオキシダーゼを用い
たエタノールの測定、L-乳酸オキシダーゼを用いた L-
乳酸の測定などが挙げられる。また、酸化還元酵素とE
C2群の転移酵素、EC3群の加水分解酵素、EC4群
の除去付加酵素、EC5群の異性化酵素、EC6群の合
成酵素と適宜組み合わせた複合酵素反応系を用いた測定
に用いることが可能である。一例として、インベルター
ゼ(EC 3.2.1.26)・ムタロターゼ(EC
5.1.3.3)とグルコースオキシダーゼを組み合わ
せたスクロースの測定、L-乳酸デヒドロゲナーゼ(EC
1.1.1.27)・ L- 乳酸オキシダーゼを組み合
わせたピルビン酸の測定などが挙げられる。
As the enzymatic reaction method, measurement using the above-mentioned oxidoreductase, for example, measurement of glucose using glucose oxidase, measurement of ethanol using alcohol oxidase, L-use of L-lactate oxidase
Examples include measurement of lactic acid. In addition, oxidoreductase and E
C2 group transferase, EC3 group hydrolase, EC4 group removal addition enzyme, EC5 group isomerase, and EC6 group synthase is there. As an example, invertase (EC 3.2.1.26) and mutarotase (EC
5.1.3.3) and glucose oxidase in combination to measure sucrose, L-lactate dehydrogenase (EC
1.1.1.27) -Pyruvate measurement in combination with L-lactate oxidase can be mentioned.

【0028】[0028]

【実施例】以下に実施例を挙げて、本発明の内容をさら
に詳細に説明するが、もちろん本発明はこれらに限定さ
れるものではない。
The contents of the present invention will be described in more detail with reference to the following examples, but of course the present invention is not limited thereto.

【0029】実施例1 酸化還元酵素として、グルコースオキシダーゼを用い
た。 (1)酵素反応用溶液の調製 水道水1lに、チオ硫酸ナトリウム(分子量158.
1)を0.632mg添加し、0.632p.p.m.
の濃度とした。この水道水を用いて、50mM塩化カリ
ウム、1mMアジ化ナトリウムを含んだ100mMリン
酸緩衝液を作成し、pHを6.0に調製した。 (2)酵素電極の作成方法 直径2mmの白金線の側面を熱収縮テフロンで被覆し、
その線の一端をやすりおよび1500番のエメリー紙で
平滑に仕上げる。この白金線を作用極、1cm角型白金
板を対極、飽和カロメル電極(以下SCEと略す)を参
照極として、0.1M硫酸中、+1.4Vで5分間の電
解処理を行う。
Example 1 Glucose oxidase was used as an oxidoreductase. (1) Preparation of solution for enzyme reaction Sodium thiosulfate (molecular weight 158.
0.632 mg was added to 0.632 p. p. m.
The concentration of Using this tap water, a 100 mM phosphate buffer containing 50 mM potassium chloride and 1 mM sodium azide was prepared, and the pH was adjusted to 6.0. (2) Method for making enzyme electrode A side surface of a platinum wire having a diameter of 2 mm is coated with heat-shrinkable Teflon,
One end of the wire is smoothed with a file and a No. 1500 emery paper. Using this platinum wire as a working electrode, a 1 cm square platinum plate as a counter electrode, and a saturated calomel electrode (hereinafter abbreviated as SCE) as a reference electrode, electrolytic treatment is performed in 0.1 M sulfuric acid at +1.4 V for 5 minutes.

【0030】その後白金線をよく水洗した後、40℃で
10分間乾燥し、10%γ−アミノプロピルトリエトキ
シシランの無水トルエン溶液に1時間浸漬した後、洗浄
した。 <酵素含有膜の形成>このアミノシラン化した白金線上
にグルコースに応答する酵素系を次のように固定化し
た。100mMリン酸ナトリウム緩衝液(pH6)中
に、グルコースオキシダーゼ(シグマ社製、タイプI
I)5mg/ml、牛血清アルブミン(シグマ社製、F
raction V)5mg/ml及びグルタルアルデ
ヒドを0.2%を含む溶液を5μl滴下し、40℃で1
5分間処理して固定化を行った。 (3)測定装置 図1に示した如く酵素電極を配置したフロー型測定装置
を用いた。
After that, the platinum wire was thoroughly washed with water, dried at 40 ° C. for 10 minutes, dipped in an anhydrous toluene solution of 10% γ-aminopropyltriethoxysilane for 1 hour, and then washed. <Formation of Enzyme-Containing Membrane> An enzyme system responsive to glucose was immobilized on the aminosilanized platinum wire as follows. Glucose oxidase (manufactured by Sigma, type I) in 100 mM sodium phosphate buffer (pH 6)
I) 5 mg / ml, bovine serum albumin (Sigma, F
ration V) 5 mg / ml and 5 μl of a solution containing 0.2% of glutaraldehyde are added dropwise, and 1
Immobilization was performed by treating for 5 minutes. (3) Measuring apparatus A flow type measuring apparatus having an enzyme electrode arranged as shown in FIG. 1 was used.

【0031】このフロー型測定装置は、高速液体クロマ
トグラフィ用のインジェクタ3(レオダイン社製712
5型)と、上述した手順で作成された酵素電極7を取り
付けた測定用セル5を内径0.5mm、長さ1.0mの
フッ素樹脂製配管4で接続されている。内容積40μl
の測定用セル5には、酵素電極7とAg/AgCl参照
電極8が緩衝液の管路を介して対向して配置されてお
り、さらに対極9として取り付けらたステンレス鋼から
成る配管が接続されている。これらは、恒温槽10の内
部に設置され、槽内の温度は37℃± 0.2℃に保持
されている。酵素電極7にはポテンシオスタット11に
よってAg/AgCl参照電極に対して+0.6Vの電
圧が印加され、電極で生成される過酸化水素を最終的に
電気化学的測定の対象として検出するようにした。検出
信号はA/D変換器12、通信ケーブル13を介してコ
ンピュータ14に転送してデータ処理を行った。
This flow-type measuring device is equipped with an injector 3 for high performance liquid chromatography (712 manufactured by Rheodyne Co., Ltd.).
5 type) and the measuring cell 5 to which the enzyme electrode 7 produced by the above-described procedure is attached are connected by a fluororesin pipe 4 having an inner diameter of 0.5 mm and a length of 1.0 m. Inner volume 40 μl
An enzyme electrode 7 and an Ag / AgCl reference electrode 8 are arranged to face each other in the measuring cell 5 of (1) via a buffer line, and a pipe made of stainless steel attached as a counter electrode 9 is connected to the measuring cell 5. ing. These are installed inside the constant temperature bath 10, and the temperature inside the bath is maintained at 37 ° C ± 0.2 ° C. A voltage of +0.6 V is applied to the enzyme electrode 7 by the potentiostat 11 with respect to the Ag / AgCl reference electrode so that hydrogen peroxide generated at the electrode is finally detected as a target for electrochemical measurement. did. The detection signal was transferred to the computer 14 via the A / D converter 12 and the communication cable 13 for data processing.

【0032】緩衝液リザーバ1からの緩衝液の送液に
は、コンピュータによって送液ポンプ2を制御し、1.
0ml/minの流量で送液されるように設定されてい
る。緩衝液は、本発明による酵素反応用溶液である。測
定を終えた緩衝液は、廃液リザーバ6で捕捉される。 (4)測定方法 恒温槽温度が平衡に達した後、グルコースの標準液を5
μl注入した。
For sending the buffer solution from the buffer solution reservoir 1, the solution sending pump 2 is controlled by a computer.
It is set so that liquid is delivered at a flow rate of 0 ml / min. The buffer is the enzyme reaction solution according to the present invention. The buffer solution after the measurement is captured by the waste liquid reservoir 6. (4) Measuring method After the temperature of the constant temperature bath reached equilibrium, add 5 parts of glucose standard solution.
μl was injected.

【0033】40mMの濃度まで検出値と濃度に比例関
係が成立しているのを確認したのち、10mMの濃度の
グルコース液を1時間毎に注入した。 (5)結果 測定結果を表1と図2に示す。グルコース電極の出力値
の単位はμAである。酵素反応用溶液を送液した経過時
間の単位は時間である。
After confirming that a proportional relationship was established between the detected value and the concentration up to a concentration of 40 mM, a glucose solution having a concentration of 10 mM was injected every hour. (5) Results The measurement results are shown in Table 1 and FIG. The unit of the output value of the glucose electrode is μA. The unit of the elapsed time of feeding the solution for enzyme reaction is time.

【0034】[0034]

【表1】 [Table 1]

【0035】酵素反応用溶液を送液開始後5時間経過し
ても、グルコースオキシダーゼの活性低下は認められな
かった。
No decrease in glucose oxidase activity was observed even after 5 hours from the start of feeding the enzyme reaction solution.

【0036】比較例1 (1)酵素反応用溶液の調製 未処理の水道水を用いて、50mM塩化カリウム、1m
Mアジ化ナトリウムを含んだ100mMリン酸緩衝液を
作成し、pHを6.0に調製した。 (2)酵素電極の作成方法 実施例1に同じ。 (3)測定装置 実施例1に同じ。 (4)測定方法 実施例1に同じ。 (5)結果 測定結果を表2と図3に示す。グルコース電極の出力値
の単位はμAである。酵素反応用溶液を送液した経過時
間の単位は時間である。
Comparative Example 1 (1) Preparation of Enzyme Reaction Solution Using untreated tap water, 50 mM potassium chloride, 1 m
A 100 mM phosphate buffer containing M sodium azide was prepared and the pH was adjusted to 6.0. (2) Method for producing enzyme electrode Same as in Example 1. (3) Measuring device Same as in Example 1. (4) Measurement method Same as in Example 1. (5) Results The measurement results are shown in Table 2 and FIG. The unit of the output value of the glucose electrode is μA. The unit of the elapsed time of feeding the solution for enzyme reaction is time.

【0037】[0037]

【表2】 [Table 2]

【0038】酵素反応用溶液を送液開始後5時間経過し
た時点で、グルコースオキシダーゼの活性は初期の約8
9%にまで低下した。
After 5 hours from the start of feeding the enzyme reaction solution, the activity of glucose oxidase was about 8% of the initial level.
It fell to 9%.

【0039】実施例2 脱残留塩素の手段として、水道水の煮沸を行った。 (1)酵素反応用溶液の調製 水道水1lを、ガラスビーカーに入れガスバーナで加熱
した。ビーカーの口を開放したまま、沸騰開始後15分
間煮沸し、室温(27℃)まで放冷した。この水道水を
用いて、50mM塩化カリウム、1mMアジ化ナトリウ
ムを含んだ100mMリン酸緩衝液を作成し、pHを
6.0に調製した。 (2)酵素電極の作成方法 実施例1に同じ。 (3)測定装置 実施例1に同じ。 (4)測定方法 実施例1に同じ。 (5)結果 測定結果を表3と図4に示す。グルコース電極の出力値
の単位はμAである。酵素反応用溶液を送液した経過時
間の単位は時間である。
Example 2 As a means for removing residual chlorine, tap water was boiled. (1) Preparation of Enzyme Reaction Solution 1 liter of tap water was placed in a glass beaker and heated with a gas burner. With the beaker open, the mixture was boiled for 15 minutes after the start of boiling and allowed to cool to room temperature (27 ° C). Using this tap water, a 100 mM phosphate buffer containing 50 mM potassium chloride and 1 mM sodium azide was prepared, and the pH was adjusted to 6.0. (2) Method for producing enzyme electrode Same as in Example 1. (3) Measuring device Same as in Example 1. (4) Measurement method Same as in Example 1. (5) Results The measurement results are shown in Table 3 and FIG. The unit of the output value of the glucose electrode is μA. The unit of the elapsed time of feeding the solution for enzyme reaction is time.

【0040】[0040]

【表3】 [Table 3]

【0041】酵素反応用溶液を送液開始後5時間経過し
ても、グルコースオキシダーゼの活性低下は認められな
かった。
No decrease in glucose oxidase activity was observed even after 5 hours from the start of feeding the enzyme reaction solution.

【0042】[0042]

【発明の効果】本発明により簡便な工程で酸化還元酵素
用の酵素反応用溶液等を製造することが可能となった。
実施例1,実施例2においては1日当たり8時間の測定
を7日間行ってもグルコース電極の出力値に変化はな
く、蒸留水等を用いて酵素反応用溶液を調製した場合と
同様に測定を行うことができた。
Industrial Applicability According to the present invention, it has become possible to produce an enzyme reaction solution for oxidoreductase and the like in a simple process.
In Examples 1 and 2, there is no change in the output value of the glucose electrode even if the measurement of 8 hours per day is performed for 7 days, and the measurement is performed in the same manner as when the enzyme reaction solution was prepared using distilled water or the like. I was able to do it.

【0043】一方、比較例1では1日当たり8時間の測
定を3日間行ったところグルコース電極の出力値がほぼ
消失し、測定できなくなった。
On the other hand, in Comparative Example 1, when the measurement for 8 hours per day was performed for 3 days, the output value of the glucose electrode almost disappeared and the measurement could not be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1、実施例2および比較例1にお
いて用いたグルコース測定装置の構成図の1例である。
FIG. 1 is an example of a configuration diagram of a glucose measuring device used in Examples 1, 2 and Comparative Example 1.

【図2】図2は実施例1における測定結果を図示したも
のである。縦軸はグルコース電極の出力値をあらわして
おり、単位はμAである。横軸は酵素反応用溶液を送液
した経過時間をあらわしており、単位は時間である。
FIG. 2 shows the measurement results in Example 1. The vertical axis represents the output value of the glucose electrode, and the unit is μA. The horizontal axis represents the elapsed time after feeding the enzyme reaction solution, and the unit is time.

【図3】図3は比較例1における測定結果を図示したも
のである。縦軸はグルコース電極の出力値をあらわして
おり、単位はμAである。横軸は酵素反応用溶液を送液
した経過時間をあらわしており、単位は時間である。
FIG. 3 illustrates the measurement results in Comparative Example 1. The vertical axis represents the output value of the glucose electrode, and the unit is μA. The horizontal axis represents the elapsed time after feeding the enzyme reaction solution, and the unit is time.

【図4】図4は実施例2における測定結果を図示したも
のである。縦軸はグルコース電極の出力値をあらわして
おり、単位はμAである。横軸は酵素反応用溶液を送液
した経過時間をあらわしており、単位は時間である。
FIG. 4 illustrates the measurement results in Example 2. The vertical axis represents the output value of the glucose electrode, and the unit is μA. The horizontal axis represents the elapsed time after feeding the enzyme reaction solution, and the unit is time.

【符号の説明】[Explanation of symbols]

1 緩衝液リザーバ 2 送液ポンプ 3 インジェクタ 4 配管 5 測定用セル 6 廃液リザーバ 7 酵素電極 8 Ag/AgCl参照電極 9 対極 10 恒温槽 11 ポテンシオスタット 12 A/D変換器 13 通信ケーブル 14 コンピュータ 15 プリンター 1 Buffer Reservoir 2 Liquid Feed Pump 3 Injector 4 Piping 5 Measurement Cell 6 Waste Liquid Reservoir 7 Enzyme Electrode 8 Ag / AgCl Reference Electrode 9 Counter Electrode 10 Thermostat 11 Potentiostat 12 A / D Converter 13 Communication Cable 14 Computer 15 Printer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 遊離または固定化された酵素を利用する
反応方法であり、煮沸処理、曝気処理、チオ硫酸塩の添
加処理より選ばれる少なくとも1つの脱残留塩素処理を
施した水道水を用いて調製した溶液を酵素に接する水系
溶液として使用する酵素反応方法。
1. A reaction method using a free or immobilized enzyme, which comprises using tap water subjected to at least one de-residual chlorine treatment selected from boiling treatment, aeration treatment and thiosulfate addition treatment. An enzyme reaction method using the prepared solution as an aqueous solution in contact with an enzyme.
【請求項2】 脱残留塩素処理が、水道水にチオ硫酸塩
を添加することによって行われる請求項1記載の酵素反
応方法。
2. The enzymatic reaction method according to claim 1, wherein the residual chlorine removal treatment is performed by adding thiosulfate to tap water.
【請求項3】 酵素が固定化された酸化還元酵素であ
り、水系溶液がフロー方式の基質濃度測定に用いる移動
相であり、酵素反応方法が、試料中の基質と酸化還元酵
素の反応で生成または消費される電極活性物質を電気化
学的に計測することによるフロー方式の基質測定方法で
ある請求項1記載の酵素反応方法。
3. An enzyme is an immobilized oxidoreductase, an aqueous solution is a mobile phase used for flow-type substrate concentration measurement, and an enzyme reaction method is generated by a reaction between a substrate in a sample and oxidoreductase. The enzyme reaction method according to claim 1, which is a flow-type substrate measuring method by electrochemically measuring the consumed electrode active substance.
JP18769492A 1992-07-15 1992-07-15 Method for enzymatic reaction Pending JPH0630782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18769492A JPH0630782A (en) 1992-07-15 1992-07-15 Method for enzymatic reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18769492A JPH0630782A (en) 1992-07-15 1992-07-15 Method for enzymatic reaction

Publications (1)

Publication Number Publication Date
JPH0630782A true JPH0630782A (en) 1994-02-08

Family

ID=16210520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18769492A Pending JPH0630782A (en) 1992-07-15 1992-07-15 Method for enzymatic reaction

Country Status (1)

Country Link
JP (1) JPH0630782A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276853A (en) * 2000-03-30 2001-10-09 Nippon Foundry Inc Waste liquid treatment method
US20090047725A1 (en) * 2007-08-13 2009-02-19 Vincent Allen Elder Method for Increasing Asparaginase Activity in a Solution
US7763306B2 (en) 2003-02-21 2010-07-27 Frito-Lay North America, Inc. Method for reducing acrylamide formation in thermally processed foods
US7811618B2 (en) 2002-09-19 2010-10-12 Frito-Lay North America, Inc. Method for reducing asparagine in food products
US8110240B2 (en) 2003-02-21 2012-02-07 Frito-Lay North America, Inc. Method for reducing acrylamide formation in thermally processed foods
US8158175B2 (en) 2008-08-28 2012-04-17 Frito-Lay North America, Inc. Method for real time measurement of acrylamide in a food product
US8284248B2 (en) 2009-08-25 2012-10-09 Frito-Lay North America, Inc. Method for real time detection of defects in a food product

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276853A (en) * 2000-03-30 2001-10-09 Nippon Foundry Inc Waste liquid treatment method
JP4517318B2 (en) * 2000-03-30 2010-08-04 ユー・エム・シー・ジャパン株式会社 Waste liquid treatment method
US7811618B2 (en) 2002-09-19 2010-10-12 Frito-Lay North America, Inc. Method for reducing asparagine in food products
US7767247B2 (en) 2003-02-21 2010-08-03 Frito-Lay North America, Inc. Method for reducing acrylamide formation in thermally processed foods
US7763304B2 (en) 2003-02-21 2010-07-27 Frito-Lay North America, Inc. Methods for reducing acrylamide formation in thermally processed foods
US7763305B2 (en) 2003-02-21 2010-07-27 Frito-Lay North America, Inc. Method for reducing acrylamide formation in thermally processed foods
US7763306B2 (en) 2003-02-21 2010-07-27 Frito-Lay North America, Inc. Method for reducing acrylamide formation in thermally processed foods
US8110240B2 (en) 2003-02-21 2012-02-07 Frito-Lay North America, Inc. Method for reducing acrylamide formation in thermally processed foods
WO2009023674A3 (en) * 2007-08-13 2009-04-09 Frito Lay North America Inc Method for increasing asparaginase activity in a solution
US20090047725A1 (en) * 2007-08-13 2009-02-19 Vincent Allen Elder Method for Increasing Asparaginase Activity in a Solution
JP2010536344A (en) * 2007-08-13 2010-12-02 フリト−レイ ノース アメリカ インコーポレイテッド Method for increasing asparaginase activity in solution
US8486684B2 (en) * 2007-08-13 2013-07-16 Frito-Lay North America, Inc. Method for increasing asparaginase activity in a solution
US8158175B2 (en) 2008-08-28 2012-04-17 Frito-Lay North America, Inc. Method for real time measurement of acrylamide in a food product
US8284248B2 (en) 2009-08-25 2012-10-09 Frito-Lay North America, Inc. Method for real time detection of defects in a food product

Similar Documents

Publication Publication Date Title
US5665222A (en) Soybean peroxidase electrochemical sensor
Karyakin et al. Electroreduction of NAD+ to enzymatically active NADH at poly (neutral red) modified electrodes
Karyakin et al. Prussian Blue-basedartificial peroxidase'as a transducer for hydrogen peroxide detection. Application to biosensors
Bourdillon et al. Covalent linkage of glucose oxidase on modified glassy carbon electrodes. Kinetic phenomena
Ikeda et al. Electrocatalysis with a glucose-oxidase-immobilized graphite electrode
Dzyadevych et al. Amperometric enzyme biosensors: Past, present and future
Ohara et al. Bienzyme sensors based on “electrically wired” peroxidase
Gülce et al. A new amperometric enzyme electrode for alcohol determination
Shankaran et al. A metal dispersed sol–gel biocomposite amperometric glucose biosensor
Amine et al. Preparation and characterization of a fragile enzyme immobilized carbon paste electrode
Fry et al. Electroenzymatic synthesis (regeneration of NADH coenzyme): use of Nafion ion exchange films for immobilization of enzyme and redox mediator
Gülce et al. Amperometric enzyme electrode for sucrose determination prepared from glucose oxidase and invertase co-immobilized in poly (vinylferrocenium)
JPS6239900B2 (en)
Villalonga et al. Construction of an amperometric biosensor for xanthine via supramolecular associations
Aydın et al. Amperometric enzyme electrode for L (+)-lactate determination using immobilized L (+)-lactate oxidase in poly (vinylferrocenium) film
Gibson et al. Improvements in the stability characteristics of biosensors using protein-polyelectrolyte complexes
JPH0630782A (en) Method for enzymatic reaction
Winartasaputra et al. Amperometric enzymic determination of triglycerides in serum
JP2862940B2 (en) Immobilized enzyme and measuring device using the same
Lorenzo et al. Immobilized enzyme carbon paste electrodes as amperometric sensors
Watanabe et al. Glucose oxidase-modified SnO2 electrode as electrochemical glucose sensor
Schuhmann et al. Comparison of native and chemically stabilized enzymes in amperometric enzyme electrodes
Huang et al. Determination of glutamine in mammalian cell cultures with a flow injection analysis/wall-jet electrode system
JP3319008B2 (en) Measuring device and measuring method
Godjevargova et al. Immobilization of glucose oxidase and acetylcholinesterase onto modified polyamide sorbent