JPH06307446A - Rotator having controlled type magnetic bearing - Google Patents

Rotator having controlled type magnetic bearing

Info

Publication number
JPH06307446A
JPH06307446A JP5091307A JP9130793A JPH06307446A JP H06307446 A JPH06307446 A JP H06307446A JP 5091307 A JP5091307 A JP 5091307A JP 9130793 A JP9130793 A JP 9130793A JP H06307446 A JPH06307446 A JP H06307446A
Authority
JP
Japan
Prior art keywords
rotator
magnetic bearing
control
type magnetic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5091307A
Other languages
Japanese (ja)
Inventor
Shigeki Morii
茂樹 森井
Noriyuki Kawada
則幸 川田
Naoyuki Nagai
直之 長井
Koichi Tokiyasu
孝一 時安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5091307A priority Critical patent/JPH06307446A/en
Publication of JPH06307446A publication Critical patent/JPH06307446A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Abstract

PURPOSE:To prevent saturation of a magnetic bearing, and also increase current for controlling the other vibration component, in a control type magnetic bearing formed in such a type that suction force of an electromagnetic stone used in a rotator having function for carrying out feed back control on a setting rotator is controlled by the signal of a displacement sensor so as to maintain the rotator in non-contact condition. CONSTITUTION:In a control type magnetic bearing formed in such a type that suction force of an electromagnetic stone used in a rotator having function for carrying out feed back control on a set rotator is controlled by the signal of a displacement sensor so as to maintain the rotator in non-contact condition, notch filteres 11, 11 are inserted, and a notch filter center frequency tuning circuit 12 is provided to set center frequency of the notch filters 11, 11 in relation to rotation frequency of the rotator and frequency of the integer times magnification in the rotation frequency corresponding to a rotation frequency setting value as the target value of rotating speed control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、ターボ分子ポ
ンプ、工作機械主軸、遠心圧縮機等、回転体を非接触で
保持する制御型磁気軸受をもつ各種の機器類に適用され
る制御型磁気軸受を有する回転体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to various types of equipment such as turbo molecular pumps, machine tool spindles, centrifugal compressors and the like, which have controllable magnetic bearings for holding rotating bodies in a non-contact manner. The present invention relates to a rotating body having a magnetic bearing.

【0002】[0002]

【従来の技術】制御型磁気軸受には、非接触保持、クリ
ーン性、低損失といったメリットがあり、例えば、真空
機器、高速回転体の分野では、従来のころがり軸受、す
べり軸受等に変わり適用が進みつつある。
2. Description of the Related Art Controlled magnetic bearings have advantages such as non-contact holding, cleanliness, and low loss. For example, in the field of vacuum equipment and high-speed rotating bodies, they can be used instead of conventional rolling bearings and sliding bearings. It's going on.

【0003】この種の従来の制御型磁気軸受の構成を図
面に従って詳細に説明する。図3は従来の制御型磁気軸
受の構成を説明するための図である。図中、1は回転
軸、2は駆動用モータ、3,4はそれぞれラジアル方
向、スラスト方向に対して作用する電磁石、5は歯車で
ある。6M ,6R ,6T はモータ2、ラジアル方向電磁
石3、スラスト方向電磁石4をそれぞれ駆動するための
駆動回路(DRV)である。7R ,7T はそれぞれラジ
アル方向、スラスト方向の制御回路(CNT)である。
8は自動速度制御回路(ASC)である。9はパルスセ
ンサである。10R ,10T はそれぞれラジアル方向、
スラスト方向の変位センサである。
The structure of a conventional control type magnetic bearing of this type will be described in detail with reference to the drawings. FIG. 3 is a diagram for explaining the configuration of a conventional control type magnetic bearing. In the figure, 1 is a rotating shaft, 2 is a drive motor, 3 and 4 are electromagnets acting in the radial direction and the thrust direction, respectively, and 5 is a gear. 6M, 6R and 6T are drive circuits (DRV) for driving the motor 2, the radial direction electromagnet 3 and the thrust direction electromagnet 4, respectively. 7R and 7T are radial direction and thrust direction control circuits (CNT), respectively.
Reference numeral 8 is an automatic speed control circuit (ASC). 9 is a pulse sensor. 10R and 10T are radial directions,
It is a thrust direction displacement sensor.

【0004】ラジアル方向について、その動作原理を述
べると、回転軸1のラジアル方向の位置を変位センサ1
0R によって検知し、その位置を常に同じ所に保持する
ように、制御回路(CNT)7R 、駆動回路(DRV)
6R を通じてラジアル方向電磁石3をコントロールす
る。この2組のラジアル磁気軸受により並進2方向、回
転2方向の制御を行なっている。
The principle of operation in the radial direction will be described. The position of the rotary shaft 1 in the radial direction is measured by the displacement sensor 1.
Control circuit (CNT) 7R, drive circuit (DRV) so that the position is always kept in the same place
Control the radial electromagnet 3 through 6R. These two sets of radial magnetic bearings control translation in two directions and rotation in two directions.

【0005】スラスト方向についても同様に、回転軸1
のスラスト方向の位置を変位センサ10T により検知
し、その位置を常に同じ所に保持するように、制御回路
(CNT)7T 、駆動回路(DRV)6T を通じてスラ
スト方向電磁石4をコントロールする。これによって並
進1方向の制御を行なっている。これで5軸を同時に制
御することで回転軸1を非接触で保持可能となる。
Similarly in the thrust direction, the rotary shaft 1
The position in the thrust direction is detected by the displacement sensor 10T, and the thrust direction electromagnet 4 is controlled through the control circuit (CNT) 7T and the drive circuit (DRV) 6T so that the position is always held at the same position. This controls the translation in one direction. By controlling the five axes at the same time, the rotary shaft 1 can be held in a non-contact manner.

【0006】また回転軸1は駆動用モータ2によって回
転させられる。通常の使用においては回転数を精度良く
一定に保つ必要があり、回転軸1に取りつけた歯車5の
ところでパルスセンサ9によって回転数を検知し、自動
速度制御回路(ASC)8、モータ駆動回路(DRV)
6M を介してモータ2をコントロールしている。これら
によって完全非接触かつ回転数一定の回転軸を実現でき
る。
The rotary shaft 1 is rotated by a drive motor 2. In normal use, it is necessary to keep the number of revolutions accurately and constant, and the number of revolutions is detected by the pulse sensor 9 at the gear 5 attached to the rotary shaft 1, and the automatic speed control circuit (ASC) 8 and the motor drive circuit ( DRV)
Motor 2 is controlled via 6M. With these, it is possible to realize a rotating shaft that is completely non-contact and has a constant rotation speed.

【0007】[0007]

【発明が解決しようとする課題】前述の方式の磁気軸受
では、以下に示すような欠点がある。図2は電磁石に於
けるコイル電流と吸引力の関係を示している。電磁石は
飽和特性を持っており、飽和電流ia以上に電流を上げ
ても吸引力はそれに伴って増加しなくなる。そのためそ
の飽和電流iaの1/3〜1/5のバイアス電流ioを
流した状態で使用している。即ちその状態では、コント
ロール可能なコイル電流はia−ioとなり、回転軸の
振動に対し作用させる吸引力はFa−Foとなる。従っ
て通常状態でのコイル電流は図中のiとなっている。
The above-mentioned magnetic bearing has the following drawbacks. FIG. 2 shows the relationship between the coil current and the attractive force in the electromagnet. The electromagnet has a saturation characteristic, and even if the current is increased to the saturation current ia or more, the attraction force does not increase accordingly. Therefore, the bias current io that is 1/3 to 1/5 of the saturation current ia is used. That is, in that state, the controllable coil current becomes ia-io, and the attraction force applied to the vibration of the rotating shaft becomes Fa-Fo. Therefore, the coil current in the normal state is i in the figure.

【0008】ところが通常回転軸に於いては、回転数N
(アンバランス)及びその整数倍nNの振動成分を伴う
ため、特に高速回転軸では、その成分だけをコントロー
ルするために、ia−ioを使いきってしまうことが多
々ある。
However, in a normal rotating shaft, the number of rotations N
Since (unbalance) and a vibration component of an integer multiple nN are involved, ia-io is often used up in order to control only that component, especially in a high-speed rotating shaft.

【0009】そうなると他の振動成分に対するコントロ
ールは不可能となってしまうため、軸振動上問題とな
る。それを回避するために、回転軸のバランシンググレ
ードを不必要に上げなければならないという問題があっ
た。
In that case, it becomes impossible to control other vibration components, which causes a problem in shaft vibration. In order to avoid this, there has been a problem that the balancing grade of the rotating shaft has to be unnecessarily raised.

【0010】[0010]

【課題を解決するための手段】本発明は、前述した従来
の問題点を解決するために、回転数N及びその整数倍n
Nを中心周波数とするノッチフィルタを挿入する。また
回転軸の回転数設定値に対応してノッチフィルタの中心
周波数を自動的にチューニングできる回路を設ける(回
転軸の回転数は自動速度制御回路によりコントロールさ
れているので、回転数設定値と実際の回転数とはほぼ等
しい)。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention is directed to a rotational speed N and an integer multiple n thereof.
A notch filter having N as the center frequency is inserted. In addition, a circuit that can automatically tune the center frequency of the notch filter according to the rotational speed setting value of the rotating shaft is provided (Since the rotating speed of the rotating shaft is controlled by the automatic speed control circuit, Is almost equal to the number of revolutions).

【0011】[0011]

【作用】前記の構成により、回転数N及びその整数倍n
N成分の振動に対する感度を低下させ、コイルのコント
ロール電流の減少を防止することができる。即ち磁気軸
受自体の飽和を防止するとともに、他の振動成分に対す
るコントロール電流を大きくすることが可能となる。
With the above configuration, the rotation speed N and its integral multiple n
It is possible to reduce the sensitivity to vibration of the N component and prevent the control current of the coil from decreasing. That is, it is possible to prevent saturation of the magnetic bearing itself and to increase the control current for other vibration components.

【0012】[0012]

【実施例】以下図面を参照して本発明に係る制御型磁気
軸受についてその構成を図面に従い説明する。図1は本
発明に係る制御型磁気軸受の構成を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a controlled magnetic bearing according to the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of a controlled magnetic bearing according to the present invention.

【0013】図中、1は回転軸、2は駆動用モータ、
3,4はそれぞれラジアル方向、スラスト方向に対して
作用する電磁石、5は歯車である。6M ,6R ,6T は
上記モータ2、ラジアル方向電磁石3、スラスト方向電
磁石4をそれぞれ駆動するための駆動回路(DRV)で
ある。7R ,7T はそれぞれラジアル方向、スラスト方
向の制御回路(CNT)である。8は自動速度制御回路
(ASC)である。9はパルスセンサ、10R ,10T
はそれぞれラジアル方向、スラスト方向の変位センサで
ある。11,12はそれぞれ本発明に於いて設けられた
構成要素であり、11はノッチフィルタ(NT)、12
はノッチフィルタ中心周波数チューニング回路(NF
T)である。
In the figure, 1 is a rotary shaft, 2 is a drive motor,
Reference numerals 3 and 4 are electromagnets acting in the radial direction and the thrust direction, respectively, and 5 is a gear. 6M, 6R and 6T are drive circuits (DRV) for driving the motor 2, the radial direction electromagnet 3 and the thrust direction electromagnet 4, respectively. 7R and 7T are radial direction and thrust direction control circuits (CNT), respectively. Reference numeral 8 is an automatic speed control circuit (ASC). 9 is a pulse sensor, 10R, 10T
Are displacement sensors in the radial direction and the thrust direction, respectively. Reference numerals 11 and 12 are constituent elements provided in the present invention, and 11 is a notch filter (NT), 12
Is the notch filter center frequency tuning circuit (NF
T).

【0014】まずラジアル方向について、その作動原理
を述べる。回転軸1のラジアル方向位置を変位センサ1
0R によって検知し、回転軸1を常に同じところに保持
するように、ノッチフィルタ11、制御回路(CNT)
7R を経た信号にて駆動回路(DRV)6R によりラジ
アル方向の電磁石3をコントロールする。
First, the operating principle of the radial direction will be described. The radial position of the rotary shaft 1 is measured by the displacement sensor 1
Notch filter 11 and control circuit (CNT) so that rotation axis 1 is always held at the same place
The drive circuit (DRV) 6R controls the electromagnet 3 in the radial direction by the signal passed through 7R.

【0015】制御回路7R には、通常PID等が用いら
れ、剛体モードの固有振動数に対し正減衰を与えると共
に、適宜フィルタも用いて曲げ1次に対しても同様のこ
とを行なっている。
A PID or the like is usually used for the control circuit 7R, and positive damping is applied to the natural frequency of the rigid body mode, and a similar filter is also used to perform the same for the bending first order.

【0016】ノッチフィルタ(NT)11は、回転軸1
の回転数N成分、及びその整数倍成分nN(nは整数)
に中心周波数を持ち、その周波数成分に対して感度を低
下させるものであり、任意の回転軸1の回転数設定値に
対し中心周波数を合わせられるようノッチフィルタ中心
周波数チューニング回路12を設けてある。
The notch filter (NT) 11 has a rotary shaft 1
Number of revolutions N component of n and its integral multiple component nN (n is an integer)
A notch filter center frequency tuning circuit 12 is provided so that the center frequency is adjusted to reduce the sensitivity to the frequency component and the center frequency can be adjusted to an arbitrary rotation speed setting value of the rotary shaft 1.

【0017】スラスト方向についても同様に、回転軸1
のスラスト方向位置を変位センサ10T により検知し、
制御回路(CNT)7T 、駆動回路(DRV)6T を介
しスラスト方向の電磁石4をコントロールして、回転軸
1を常に同じ位置に保持する。ここには記していない
が、スラスト方向に対してもラジアル方向と同様のノッ
チフィルタを挿入しても何ら差し支えない。
Similarly in the thrust direction, the rotary shaft 1
Displacement sensor 10T detects the thrust direction position of
By controlling the electromagnet 4 in the thrust direction via the control circuit (CNT) 7T and the drive circuit (DRV) 6T, the rotary shaft 1 is always held at the same position. Although not shown here, a notch filter similar to that in the radial direction may be inserted in the thrust direction.

【0018】以上により並進3方向、回転2方向を同時
に制御して、回転軸1を非接触で保持可能となる。また
回転軸1は駆動モータ2によって回転させられる。回転
軸1にとり付けられた歯車5の位置でパルスセンサ9に
よって回転数を検知し、自動速度制御回路(ASC)
8、モータ駆動回路(DRV)6M により、常に同一回
転数となるよう制御されている。
As described above, it is possible to hold the rotary shaft 1 in a non-contact manner by simultaneously controlling the three translational directions and the two rotational directions. The rotary shaft 1 is rotated by the drive motor 2. The rotation speed is detected by the pulse sensor 9 at the position of the gear 5 attached to the rotary shaft 1, and the automatic speed control circuit (ASC)
8. The motor drive circuit (DRV) 6M controls the rotation speed to be always the same.

【0019】ノッチフィルタ(NT)11の作用につい
て図2に従って説明する。図2は電磁石に於けるコイル
電流と吸引力の関係を示したものである。電磁石は飽和
特性を持っており、飽和電流ia以上に電流を上げても
吸引力はそれに伴って増加しなくなる。そのため飽和電
流iaの1/3〜1/5のバイアス電流ioを流した状
態で使用している。即ちその状態では電磁石に有効に吸
引力を発生させることのできる電流はia−io、吸引
力はFaーFoとなる。ところが回転軸に於いては回転
数N(アンバランス)成分及びその整数nN(nは整
数)成分の振動成分を伴うことが多く、特に高速で回転
する場合には振動は僅かでも、それを押さえるために
は、かなり大きな力を要する。そのために飽和電流ia
に近い、若しくはia以上にコイル電流が必要となり、
これ以上の制御が困難となる。しかし本発明のノッチフ
ィルタ(NT)11の作用により、電磁石の飽和を低減
させることができ、任意の振動数成分に対してコントロ
ールが可能となる。
The operation of the notch filter (NT) 11 will be described with reference to FIG. FIG. 2 shows the relationship between the coil current and the attractive force in the electromagnet. The electromagnet has a saturation characteristic, and even if the current is increased to the saturation current ia or more, the attraction force does not increase accordingly. Therefore, the bias current io of 1/3 to 1/5 of the saturation current ia is used. That is, in that state, the current that can effectively generate the attractive force in the electromagnet is ia-io, and the attractive force is Fa-Fo. On the other hand, the rotating shaft is often accompanied by a vibration component of a rotation speed N (unbalanced) component and its integer nN (n is an integer) component, and suppresses even a slight vibration particularly when rotating at a high speed. In order to do so, it requires a considerable amount of power. Therefore, the saturation current ia
, Or a coil current of ia or more is required,
Further control becomes difficult. However, due to the action of the notch filter (NT) 11 of the present invention, the saturation of the electromagnet can be reduced, and it becomes possible to control an arbitrary frequency component.

【0020】[0020]

【発明の効果】以上詳記したように本発明の制御型磁気
軸受を有する回転体機構によれば、電磁石の飽和を緩和
させることができ、コイル電流のコントロール範囲を広
くとることができる。また高精度のバランシング作業も
不要となる。
As described above in detail, according to the rotating body mechanism having the controlled magnetic bearing of the present invention, the saturation of the electromagnet can be alleviated, and the control range of the coil current can be widened. In addition, high-precision balancing work is unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る制御型磁気軸受の構成
を示す図。
FIG. 1 is a diagram showing a configuration of a control type magnetic bearing according to an embodiment of the present invention.

【図2】電磁石におけるコイル電流と吸引力の関係を示
す図。
FIG. 2 is a diagram showing a relationship between a coil current and an attractive force in an electromagnet.

【図3】従来の制御型磁気軸受の構成を示す図。FIG. 3 is a diagram showing a configuration of a conventional control type magnetic bearing.

【符号の説明】[Explanation of symbols]

1…回転軸、2…駆動用モータ、3…ラジアル方向電磁
石、4…スラスト方向電磁石、5…歯車、6M ,6R ,
6T …駆動回路(DRV)、7R ,7T …制御回路(C
NT)、8…自動速度制御回路(ASC)、9…回転パ
ルスセンサ、10R ,10T …変位センサ、11…ノッ
チフィルタ(NT)、12…ノッチフィルタ中心周波数
チューニング回路(NFT)。
DESCRIPTION OF SYMBOLS 1 ... Rotating shaft, 2 ... Drive motor, 3 ... Radial direction electromagnet, 4 ... Thrust direction electromagnet, 5 ... Gear, 6M, 6R,
6T ... Drive circuit (DRV), 7R, 7T ... Control circuit (C
NT), 8 ... Automatic speed control circuit (ASC), 9 ... Rotation pulse sensor, 10R, 10T ... Displacement sensor, 11 ... Notch filter (NT), 12 ... Notch filter center frequency tuning circuit (NFT).

フロントページの続き (72)発明者 時安 孝一 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内Front page continuation (72) Koichi Tokiyasu 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima Mitsubishi Heavy Industries Ltd. Hiroshima Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 設定回転体にフィードバック制御を行な
う機能を有する回転体に用いられる電磁石の吸引力を変
位センサの信号により制御して回転体を非接触で保持す
る方式の制御型磁気軸受に於いて、回転体の回転周波
数、及び同回転周波数の整数倍の周波数に対してノッチ
フィルタを挿入し、同ノッチフィルタの中心周波数を回
転数制御の目標値である回転周波数設定値に対応して設
定できる調整回路を設けたことを特徴とする制御型磁気
軸受を有する回転体。
1. A control type magnetic bearing of a system in which a attracting force of an electromagnet used in a rotating body having a function of performing feedback control on a set rotating body is controlled by a signal of a displacement sensor to hold the rotating body in a non-contact manner. The notch filter is inserted for the rotation frequency of the rotating body and a frequency that is an integer multiple of the rotation frequency, and the center frequency of the notch filter is set according to the rotation frequency setting value that is the target value for rotation speed control. A rotating body having a control type magnetic bearing, which is provided with an adjusting circuit capable of performing the adjustment.
JP5091307A 1993-04-19 1993-04-19 Rotator having controlled type magnetic bearing Withdrawn JPH06307446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5091307A JPH06307446A (en) 1993-04-19 1993-04-19 Rotator having controlled type magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5091307A JPH06307446A (en) 1993-04-19 1993-04-19 Rotator having controlled type magnetic bearing

Publications (1)

Publication Number Publication Date
JPH06307446A true JPH06307446A (en) 1994-11-01

Family

ID=14022816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5091307A Withdrawn JPH06307446A (en) 1993-04-19 1993-04-19 Rotator having controlled type magnetic bearing

Country Status (1)

Country Link
JP (1) JPH06307446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108869541A (en) * 2018-01-12 2018-11-23 至玥腾风科技投资集团有限公司 A kind of control method of transverse bearing, rotor-support-foundation system and transverse bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108869541A (en) * 2018-01-12 2018-11-23 至玥腾风科技投资集团有限公司 A kind of control method of transverse bearing, rotor-support-foundation system and transverse bearing
CN108869541B (en) * 2018-01-12 2024-04-02 刘慕华 Radial bearing, rotor system and control method of radial bearing

Similar Documents

Publication Publication Date Title
US4686404A (en) Controlled radial magnetic bearing device
US5573443A (en) Spindle and method for driving the same
JP3463218B2 (en) Magnetic bearing device
JPH06307446A (en) Rotator having controlled type magnetic bearing
JPS6166541A (en) Controlled radial magnetic bearing device
JP2005121114A (en) Spindle device
KR930008331A (en) Magnetic Bearing Device
JPH0720079U (en) Permanent magnet type rotating electric machine
WO1999044274A1 (en) Linear/rotary motor and method of use
JPH0562244B2 (en)
JP2797912B2 (en) A method for controlling azimuth of suspended load using gyroscope
JPH04300417A (en) Magnetic bearing device
JPS624567A (en) Rotating balance adjusting mechanism in rotary device
JPH03228570A (en) Processing device having magnetic bearing on spindle
JPH04116014U (en) Magnetic bearing control device
JP3096821B2 (en) Control type magnetic bearing spindle
JPH04327021A (en) Bearing device
JP2933287B2 (en) Magnetic bearing device for rotating machinery
JPH08323505A (en) Machine tool
JP2000257633A (en) Magnetic bearing control device
JPH05141423A (en) Magnetic bearing device attached to movable object
JPH0884455A (en) Motor that functions as bearing
JP3248108B2 (en) Control device for magnetic bearing
JP2000087967A (en) Magnetic bearing device
JPH05126151A (en) Bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704