JPH06307363A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPH06307363A
JPH06307363A JP9272793A JP9272793A JPH06307363A JP H06307363 A JPH06307363 A JP H06307363A JP 9272793 A JP9272793 A JP 9272793A JP 9272793 A JP9272793 A JP 9272793A JP H06307363 A JPH06307363 A JP H06307363A
Authority
JP
Japan
Prior art keywords
bearing
cylinder
sub
main bearing
kgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9272793A
Other languages
Japanese (ja)
Other versions
JP3319026B2 (en
Inventor
Toshihisa Yasuda
敏久 安田
Kazuhisa Ichimoto
和久 市本
Takemi Tada
武美 多田
Mikiko Tanaka
美紀子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP09272793A priority Critical patent/JP3319026B2/en
Publication of JPH06307363A publication Critical patent/JPH06307363A/en
Application granted granted Critical
Publication of JP3319026B2 publication Critical patent/JP3319026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the deformation of the inside structure of a pump after assembling by fixing a cylinder of a compression mechanism part to a closed container by welding, fastening the main and sub bearings to the cylinder by bolts, and at the same time, setting the bolt-tightening torque of the sub gearing to be relatively weaker by the specific value or more. CONSTITUTION:A motor part 6 and a pump part 7 are stored in an enclosed container 1. The motor part 6 consists of a stator 6a and a rotor 12. In addition, the pump part 7 consists of a rotary shaft 13, a cylinder 3, main and sub bearings 2, 4, a roller 14, vanes 15, a spring 17 or the like. The cylinder 3 is fixed to the inside structure of the enclosed container 1 by welding. On the other hand, the main and sub bearings 2, 4 are connected to each side of the cylinder 3 by tightening the respective individual bolts 5 to support the rotary shaft 13. The tightening torque of the respective bolts 5 is set, e.g. to be 80-100 kgf.cm on the main bearing 2 side, and 70-90 kgf. cm on the sub bearing 4 side, and the sub bearing 4 side is tightened weaker by 10kgf. cm in average.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば空気調和機や冷
蔵庫用の冷凍サイクルに使用されるロータリ圧縮機に係
り、特に、高い効率のロータリ圧縮機に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary compressor used in, for example, a refrigeration cycle for an air conditioner or a refrigerator, and more particularly to a rotary compressor with high efficiency.

【0002】[0002]

【従来の技術】一般的なロータリ圧縮機は、例えば特開
昭58−44290号公報記載の中に示されているもの
が知られている。この従来の圧縮機を図10を参照して
説明する。
2. Description of the Related Art As a general rotary compressor, for example, one disclosed in JP-A-58-44290 is known. This conventional compressor will be described with reference to FIG.

【0003】図10は、従来のロータリー圧縮機の縦断
面図である。
FIG. 10 is a vertical sectional view of a conventional rotary compressor.

【0004】図10に示すロータリ式圧縮機は、密閉容
器1内に電動機6を上部に、ポンプ部7を下部に配置し
ており、主軸受2にボルト固定用ネジ穴8を設け、該ボ
ルト固定用ネジ穴8と相対する位置のシリンダ3および
副軸受4および吐出マフラー9に夫々ボルト固定用貫通
穴8bを設け、ボルト5を通して反電動機側から主軸受
2に一括してボルト締め固定したことを特徴とする構成
になっている。
In the rotary compressor shown in FIG. 10, the electric motor 6 is arranged in the upper part and the pump part 7 is arranged in the lower part in the hermetic container 1, and the main bearing 2 is provided with the screw hole 8 for fixing the bolt. Bolt fixing through holes 8b are provided in the cylinder 3 and the auxiliary bearing 4 and the discharge muffler 9 at positions opposite to the fixing screw holes 8, respectively, and the bolts 5 are collectively bolted and fixed to the main bearing 2 from the side opposite to the electric motor. It is characterized by.

【0005】しかし、一般にこうしたタイプの圧縮機の
場合、主軸受2、シリンダ3、副軸受4は貫通したボル
ト5で締結されることから少ない工程で製造できる利点
を有する反面、シリンダが回転軸方向に長い大形の圧縮
機の場合、長いボルト5で固定され、横ずれを起こす危
険性があるので冷蔵庫用などの比較的小形のロータリ圧
縮機に用いられていた。
However, in general, in the case of a compressor of this type, since the main bearing 2, the cylinder 3 and the auxiliary bearing 4 are fastened with the bolts 5 that penetrate therethrough, there is an advantage that they can be manufactured in a small number of steps, but the cylinder is in the rotational axis direction. In the case of a large compressor having a very long length, it is fixed with a long bolt 5 and there is a risk of lateral slippage, so that it has been used in a relatively small rotary compressor for a refrigerator or the like.

【0006】大形の圧縮機の場合、特開昭58−131
392号公報記載のロータリ式圧縮機のような構造にな
っている。
In the case of a large compressor, Japanese Patent Laid-Open No. 58-131
It has a structure like the rotary compressor described in Japanese Patent No. 392.

【0007】図11は、上記ロータリ式圧縮機の縦断面
図である。また、図12はポンプの固定部を拡大して示
した断面図である。図11,12において図10と同一
符号のものは、同等部品を示すものであり、詳細な構成
の説明を割愛する。
FIG. 11 is a vertical sectional view of the rotary compressor. Further, FIG. 12 is an enlarged sectional view showing a fixed portion of the pump. In FIGS. 11 and 12, the same reference numerals as those in FIG. 10 indicate equivalent components, and detailed description of the configuration will be omitted.

【0008】図11に示すロータリ式圧縮機において
は、密閉容器1は蓋チャンバ10及び底チャンバ11が
圧入且つ溶接されて密閉容器を形成している。密閉容器
1内径には電動機6の固定子6aの外形が焼嵌にて接合
されていて、固定子6aと電動機6の回転子12間は適
且空隙をもった位置に配置されている。ポンプ部7は前
記回転子12と、圧入、焼嵌等により接合する回転軸1
3を中央部として、該回転子12の偏心部13aに嵌合
摺動するローラ14、該ローラ14上面と回転軸13の
上部ジャーナル13bの摺動を被むる主軸受2、該ロー
ラ14下面と回転軸13の下部ジャーナル13c等の摺
動を被むる副軸受4、主軸受2、副軸受4を接合し、ロ
ーラ14の外径と摺動するベーン15を摺動保持するシ
リンダ3等により構成されている。図12は主軸受2、
副軸受4とシリンダ3の接合状態を示すもので、シリン
ダ3にボルト固定用ネジ穴8を開口しボルト5にて上下
から夫々図12に示す様に副軸受4、主軸受2等を締結
した構成となっている。従って、主軸受2とシリンダ
3、また副軸受4とシリンダ3は別々のボルト5で締結
されるので組立工程は増加するが、確実に主軸受2とシ
リンダ3、また副軸受4とシリンダ3を固定することが
できる。
In the rotary compressor shown in FIG. 11, a closed container 1 is formed by pressing and welding a lid chamber 10 and a bottom chamber 11 into a closed container. The outer shape of the stator 6a of the electric motor 6 is joined to the inner diameter of the closed container 1 by shrinkage fitting, and the stator 6a and the rotor 12 of the electric motor 6 are arranged at an appropriate gap. The pump portion 7 is joined to the rotor 12 by press fitting, shrink fitting, etc.
3, a roller 14 fitted and slid on the eccentric portion 13a of the rotor 12, a main bearing 2 which covers sliding of the upper surface of the roller 14 and the upper journal 13b of the rotary shaft 13, and a lower surface of the roller 14. The lower bearing 13c of the rotating shaft 13 and the like, which are covered by sliding, a sub-bearing 4, a main bearing 2, and a sub-bearing 4 are joined together, and are constituted by a cylinder 3 and the like that slidably holds a vane 15 sliding with the outer diameter of the roller Has been done. FIG. 12 shows the main bearing 2,
This shows a state in which the sub bearing 4 and the cylinder 3 are joined. A bolt fixing screw hole 8 is opened in the cylinder 3 and the sub bearing 4, the main bearing 2 and the like are fastened from above and below by bolts 5 as shown in FIG. It is composed. Therefore, since the main bearing 2 and the cylinder 3, and the sub bearing 4 and the cylinder 3 are fastened with separate bolts 5, the number of assembling steps is increased, but the main bearing 2 and the cylinder 3, and the sub bearing 4 and the cylinder 3 are securely connected. Can be fixed.

【0009】[0009]

【発明が解決しようとする課題】一般にボルトの締め付
けトルクに関しては、ボルトの引張強度、ネジ山の剪断
破壊、被締結物の横ずれ防止等を考慮して決定される。
通常、ボルトに焼き入れ鋼を用いており、十分な強度が
あるので、圧縮機の組立中あるいは運転中に被締結物が
横ずれしないように十分なトルクで締め付けられている
のが現状である。したがって、後者の従来技術の場合で
も主軸受とシリンダ、また副軸受とシリンダは別々のボ
ルトで締結されるが、被締結物の横ずれ防止のため、ど
ちらも同じ値の十分なトルクで締め付けられている。な
お、前者の従来技術は一本の貫通ボルトで締結されるの
で、同一の締め付けトルクになるのはいうまでもない。
Generally, the tightening torque of a bolt is determined in consideration of the tensile strength of the bolt, shear fracture of the screw thread, prevention of lateral displacement of the object to be fastened, and the like.
Since the bolts are usually made of hardened steel and have sufficient strength, it is the current situation that they are fastened with sufficient torque so that the objects to be fastened do not slip during assembly or operation of the compressor. Therefore, even in the latter prior art, the main bearing and the cylinder, and the sub bearing and the cylinder are fastened with separate bolts, but both are fastened with sufficient torque of the same value to prevent lateral displacement of the fastened object. There is. It is needless to say that since the former conventional technique is fastened with a single through bolt, the tightening torque is the same.

【0010】しかし、ボルトやネジ山が破壊しないトル
クで締め付けた場合でも、主軸受及び副軸受の平面部分
とシリンダの内径部分は図3,4に示すように変形する
ことを確認した。なお、図3は、ボルト締め付け前と締
め付け後のシリンダ3内径真円度を示し、締め付け前
(破線表示A)と比較して締め付け後(実線表示B)の
変形状態を拡大して示したもである。なお8aはボルト
穴位置を示す。図3に示す様に、ボルト締め付け後のシ
リンダ3内径真円度は、締め付け前シリンダ3内径真円
度に比べ、ボルト付近で内側に変形していることがわい
る。図4は、主軸受2、副軸受4のボルト締め付け前と
締め付け後の平面度を示し、締め付け前(一点斜線表示
D)と比較して締め付け後(実線表示C)の変形状態を
拡大して示したものである。図4において8aは、図3
と同様にボルト穴を示したものである。図4に示す様
に、主軸受2、副軸受4のボルト締め付け後のシリンダ
に接するおのおのの端面の平面度は、ボルト付近でシリ
ンダ端面側に盛り上がり、ボルトとボルトの間の中央部
端面では、シリンダ端面側の逆方向にへこむ様に変形す
ることがわかる。又、主軸受2、シリンダ3、副軸受4
の接触部分の近傍で変形が大きくなっていることが分か
った。ポンプ内部の変形が大きいと、回転軸の回転によ
ってポンプ内部を偏心回動するローリングピストンに係
るローラとの回転軸方向及び半径方向のクリアランスが
均一でなくなる。このため、従来の圧縮機では、前記ク
リアランスの不均一によってシリンダ内への油漏れ(冷
媒を含む)が増大し、さらにポンプ内部とローラとの金
属接触によって摺動ロスが増大し、圧縮機の効率が低下
するという問題があった。本発明は、上記従来技術の問
題点を解決するためになされたもので、その目的は、圧
縮機組立後のポンプ内部の変形を最小限に抑えることに
より、高い効率のロータリ圧縮機を提供することにあ
る。
However, it has been confirmed that even when tightened with a torque that does not damage the bolts and threads, the plane portions of the main bearing and the sub bearing and the inner diameter portion of the cylinder are deformed as shown in FIGS. Note that FIG. 3 shows the circularity of the inner diameter of the cylinder 3 before and after tightening the bolts, and shows the deformed state after tightening (solid line display B) in comparison with before tightening (dotted line display A). Is. In addition, 8a shows a bolt hole position. As shown in FIG. 3, it can be seen that the cylinder 3 inner diameter circularity after tightening the bolt is deformed inward in the vicinity of the bolt as compared with the cylinder 3 inner diameter circularity before tightening. FIG. 4 shows the flatness of the main bearing 2 and the auxiliary bearing 4 before and after tightening the bolts, and shows the deformation state after tightening (solid line C) compared to before tightening (dotted line D). It is shown. In FIG. 4, 8a corresponds to FIG.
The bolt holes are shown in the same manner as. As shown in FIG. 4, the flatness of each of the end faces of the main bearing 2 and the sub bearing 4 contacting the cylinder after bolt tightening rises toward the cylinder end face near the bolt, and at the center end face between the bolts, It can be seen that the cylinder deforms so as to dent in the direction opposite to the cylinder end surface side. In addition, the main bearing 2, the cylinder 3, the sub bearing 4
It was found that the deformation was large near the contact part of. When the deformation inside the pump is large, the clearances in the rotation axis direction and the radial direction with the roller of the rolling piston that eccentrically rotates inside the pump due to the rotation of the rotation shaft are not uniform. Therefore, in the conventional compressor, oil leakage (including the refrigerant) into the cylinder increases due to the non-uniformity of the clearance, and sliding loss increases due to metal contact between the inside of the pump and the roller. There was a problem of reduced efficiency. The present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to provide a highly efficient rotary compressor by minimizing the deformation inside the pump after the compressor is assembled. Especially.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るロータリ圧縮機の構成は、密閉容器内
に、電動機部と圧縮機構部とを備え、前記電動機の回転
力を回転軸によって圧縮機構部に伝達し、該圧縮機構部
で冷媒ガスを圧縮するロータリ圧縮機において、前記圧
縮機構部は、前記電動機側から、主軸受、シリンダ、副
軸受の各要素を重ね合わせたものとし、前記シリンダが
密閉容器に溶接等で固定されると共に、主軸受はシリン
ダにボルトで締結され、副軸受は前記ボルトの締結力よ
りも10kgf・cm以上弱いトルクでシリンダに締結される
構成とした。
In order to achieve the above object, the structure of a rotary compressor according to the present invention comprises an electric motor part and a compression mechanism part in a hermetically sealed container to rotate the rotational force of the electric motor. In a rotary compressor that is transmitted to a compression mechanism section by a shaft and compresses a refrigerant gas in the compression mechanism section, the compression mechanism section is obtained by superposing respective elements of a main bearing, a cylinder, and a sub bearing from the electric motor side. The cylinder is fixed to the closed container by welding or the like, the main bearing is fastened to the cylinder with a bolt, and the auxiliary bearing is fastened to the cylinder with a torque weaker than the fastening force of the bolt by 10 kgf · cm or more. did.

【0012】また、本発明の別の手段は、圧縮機構部が
主軸受、シリンダ、副軸受の各要素を重ね合わせたもの
で構成され、主軸受及び副軸受がそれぞれ別々のボルト
でシリンダに締結されたロータリ圧縮機において、前記
シリンダに加工された締結用のメネジ部分がガイド穴を
有する構成であり、該ガイド穴は直径がメネジの谷径以
上で、深さが2mm以上である構成とした。
Further, according to another means of the present invention, the compression mechanism portion is constituted by superposing the respective elements of the main bearing, the cylinder and the sub bearing, and the main bearing and the sub bearing are fastened to the cylinder by separate bolts. In the above rotary compressor, the fastening internal thread portion processed into the cylinder has a guide hole, and the guide hole has a diameter not less than the root diameter of the internal thread and a depth not less than 2 mm. .

【0013】また、ポンプ内部の変形を更に小さくする
ため、圧縮機構部が主軸受、シリンダ、副軸受の各要素
を重ね合わせたもので構成され、主軸受及び副軸受がそ
れぞれ別々のボルトでシリンダに締結されたロータリ圧
縮機において、副軸受に吐出バルブを形成し、主軸受よ
りも副軸受が10kgf・cm以上弱いトルクで締結されると
共に、前記シリンダに加工された締結用のメネジ部分が
ガイド穴を有する構成であり、該ガイド穴は直径がメネ
ジの谷径以上で、深さが2mm以上となる構成にした。
Further, in order to further reduce the deformation inside the pump, the compression mechanism portion is constituted by superposing the respective elements of the main bearing, the cylinder and the sub bearing, and the main bearing and the sub bearing are respectively cylinders with separate bolts. In the rotary compressor fastened to the above, a discharge valve is formed in the sub bearing, the sub bearing is fastened with a torque of 10 kgf · cm or more weaker than the main bearing, and the fastening female screw portion machined in the cylinder is guided. The guide hole has a diameter of not less than the root diameter of the female screw and a depth of not less than 2 mm.

【0014】締め付けトルクに関して具体的には、ボル
トにM6のものを主軸受側と副軸受側でそれぞれ4本づ
つ使用し、主軸受側は80〜100kgf・cmで締め付け、
副軸受側は70〜90kgf・cmで締め付けるものである。
Regarding the tightening torque, specifically, four M6 bolts are used on each of the main bearing side and the sub bearing side, and the main bearing side is tightened at 80 to 100 kgf · cm.
The sub bearing side is tightened at 70 to 90 kgf · cm.

【0015】また、M5のボルトを4本づつ使用した場
合、主軸受側は65〜85kgf・cmで締め付け、副軸受側
は55〜75kgf・cmで締め付けるものである。
When four M5 bolts are used, the main bearing side is tightened at 65 to 85 kgf · cm, and the sub bearing side is tightened at 55 to 75 kgf · cm.

【0016】さらに、M4のボルトを4本づつ使用した
場合、主軸受側は50〜70kgf・cmで締め付け、副軸受
側は40〜60kgf・cmで締め付けるものである。
Further, when four M4 bolts are used, the main bearing side is tightened at 50 to 70 kgf · cm, and the sub bearing side is tightened at 40 to 60 kgf · cm.

【0017】さらに、M6のボルトを6本づつ使用した
場合、主軸受側は70〜90kgf・cmで締め付け、副軸受
側は60〜80kgf・cmで締め付けるものである。
Furthermore, when six M6 bolts are used, the main bearing side is tightened at 70 to 90 kgf · cm, and the sub bearing side is tightened at 60 to 80 kgf · cm.

【0018】さらに、M5のボルトを6本づつ使用した
場合、主軸受側は55〜75kgf・cmで締め付け、副軸受
側は45〜65kgf・cmで締め付けるものである。
Further, when six M5 bolts are used, the main bearing side is tightened at 55 to 75 kgf · cm and the sub bearing side is tightened at 45 to 65 kgf · cm.

【0019】さらに、M4のボルトを6本づつ使用した
場合、主軸受側は40〜60kgf・cmで締め付け、副軸受
側は30〜50kgf・cmで締め付けるものである。
When six M4 bolts are used, the main bearing side is tightened at 40 to 60 kgf · cm and the sub bearing side is tightened at 30 to 50 kgf · cm.

【0020】[0020]

【作用】運転中において、ポンプ内部ではガス圧縮荷重
が回転軸の偏心部に作用し、回転軸に焼き嵌め等で固定
された電動機部のロータには、磁気吸引力が作用する。
ここで、前者のガス圧縮荷重に関しては、回転軸を支持
する主軸受と副軸受とに分散して作用するが、後者の磁
気吸引力に関しては、主軸受内でクランク軸が傾き主軸
受の上端部と下端部に作用するため、前者と合計した半
径方向の荷重、すなわち横ずれ荷重は、副軸受とシリン
ダ間よりも主軸受とシリンダ間の方が大きい。
During operation, a gas compression load acts on the eccentric portion of the rotary shaft inside the pump, and a magnetic attraction force acts on the rotor of the electric motor unit fixed to the rotary shaft by shrink fitting or the like.
Here, with respect to the former gas compression load, it acts in a distributed manner on the main bearing and the auxiliary bearing that support the rotating shaft, but regarding the latter magnetic attraction force, the crankshaft tilts in the main bearing and the upper end of the main bearing Since the load acts on the lower part and the lower part, the total load in the radial direction, that is, the lateral displacement load, is larger between the main bearing and the cylinder than between the sub bearing and the cylinder.

【0021】したがって、主軸受側よりも副軸受側の方
が横ずれ防止の為の最小締め付けトルクを小さく設定で
きる。
Therefore, the minimum tightening torque for preventing lateral deviation can be set smaller on the auxiliary bearing side than on the main bearing side.

【0022】また、測定の結果、同じトルクで締め付け
た場合、吐出バルブを設置した方が軸受端面部の平面度
が悪くなるので、主軸受よりも最小締め付けトルクを小
さく設定することができる副軸受側に吐出バルブを設置
することでポンプ内変形を低減することができる。
Further, as a result of the measurement, when tightened with the same torque, the flatness of the end face of the bearing becomes worse when the discharge valve is installed. Therefore, the minimum tightening torque can be set smaller than that of the main bearing. By installing the discharge valve on the side, deformation inside the pump can be reduced.

【0023】さらに、図6に、シリンダ3の端面部にガ
イド穴16を設置した場合のポンプ内の変形状態を示
す。ガイド穴16を設置した場合、従来のもの図5より
もシリンダ3壁面端部付近における真円度を向上させる
ことができる。これは、シリンダ3が軸方向に圧縮され
半径方向に膨張変形する際、ガイド穴16内に逃げ代を
設置した分だけ、シリンダ16の内径方向への変形が抑
制されるためである。変形はシリンダ3の端部付近に特
に集中して起こるので、ガイド穴16を深さ2mm以上
形成すれば、シリンダ3内壁面の真円度は著しく向上す
る。又、図5Eは従来シリンダ内径真円度の変形量、図
6Fはガイド付シリンダ内径真円度の変形量、図6Gは
ガイド内径真円度の変形量を同じ比率で拡大して示した
ものである。
Further, FIG. 6 shows a deformed state in the pump when the guide hole 16 is installed in the end surface portion of the cylinder 3. When the guide hole 16 is provided, it is possible to improve the roundness in the vicinity of the end portion of the wall surface of the cylinder 3 as compared with the conventional case of FIG. This is because when the cylinder 3 is compressed in the axial direction and expanded and deformed in the radial direction, the deformation in the inner diameter direction of the cylinder 16 is suppressed by the amount of the clearance provided in the guide hole 16. Since the deformation particularly concentrates near the end portion of the cylinder 3, if the guide hole 16 is formed with a depth of 2 mm or more, the roundness of the inner wall surface of the cylinder 3 is significantly improved. Further, FIG. 5E is a conventional cylinder inner diameter circularity deformation amount, FIG. 6F is a guide cylinder inner diameter circularity deformation amount, and FIG. 6G is a guide inner diameter circularity deformation amount enlarged at the same ratio. Is.

【0024】なお、ボルト5の締め付けトルクに関する
本発明とシリンダ3にガイド穴16を設置する本発明を
組み合わせて用いた場合、主軸受2、副軸受4端面の平
面度とシリンダ3内壁面の真円度の両方が向上できるの
で、ポンプ内部を偏心回動するローラとポンプ内部との
回転軸方向及び半径方向のクリアランスが更に均一にな
り、シリンダ3内への油漏れ(冷媒を含む)の減少と、
ポンプ内部とローラとの金属接触による摺動ロスの減少
によって、圧縮機の効率が一層向上する。
When the present invention relating to the tightening torque of the bolt 5 and the present invention in which the guide hole 16 is installed in the cylinder 3 are used in combination, the flatness of the end faces of the main bearing 2 and the sub bearing 4 and the true inner wall surface of the cylinder 3 are used. Since both the circularity can be improved, the clearance between the roller eccentrically rotating inside the pump and the inside of the pump in the rotational axis direction and the radial direction becomes more uniform, and the oil leakage (including the refrigerant) into the cylinder 3 is reduced. When,
The efficiency of the compressor is further improved by reducing sliding loss due to metal contact between the inside of the pump and the roller.

【0025】[0025]

【実施例】本発明の実施例を、図1ないし図2,を参照
して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.

【0026】図1は、本発明に係る一実施例のロータリ
圧縮機の縦断面図であるまた。また、図2は、図1にお
けるG−G矢視断面図である。図1において油溜めを兼
ねた密閉容器1内に固定子6aと回転子12とからなる
電動機6と、回転軸13とシリンダ3と主軸受2と副軸
受4とローラ14とベーン15とスプリング17等から
なるポンプ部7とが収納されている。電動機6におい
て、固定子6aが密閉容器1内に焼嵌等によって固定さ
れている。回転子13は、一端が回転子12に固着され
ており、他端は主軸受2及び副軸受4で支持されてい
る。主軸受2及び副軸受4はシリンダ3の側板を兼ねて
おり、それぞれシリンダ3の両側に配設してシリンダ室
3aを形成している。ここで、シリンダ3は、密閉容器
1内に溶接等で固定されており、主軸受2及び副軸受4
がそれぞれ別々のボルトによって、シリンダ3に両側か
ら締結されることによりポンプ部7を構成し回転軸13
を支持するものである。また、シリンダ3には、図2に
示すように溝18が設けられており、この溝18内に、
ベーン15が嵌められている。ベーン15は一端が回転
軸13の偏心部13aに挿入されたローラ14に当接
し、他端がスプリング17に押されている。このように
構成したロータリ圧縮機は、電動要素6に通電されると
回転子12が回転し、この回転子12に直結された回転
軸13によりポンプ部7に回転が伝達される。この伝達
された回転運動により回転軸13に挿入されたローラ1
4がシリンダ3の内径に沿って偏心する。このローラ1
4の回転とベーン15とによって、シリンダ3には図2
に示すように低圧室19と高圧室20が形成される。ロ
ーラ14偏心運動によって低圧室19は、高圧室20へ
と移行し、圧縮動作を行う構造になっている。また、主
軸受2及び副軸受4がそれぞれ別々のボルト5でシリン
ダ3に締結され、シリンダ3に加工された締結用のメネ
ジ部分がガイド穴16を有する構成であり、該ガイド穴
16は直径がメネジの谷径以上で、深さが2mm以上と
なっている。また、主軸受2及び副軸受4を固定するボ
ルト5はM6で、それぞれ4本つづである。締め付ける
際の締め付けトルクは、主軸受2側が80から100kg
f・cm、副軸受4側が70から90kgf・cmとなっており、
主軸受2が副軸受4よりも平均で10以上強く締め付け
られている。
FIG. 1 is a vertical sectional view of a rotary compressor according to an embodiment of the present invention. 2 is a sectional view taken along the line GG in FIG. In FIG. 1, an electric motor 6 including a stator 6a and a rotor 12, a rotary shaft 13, a cylinder 3, a main bearing 2, a sub bearing 4, a roller 14, a vane 15, and a spring 17 are provided in a closed container 1 which also functions as an oil sump. And a pump unit 7 including the same. In the electric motor 6, the stator 6a is fixed in the closed container 1 by shrink fitting. The rotor 13 has one end fixed to the rotor 12 and the other end supported by the main bearing 2 and the sub bearing 4. The main bearing 2 and the sub bearing 4 also serve as side plates of the cylinder 3, and are arranged on both sides of the cylinder 3 to form a cylinder chamber 3a. Here, the cylinder 3 is fixed in the closed container 1 by welding or the like, and the main bearing 2 and the sub bearing 4
Are fastened to the cylinder 3 from both sides by separate bolts, respectively, to form the pump unit 7 and the rotary shaft 13
Is to support. Further, the cylinder 3 is provided with a groove 18 as shown in FIG. 2, and in the groove 18,
The vane 15 is fitted. One end of the vane 15 is in contact with the roller 14 inserted into the eccentric portion 13 a of the rotary shaft 13, and the other end is pressed by the spring 17. In the rotary compressor configured as described above, the rotor 12 rotates when the electric element 6 is energized, and the rotation is transmitted to the pump unit 7 by the rotary shaft 13 directly connected to the rotor 12. The roller 1 inserted into the rotary shaft 13 by the transmitted rotary motion.
4 is eccentric along the inner diameter of the cylinder 3. This roller 1
The rotation of vane 15 and the rotation of vane 15 cause cylinder 3 to move as shown in FIG.
A low pressure chamber 19 and a high pressure chamber 20 are formed as shown in FIG. The low-pressure chamber 19 is moved to the high-pressure chamber 20 by the eccentric movement of the roller 14, and the compression operation is performed. Further, the main bearing 2 and the sub bearing 4 are respectively fastened to the cylinder 3 by separate bolts 5, and the female thread portion for fastening which is processed on the cylinder 3 has a guide hole 16, and the guide hole 16 has a diameter of The depth is 2 mm or more at the root diameter of the female thread or more. Further, the number of bolts 5 for fixing the main bearing 2 and the sub bearing 4 is M6, and four bolts 5 each. The tightening torque for tightening is 80 to 100 kg on the main bearing 2 side.
f ・ cm, the sub bearing 4 side is 70 to 90 kgf ・ cm,
On average, the main bearing 2 is tighter than the sub bearing 4 by 10 or more.

【0027】本実施例のうち、ボルト締め付けトルクに
関する部分の効果を説明する。主軸受2はシリンダ3に
ボルト5で締結され、副軸受4は前記ボルトの締結力よ
りも10kgf・cm以上弱いトルクでシリンダ3に締結され
ることにより主軸受2、副軸受4端面の平面度とシリン
ダ3内壁面の真円度の両方が向上できるので、ポンプ内
部を偏心回転するローラ14とポンプ内部との回転軸方
向及び半径方向クリアランスが更に均一になり、シリン
ダ3内への油漏れ(冷媒を含む)の減少と、ポンプ内部
とローラ14との金属接触による摺動ロスの減少によっ
て、圧縮機の効率が一層向上する。
The effect of the portion relating to the bolt tightening torque in this embodiment will be described. The main bearing 2 is fastened to the cylinder 3 with bolts 5, and the sub bearing 4 is fastened to the cylinder 3 with a torque weaker than the fastening force of the bolts by 10 kgf · cm or more, whereby the flatness of the end faces of the main bearing 2 and the sub bearing 4 is increased. Since both the circularity of the inner wall surface of the cylinder 3 and the roundness of the inner wall surface of the cylinder 3 can be improved, the clearance between the roller 14 that eccentrically rotates inside the pump and the inside of the pump becomes even more uniform in the rotation axis direction and the radial direction, and the oil leakage ( The efficiency of the compressor is further improved by reducing the amount of the refrigerant (including the refrigerant) and the sliding loss due to the metal contact between the inside of the pump and the roller 14.

【0028】次に、本実施例のボルト締結に関する詳細
な説明を図7,8を用いて行う。この図7は横軸が締め
付けトルクT、縦軸が主軸受、副軸受端面平面度変形係
数nを示し、Hは副軸受端面変形特性、Iは主軸受端面
変形特性を示す。主軸受、副軸受端面平面度変形係数n
は(主、副軸受側締め付け後の端面平面度)÷(主、副
軸受側締め付け前の端面平面度)×100であらわし、
主軸受、副軸受とM6のボルトを4本づつ使用した場合
について示したものである。図7から分かるように締め
付けトルクTが100kgf・cm以上になると主軸受、副軸
受端面平面度変形係数nが急激に増加している。ここ
で、主軸受側に対して副軸受側の平面度が悪いのは、副
軸受側に吐出用のバルブを設置しているためである。こ
れは、バルブ設置部分において、フランジ部の肉厚が薄
くなるので、変形が大きくなる現象によるものである。
本実施例では、主軸受側は80から100kgf・cmで締め
付け、副軸受側は70から90kgf・cmで締め付けるので
主軸受、副軸受端面平面度変形係数nは最大で300と
なる。一般的にはM6ボルトの場合、110kgf・cm以上
で締め付けられているので、主軸受、副軸受端面平面度
変形係数nは副軸受の方で440以上に達しており、本
発明によって30%平面度が向上する。
Next, a detailed description of the bolt fastening of this embodiment will be given with reference to FIGS. In FIG. 7, the horizontal axis represents the tightening torque T, the vertical axis represents the main bearing and the sub-bearing end surface flatness deformation coefficient n, H represents the sub-bearing end surface deformation characteristic, and I represents the main bearing end surface deformation characteristic. Main bearing, sub bearing end face flatness deformation coefficient n
Is expressed as (end face flatness after tightening on main / sub bearing side) / (end face flatness before tightening on main / sub bearing side) × 100,
The figure shows the case where four main bearings, sub bearings, and four M6 bolts are used. As can be seen from FIG. 7, when the tightening torque T is 100 kgf · cm or more, the main bearing / sub bearing end face flatness deformation coefficient n sharply increases. Here, the reason why the flatness of the auxiliary bearing is poorer than that of the main bearing is that the discharge valve is installed on the auxiliary bearing. This is due to the phenomenon that the thickness of the flange portion becomes thin at the valve installation portion, so that the deformation becomes large.
In this embodiment, the main bearing side is tightened at 80 to 100 kgf · cm, and the sub bearing side is tightened at 70 to 90 kgf · cm, so that the main bearing / sub bearing end face flatness deformation coefficient n is 300 at maximum. Generally, in the case of M6 bolts, since it is tightened at 110 kgf · cm or more, the flatness deformation coefficient n of the end surface of the main bearing and the sub-bearing reaches 440 or more in the sub-bearing. The degree improves.

【0029】次に図8は、横軸が締め付けトルクT、縦
軸がシリンダ内径真円度変形係数mを示し、Jは主、副
軸受側シリンダ内径変形特性を示す。ここでのシリンダ
内径真円度変形係数mは、(主、副軸受締め付け後のシ
リンダ真円度)÷(主、副軸受締め付け前のシリンダ真
円度)×100であらわしたものである。ボルトはM6
で主軸受、副軸受にそれぞれ4本づつでシリンダに締結
されている。シリンダの真円度に関しては、主、副軸受
側とも同じ変形である。また、本変形は、シリンダの端
面より1mmの部分についてのデータである。図8から
分かるように締め付けトルクTが100kgf・cm以上にな
るにつれて主軸受側、副軸受側シリンダ内径真円度変形
係数mが急激に増加している。本実施例では、上述した
ように、主軸受側は80から100kgf・cmで締め付け、
副軸受側は70から90kgf・cmで締め付けられているの
で主軸受、副軸受側シリンダ内径真円度変形係数mは最
大で300である。一般的なM6ボルトの場合、110
kgf・cm以上で締め付けられた主軸受、副軸受側シリンダ
内径真円度変形係数mは400で、上記実施例と比べて
25%真円度が向上する。一方、運転中において、主軸
受とシリンダの締結面及び、副軸受とシリンダの締結面
にかかる横ずれ方向の力と軸方向の締結力に関する説明
を以下に述べる。本実施例で述べた圧縮機は、運転中回
転子中央にかかる磁気吸引力が約52kgfであり、回転
軸の偏心部にかかるガス圧縮荷重は、約140kgfであ
る。磁気吸引力の作用した回転軸は、主軸受の上端付近
と同じ主軸受の下端付近で支持されるので、主軸受には
上端と下端の差52kgfが軸と直交する方向に作用する
ことになる。また、ガス圧縮荷重は、主軸受と副軸受の
両方に作用し、主軸受側に55kgf、副軸受側に85kgf
作用する。従って、合計で主軸受が107kgf、副軸受
が85kgfで主軸受側の方に多くの横ずれ荷重が作用す
る。一方本実施例における締め付けトルク下限は、主軸
受が80kgf・cm、副軸受が70kgf・cmであり、軸方向の
締付力を算出すると、ボルト4本の合計で、主軸受側は
2420kgf、副軸受側は2120kgfである。主軸受、
シリンダ、副軸受,シリンダ間の締付面の摩擦係数を
0.1とすると、限界の横ずれ荷重は、主軸受側で24
2kgf、副軸受側で212kgfであり、主、副軸受とも安
全率(限界の横ずれ荷重÷横ずれ荷重)が2以上を確保
でき十分といえる。また、衝撃に対しても、実験の結
果、必要十分なトルクで締め付けられていることが、確
認できた。
Next, in FIG. 8, the horizontal axis represents the tightening torque T, the vertical axis represents the cylinder inner diameter roundness deformation coefficient m, and J represents the main and auxiliary bearing side cylinder inner diameter deformation characteristics. The cylinder inner diameter circularity deformation coefficient m here is represented by (cylinder circularity after tightening the main and auxiliary bearings) / (cylinder circularity before tightening the main and auxiliary bearings) .times.100. The bolt is M6
Are fastened to the cylinder with four main bearings and four sub bearings. Regarding the roundness of the cylinder, the same deformation occurs on the main bearing side and the sub bearing side. Further, this modification is data on a portion 1 mm from the end surface of the cylinder. As can be seen from FIG. 8, as the tightening torque T becomes 100 kgf · cm or more, the cylinder inner diameter circularity deformation coefficient m of the main bearing side and the sub bearing side rapidly increases. In this embodiment, as described above, the main bearing side is tightened at 80 to 100 kgf · cm,
Since the auxiliary bearing side is tightened at 70 to 90 kgf · cm, the cylinder inner diameter circularity deformation coefficient m of the main bearing and the auxiliary bearing side is 300 at maximum. In case of general M6 bolt, 110
The cylinder inner diameter circularity deformation coefficient m of the main bearing and the sub-bearing side clamped at kgf · cm or more is 400, which is a 25% improvement in circularity as compared with the above embodiment. On the other hand, a description will be given below regarding the lateral shift force and the axial fastening force applied to the fastening surface between the main bearing and the cylinder and the fastening surface between the auxiliary bearing and the cylinder during operation. In the compressor described in this embodiment, the magnetic attraction force applied to the center of the rotor during operation is about 52 kgf, and the gas compression load applied to the eccentric portion of the rotating shaft is about 140 kgf. Since the rotating shaft on which the magnetic attraction acts is supported near the lower end of the main bearing which is the same as near the upper end of the main bearing, the difference 52 kgf between the upper end and the lower end acts on the main bearing in the direction orthogonal to the shaft. . Moreover, the gas compression load acts on both the main bearing and the sub bearing, and 55 kgf on the main bearing side and 85 kgf on the sub bearing side.
To work. Therefore, a total of 107 kgf is applied to the main bearing and 85 kgf is applied to the auxiliary bearing, and a large amount of lateral displacement load acts on the main bearing side. On the other hand, the lower limit of the tightening torque in this embodiment is 80 kgf · cm for the main bearing and 70 kgf · cm for the auxiliary bearing, and when the tightening force in the axial direction is calculated, the total of four bolts is 2420 kgf on the main bearing side and the auxiliary bearing. The bearing side weighs 2120 kgf. Main bearing,
Assuming that the friction coefficient of the tightening surface between the cylinder, the sub bearing and the cylinder is 0.1, the limit lateral slip load is 24 on the main bearing side.
It is 2 kgf and 212 kgf on the sub bearing side, and it can be said that a safety factor (limit lateral deviation load ÷ lateral deviation load) of 2 or more can be secured for both the main and auxiliary bearings. Also, as a result of the experiment, it was confirmed that it was tightened with a necessary and sufficient torque against impact.

【0030】これまでの説明は、最適な締め付けトルク
に関する部分の効果について説明したものであるが、次
に、シリンダのメネジ部分に設置したガイド穴に関する
部分について説明する。
While the above description has described the effect of the portion relating to the optimum tightening torque, the portion relating to the guide hole installed in the female thread portion of the cylinder will be described next.

【0031】圧縮機構部が主軸受、シリンダ、副軸受の
各要素を重ね合わせたもので構成され、主軸受及び副軸
受がそれぞれ別々のボルトでシリンダに締結されたロー
タリ圧縮機において、前記シリンダに加工された締結用
のメネジ部分がガイド穴を有する構成であり、該ガイド
穴は直径がメネジの谷径以上で、深さが2mm以上にす
ることにより、シリンダ内壁面の真円度を向上させる効
果がある。これは、シリンダが軸方向に圧縮され半径方
向に膨張変形する際、ガイド穴内に逃げ代を設置した分
だけ、シリンダの内径方向への変形が抑制されるためで
ある。変形はシリンダの端部付近に特に集中しておこる
ので、ガイド穴を深さ2mm以上形成すれば、シリンダ
内壁面の真円度は著しく向上する。
In the rotary compressor in which the compression mechanism portion is formed by superposing the respective elements of the main bearing, the cylinder and the auxiliary bearing, and the main bearing and the auxiliary bearing are fastened to the cylinder by separate bolts, The machined fastening female screw portion has a guide hole, and the guide hole has a diameter not less than the root diameter of the female screw and a depth not less than 2 mm to improve the roundness of the inner wall surface of the cylinder. effective. This is because when the cylinder is compressed in the axial direction and expanded and deformed in the radial direction, the deformation in the inner diameter direction of the cylinder is suppressed by the amount of the clearance provided in the guide hole. Since the deformation is concentrated especially near the end portion of the cylinder, if the guide hole is formed with a depth of 2 mm or more, the roundness of the inner wall surface of the cylinder is significantly improved.

【0032】次に、上記ガイド穴を設置した効果につい
て図9を用いて説明する。図9は、横軸が締め付けトル
クT、縦軸がシリンダ内径真円度変形係数mを示し、J
はガイド穴無し主、副軸受側シリンダ内径変形特性、K
はガイド穴付主、副軸受側シリンダ内径変形特性を示
す。ここで、本実施例では、主軸受側は80から100
kgf・cmで締め付け、副軸受側は70から90kgf・cmで締
め付けているので、シリンダの各ボルト穴にガイド穴を
設置した場合の主、副軸受側シリンダ内径真円度変形係
数mは、最大250となっており、上記同締め付けトル
ク時のガイド穴無し主、副軸受側シリンダ内径真円度変
形係数mは、最大300で、ガイド穴付の方が17%真
円度が向上する。また、一般的なM6ボルトの場合、1
10kgf・cm以上で締め付けられ、ガイド穴は設置されて
いないので、主、副軸受側シリンダ内径真円度変形係数
mは400となり、上記ガイド穴付主、副軸受側シリン
ダ内径真円度変形係数m250と比較すると、ガイド穴
付の方が37%も真円度が向上する。
Next, the effect of installing the guide hole will be described with reference to FIG. In FIG. 9, the horizontal axis represents the tightening torque T, the vertical axis represents the cylinder inner diameter roundness deformation coefficient m, and J
Is a guide hole with no guide hole Main and sub bearing side cylinder bore deformation characteristics, K
Shows the deformation characteristics of the main and auxiliary bearing side cylinders with guide holes. Here, in this embodiment, the main bearing side is 80 to 100
Since it is tightened with kgf · cm and the auxiliary bearing is tightened with 70 to 90 kgf · cm, the cylinder inner diameter circularity deformation coefficient m of the main and auxiliary bearings when the guide holes are installed in each bolt hole of the cylinder is the maximum. When the tightening torque is 250, the main and auxiliary bearing side cylinder inner diameter circularity deformation coefficient m is 300 at the maximum, and the guide hole improves the circularity by 17%. In the case of general M6 bolt, 1
Since it is tightened at 10 kgf · cm or more and no guide hole is installed, the cylinder inner diameter circularity deformation coefficient m of the main and auxiliary bearings is 400. Compared with m250, the roundness is improved by 37% with the guide hole.

【0033】次に別の実施例について説明する。Next, another embodiment will be described.

【0034】ポンプ部において、主軸受とシリンダの固
定及び副軸受とシリンダの固定にM5のボルトを各4本
使用し、該ボルトによって、主軸受側は65から85kg
f・cmで締め付け、副軸受側は55から75kgf・cmで締め
付けた場合にも、前記した実施例と同様の効果が得られ
る。これは、M6からM5にボルトを小さくした場合、
ボルトの軸方向に作用する締め付け力を得るためのトル
クが、小さくなるためである。本締め付けトルク時に、
実験の結果、主、副軸受端面平面度変形係数nと主、副
軸受側シリンダ内径真円度変形係数mが、M6の場合と
同様に、同一になることを確認した。
In the pump part, four M5 bolts are used for fixing the main bearing and cylinder and for fixing the sub bearing and cylinder, and 65 to 85 kg on the main bearing side by these bolts.
Even when tightened at f · cm and at the auxiliary bearing side at 55 to 75 kgf · cm, the same effect as in the above-described embodiment can be obtained. This is because when the bolt is reduced from M6 to M5,
This is because the torque for obtaining the tightening force acting in the axial direction of the bolt becomes small. At the final tightening torque,
As a result of the experiment, it was confirmed that the main and sub bearing end surface flatness deformation coefficient n and the main and sub bearing side cylinder inner diameter circularity deformation coefficient m are the same as in the case of M6.

【0035】同様の実験を繰り返した結果、同じ変形と
するための必要十分なボルト種類、本数、トルクは以下
のような関係になることがわかつた。
As a result of repeating the same experiment, it was found that the necessary and sufficient types of bolts, the number of bolts, and the torque for achieving the same deformation have the following relationships.

【0036】ボルトM4で、主軸受、副軸受それぞれ4
本で締め付けた時のトルクは、主軸受側は50から70
kgf・cm、副軸受側は40から60kgf・cm。
4 main bearings and 4 sub bearings with bolts M4
The torque when tightened with a book is 50 to 70 on the main bearing side.
kgf ・ cm, 40-60kgf ・ cm on the secondary bearing side.

【0037】ボルトM6で、主軸受、副軸受それぞれ6
本で締め付けた時のトルクは、主軸受側は70から90
kgf・cm、副軸受側は60から80kgf・cm。
The main bearing and the sub bearing are 6 each with a bolt M6.
The torque when tightened with a book is 70 to 90 on the main bearing side.
kgf · cm, 60 to 80 kgf · cm on the secondary bearing side.

【0038】ボルトM5で、主軸受、副軸受それぞれ6
本で締め付けた時のトルクは、主軸受側は55から75
kgf・cm、副軸受側は45から65kgf・cm。
The main bearing and the sub bearing are each 6 with the bolt M5.
The torque when tightened with a book is 55 to 75 on the main bearing side.
kgf · cm, the auxiliary bearing side is 45 to 65 kgf · cm.

【0039】ボルトM4で、主軸受、副軸受それぞれ6
本で締め付けた時のトルクは、主軸受側は40から60
kgf・cm、副軸受側は30から50kgf・cm。
The main bearing and the sub bearing are each 6 with the bolt M4.
The torque when tightened with a book is 40 to 60 on the main bearing side.
kgf · cm, 30 to 50 kgf · cm on the secondary bearing side.

【0040】なお、上記の締め付けトルクに関する発明
は、シリンダに加工された締付用のボルト穴に、ガイド
穴を設けた発明と別々に用いた場合でも、ある程度の効
果があるが、同時に用いた場合は、前記したように主軸
受、副軸受端面平面度及び、シリンダ内径真円度が、よ
りいっそう向上する。
The invention relating to the above tightening torque has some effects even when it is used separately from the invention in which a guide hole is provided in a tightening bolt hole formed in a cylinder, but it is used at the same time. In this case, as described above, the flatness of the end faces of the main bearing and the sub bearing and the roundness of the cylinder inner diameter are further improved.

【0041】以上、説明してきたロータリ圧縮機を家庭
用ルームエアコンに搭載した結果、消費電力が、これま
でに比べて約5%低減できることが分かった。また、前
記説明してきたロータリ圧縮機を、家庭用冷蔵庫に搭載
した結果、消費電力が上記ルームエアコンに搭載した結
果と、ほぼ同等に低減できることも分かった。
As a result of mounting the rotary compressor described above in a room air conditioner for home use, it has been found that the power consumption can be reduced by about 5% compared to the past. It was also found that as a result of mounting the rotary compressor described above in a household refrigerator, power consumption can be reduced to almost the same level as that in the room air conditioner.

【0042】以上の実施例は、縦形式ロータリ圧縮機に
ついて説明したが、横形であっても同様の効果がある。
In the above embodiment, the vertical type rotary compressor has been described, but the same effect can be obtained even in the horizontal type.

【0043】[0043]

【発明の効果】以上詳細に説明したように、本発明によ
れば、主軸受、シリンダ、副軸受をボルトで固定する際
の締め付け変形を小さくすることかできるので高い効率
のロータリ圧縮機を提供することができる。
As described in detail above, according to the present invention, it is possible to reduce the tightening deformation when fixing the main bearing, the cylinder, and the sub bearing with bolts, so that a highly efficient rotary compressor is provided. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るロータリ圧縮機の断面
図である。
FIG. 1 is a cross-sectional view of a rotary compressor according to an embodiment of the present invention.

【図2】本発明の一実施例に係るロータリ圧縮機の摺動
部断面図である。
FIG. 2 is a sectional view of a sliding portion of a rotary compressor according to an embodiment of the present invention.

【図3】本発明の一実施例に係るロータリ圧縮機のシリ
ンダ内径真円度の変形を示した模式図である。
FIG. 3 is a schematic diagram showing deformation of a cylinder inner diameter circularity of a rotary compressor according to an embodiment of the present invention.

【図4】本発明の一実施例に係るロータリ圧縮機の主、
副軸受端面平面度の変形を示した模式図である。
FIG. 4 is a main part of a rotary compressor according to an embodiment of the present invention,
It is a schematic diagram which showed the deformation | transformation of a sub bearing end surface flatness.

【図5】従来のロータリ式圧縮機のシリンダ内径真円度
の変形を示した模式図及び、ボルト穴付近部断面図であ
る。
5A and 5B are a schematic view showing deformation of a circularity of a cylinder inner diameter of a conventional rotary compressor, and a cross-sectional view near a bolt hole.

【図6】本発明の一実施例に係るロータリ圧縮機のシリ
ンダ内径真円度の変形を示した模式図及び、ボルト穴付
近部断面図である。
6A and 6B are a schematic view showing deformation of a cylinder inner diameter roundness of a rotary compressor according to an embodiment of the present invention, and a sectional view of a portion near a bolt hole.

【図7】本発明の一実施例に係るロータリ圧縮機の縦軸
に主、副軸受端面平面度変形係数、縦軸に締め付けトル
クをとった、主、副軸受端面平面度変形特性を示すグラ
フである。
FIG. 7 is a graph showing main and sub bearing end face flatness deformation characteristics in which the vertical axis represents a main and sub bearing end surface flatness deformation coefficient and the vertical axis represents a tightening torque in a rotary compressor according to an embodiment of the present invention. Is.

【図8】本発明の一実施例に係るロータリ圧縮機の縦軸
にシリンダ内径真円度変形係数、縦軸に締め付けトルク
をとった、主、副軸受側シリンダ内径真円度変形特性を
示したグラフである。
FIG. 8 shows main and auxiliary bearing side cylinder inner diameter circularity deformation characteristics in which the vertical axis represents a cylinder inner diameter circularity deformation coefficient and the vertical axis represents a tightening torque in a rotary compressor according to an embodiment of the present invention. It is a graph.

【図9】本発明の一実施例に係るロータリ圧縮機の縦軸
にシリンダ内径真円度変形係数、縦軸に締め付けトルク
をとった、ガイド穴なし主、副軸受側シリンダ内径真円
度変形特性及び、ガイド穴付主、副軸受側シリンダ内径
真円度変形特性を示したグラフである。
FIG. 9 is a rotary compressor according to an embodiment of the present invention, in which the vertical axis represents the cylinder inner diameter circularity deformation coefficient and the vertical axis represents the tightening torque, the guide holeless main and auxiliary bearing side cylinder inner diameter circularity deformations. 5 is a graph showing characteristics and characteristics of main and auxiliary bearing side cylinder bore circularity deformation characteristics with guide holes.

【図10】従来のロータリ式圧縮機の一つであるロータ
リ式圧縮機の摺動部断面図である。
FIG. 10 is a sectional view of a sliding portion of a rotary compressor, which is one of conventional rotary compressors.

【図11】従来のロータリ式圧縮機の一つであるロータ
リ式圧縮機の断面図である。
FIG. 11 is a cross-sectional view of a rotary compressor that is one of conventional rotary compressors.

【図12】従来のロータリ式圧縮機の一つであるロータ
リ式圧縮機の摺動部断面図である。
FIG. 12 is a sectional view of a sliding portion of a rotary compressor, which is one of conventional rotary compressors.

【符号の説明】[Explanation of symbols]

1…密閉容器、 2…主軸受、 3…シリンダ、 4…副軸受、 5…ボルト、 6…電動機、 6a…固定子、 7…ポンプ部、 8…ボルト穴、 8a…ボルト穴位置、 8b…ボルト固定用貫通穴、 9…吐出マフラー、 10…蓋チャンバ、 11…底チャンバ、 12…回転子、 13…回転軸、 13a…偏心部、 13b…上部ジャーナル部、 13c…下部ジャーナル部、 14…ローラ、 15…ベーン、 16…ガイド穴、 17…スプリング、 18…溝、 19…低圧室、 20…高圧室。 1 ... Airtight container, 2 ... Main bearing, 3 ... Cylinder, 4 ... Sub bearing, 5 ... Bolt, 6 ... Electric motor, 6a ... Stator, 7 ... Pump part, 8 ... Bolt hole, 8a ... Bolt hole position, 8b ... Through holes for fixing bolts, 9 ... Discharge muffler, 10 ... Lid chamber, 11 ... Bottom chamber, 12 ... Rotor, 13 ... Rotating shaft, 13a ... Eccentric part, 13b ... Upper journal part, 13c ... Lower journal part, 14 ... Roller, 15 ... Vane, 16 ... Guide hole, 17 ... Spring, 18 ... Groove, 19 ... Low pressure chamber, 20 ... High pressure chamber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 美紀子 栃木県下都賀郡大平町大字富田800番地株 式会社日立製作所リビング機器事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikiko Tanaka 800, Tomita, Ohira-machi, Shimotsuga-gun, Tochigi Prefecture Hitachi Ltd. Living Equipment Division

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】密閉容器内に、電動機部と圧縮機構部とを
備え、前記電動機の回転力をクランク軸によって圧縮機
構部に伝達し、該圧縮機構部で冷媒ガスを圧縮するロー
タリ圧縮機において、前記圧縮機構部は、前記電動機側
から、主軸受、シリンダ、副軸受の各要素を重ね合わせ
たものとし、前記シリンダが密閉容器に溶接等で固定さ
れると共に、主軸受はシリンダにボルトで締結され、副
軸受は前記ボルトの締結力よりも10kgf・cm以上弱いト
ルクでシリンダに締結されることを特徴とするロータリ
圧縮機。
1. A rotary compressor in which a hermetically sealed container is provided with an electric motor section and a compression mechanism section, the rotational force of the electric motor is transmitted to the compression mechanism section by a crankshaft, and the refrigerant gas is compressed by the compression mechanism section. The compression mechanism section is formed by superposing each element of a main bearing, a cylinder, and a sub bearing from the electric motor side, and the cylinder is fixed to a closed container by welding or the like, and the main bearing is fixed to the cylinder by a bolt. The rotary compressor, wherein the auxiliary bearing is fastened to the cylinder with a torque that is 10 kgf · cm or more weaker than the fastening force of the bolt.
【請求項2】圧縮機構部が主軸受、シリンダ、副軸受の
各要素を重ね合わせたもので構成され、主軸受及び副軸
受がそれぞれ別々のボルトでシリンダに締結されたロー
タリ圧縮機において、前記シリンダに加工された締結用
のメネジ部分がガイド穴を有する構成であり、該ガイド
穴は直径がメネジの谷径以上で、深さが2mm以上であ
ることを特徴とするロータリ圧縮機。
2. A rotary compressor in which a compression mechanism portion is formed by superposing respective elements of a main bearing, a cylinder, and a sub bearing, and the main bearing and the sub bearing are fastened to the cylinder by separate bolts, respectively. A rotary compressor characterized in that a female thread portion for fastening which is processed into a cylinder has a guide hole, and the guide hole has a diameter not less than a root diameter of the female thread and a depth not less than 2 mm.
【請求項3】圧縮機構部が主軸受、シリンダ、副軸受の
各要素を重ね合わせたもので構成され、主軸受及び副軸
受がそれぞれ別々のボルトでシリンダに締結されたロー
タリ圧縮機において、副軸受に吐出バルブを形成し、主
軸受よりも副軸受が10kgf・cm以上弱いトルクで締結さ
れると共に、前記シリンダに加工された締結用のメネジ
部分がガイド穴を有する構成であり、該ガイド穴は直径
がメネジの谷径以上で、深さが2mm以上であることを
特徴とする請求項1又は2記載のロータリ圧縮機。
3. A rotary compressor in which a compression mechanism section is formed by superposing respective elements of a main bearing, a cylinder, and a sub-bearing, and the main bearing and the sub-bearing are respectively fastened to the cylinder by separate bolts. The discharge valve is formed in the bearing, the auxiliary bearing is fastened with a torque weaker than 10 kgf · cm than the main bearing, and the female thread portion for fastening processed on the cylinder has a guide hole. 3. The rotary compressor according to claim 1, wherein the diameter is equal to or larger than the root diameter of the female screw and the depth is equal to or larger than 2 mm.
【請求項4】圧縮機構部は主軸受、シリンダ、副軸受等
で構成され、主軸受とシリンダの固定及び副軸受とシリ
ンダの固定にはボルトを使用し、該ボルトは主軸受側、
副軸受側それぞれ4本のM6とし、主軸受側は80から
100kgf・cmで締め付け、副軸受側は70から90kgf・
cmで締め付けることを特徴とする請求項1又は3記載の
ロータリ圧縮機。
4. The compression mechanism section is composed of a main bearing, a cylinder, a sub bearing, etc., and bolts are used for fixing the main bearing and the cylinder and for fixing the sub bearing and the cylinder.
There are four M6 on each sub-bearing side. Tighten at 80 to 100 kgf · cm on the main bearing side, and 70 to 90 kgf ·· on the sub-bearing side.
The rotary compressor according to claim 1 or 3, wherein the rotary compressor is tightened in cm.
【請求項5】圧縮機構部は主軸受、シリンダ、副軸受等
で構成され、主軸受とシリンダの固定及び副軸受とシリ
ンダの固定にはボルトを使用し、該ボルトは主軸受側、
副軸受側それぞれ4本のM5とし、主軸受側は65から
85kgf・cmで締め付け、副軸受側は55から75kgf・cm
で締め付けることを特徴とする請求項1又は3記載のロ
ータリ圧縮機。
5. A compression mechanism portion is composed of a main bearing, a cylinder, a sub bearing, etc., and bolts are used for fixing the main bearing and the cylinder and for fixing the sub bearing and the cylinder, and the bolt is used for the main bearing side.
There are four M5 on each sub-bearing side, tightening at 65 to 85 kgf · cm on the main bearing side, and 55 to 75 kgf · cm on the sub-bearing side.
The rotary compressor according to claim 1 or 3, wherein the rotary compressor is tightened with.
【請求項6】圧縮機構部は主軸受、シリンダ、副軸受等
で構成され、主軸受とシリンダの固定及び副軸受とシリ
ンダの固定にはボルトを使用し、該ボルトは主軸受側、
副軸受側それぞれ4本のM4とし、主軸受側は50から
70kgf・cmで締め付け、副軸受側は40から60kgf・cm
で締め付けることを特徴とする請求項1又は3記載のロ
ータリ圧縮機。
6. A compression mechanism portion is composed of a main bearing, a cylinder, a sub bearing, etc., and bolts are used for fixing the main bearing and the cylinder and for fixing the sub bearing and the cylinder.
There are 4 M4 each on the sub bearing side. Tighten 50 to 70 kgf · cm on the main bearing side and 40 to 60 kgf · cm on the sub bearing side.
The rotary compressor according to claim 1 or 3, wherein the rotary compressor is tightened with.
【請求項7】圧縮機構部は主軸受、シリンダ、副軸受等
で構成され、主軸受とシリンダの固定及び副軸受とシリ
ンダの固定にはボルトを使用し、該ボルトは主軸受側、
副軸受側それぞれ6本のM6とし、主軸受側は70から
90kgf・cmで締め付け、副軸受側は60から80kgf・cm
で締め付けることを特徴とする請求項1又は3記載のロ
ータリ圧縮機。
7. A compression mechanism portion is composed of a main bearing, a cylinder, an auxiliary bearing, etc., and bolts are used for fixing the main bearing and the cylinder and for fixing the auxiliary bearing and the cylinder, and the bolt is used for the main bearing side,
The secondary bearing side has 6 M6 each, the main bearing side is tightened at 70 to 90 kgf · cm, and the secondary bearing side is 60 to 80 kgf · cm.
The rotary compressor according to claim 1 or 3, wherein the rotary compressor is tightened with.
【請求項8】圧縮機構部は主軸受、シリンダ、副軸受等
で構成され、主軸受とシリンダの固定及び副軸受とシリ
ンダの固定にはボルトを使用し、該ボルトは主軸受側、
副軸受側それぞれ6本のM5とし、主軸受側は55から
75kgf・cmで締め付け、副軸受側は45から65kgf・cm
で締め付けることを特徴とする請求項1又は3記載のロ
ータリ圧縮機。
8. A compression mechanism portion is composed of a main bearing, a cylinder, a sub bearing, etc., and bolts are used for fixing the main bearing and the cylinder and for fixing the sub bearing and the cylinder, and the bolt is used for the main bearing side,
Six M5 on each sub-bearing side, tightening at 55 to 75 kgf · cm on the main bearing side, 45 to 65 kgf · cm on the sub-bearing side
The rotary compressor according to claim 1 or 3, wherein the rotary compressor is tightened with.
【請求項9】圧縮機構部は主軸受、シリンダ、副軸受等
で構成され、主軸受とシリンダの固定及び副軸受とシリ
ンダの固定にはボルトを使用し、該ボルトは主軸受側、
副軸受側それぞれ6本のM4とし、主軸受側は40から
60kgf・cmで締め付け、副軸受側は30から50kgf・cm
で締め付けることを特徴とする請求項1又は3記載のロ
ータリ圧縮機。
9. A compression mechanism portion is composed of a main bearing, a cylinder, a sub bearing, etc., and bolts are used for fixing the main bearing and the cylinder and for fixing the sub bearing and the cylinder.
The auxiliary bearing side has 6 M4 each, the main bearing side is tightened at 40 to 60 kgf · cm, and the auxiliary bearing side is 30 to 50 kgf · cm.
The rotary compressor according to claim 1 or 3, wherein the rotary compressor is tightened with.
【請求項10】請求項1から9のいずれか1項に記載の
ロータリ圧縮機を搭載したことを特徴とする空気調和
機。
10. An air conditioner equipped with the rotary compressor according to any one of claims 1 to 9.
JP09272793A 1993-04-20 1993-04-20 Rotary compressor Expired - Fee Related JP3319026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09272793A JP3319026B2 (en) 1993-04-20 1993-04-20 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09272793A JP3319026B2 (en) 1993-04-20 1993-04-20 Rotary compressor

Publications (2)

Publication Number Publication Date
JPH06307363A true JPH06307363A (en) 1994-11-01
JP3319026B2 JP3319026B2 (en) 2002-08-26

Family

ID=14062470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09272793A Expired - Fee Related JP3319026B2 (en) 1993-04-20 1993-04-20 Rotary compressor

Country Status (1)

Country Link
JP (1) JP3319026B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146852A (en) * 2004-12-06 2007-06-14 Daikin Ind Ltd Compressor
JP2007177624A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Two cylinder rotation type hermetic compressor and its manufacturing method
WO2007100097A1 (en) 2006-03-03 2007-09-07 Daikin Industries, Ltd. Compressor, and its manufacturing method
JP2008524515A (en) * 2005-02-23 2008-07-10 エルジー エレクトロニクス インコーポレイティド Variable capacity rotary compressor
JP2009281305A (en) * 2008-05-23 2009-12-03 Daikin Ind Ltd Compressor
US7798791B2 (en) 2005-02-23 2010-09-21 Lg Electronics Inc. Capacity varying type rotary compressor and refrigeration system having the same
EP2918773A1 (en) * 2014-03-14 2015-09-16 Mitsubishi Heavy Industries, Ltd. Rotary compressor
JP2016160793A (en) * 2015-02-27 2016-09-05 東芝キヤリア株式会社 Rotary compressor and refrigerating cycle device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146852A (en) * 2004-12-06 2007-06-14 Daikin Ind Ltd Compressor
JP4595942B2 (en) * 2004-12-06 2010-12-08 ダイキン工業株式会社 Compressor
JP2008524515A (en) * 2005-02-23 2008-07-10 エルジー エレクトロニクス インコーポレイティド Variable capacity rotary compressor
US7798791B2 (en) 2005-02-23 2010-09-21 Lg Electronics Inc. Capacity varying type rotary compressor and refrigeration system having the same
US8186979B2 (en) 2005-02-23 2012-05-29 Lg Electronics Inc. Capacity varying type rotary compressor and refrigeration system having the same
JP2007177624A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Two cylinder rotation type hermetic compressor and its manufacturing method
JP4750551B2 (en) * 2005-12-27 2011-08-17 三菱電機株式会社 Method for manufacturing two-cylinder rotary hermetic compressor
WO2007100097A1 (en) 2006-03-03 2007-09-07 Daikin Industries, Ltd. Compressor, and its manufacturing method
US8167596B2 (en) 2006-03-03 2012-05-01 Daikin Industries, Ltd. Compressor and manufacturing method thereof
US8690558B2 (en) 2006-03-03 2014-04-08 Daikin Industries, Ltd. Compressor and manufacturing method thereof
EP2853746A2 (en) 2006-03-03 2015-04-01 Daikin Industries, Ltd. Compressor and manufacturing method thereof
EP2865895A1 (en) 2006-03-03 2015-04-29 Daikin Industries, Ltd. Compressor and manufacturing method thereof
JP2009281305A (en) * 2008-05-23 2009-12-03 Daikin Ind Ltd Compressor
EP2918773A1 (en) * 2014-03-14 2015-09-16 Mitsubishi Heavy Industries, Ltd. Rotary compressor
JP2016160793A (en) * 2015-02-27 2016-09-05 東芝キヤリア株式会社 Rotary compressor and refrigerating cycle device

Also Published As

Publication number Publication date
JP3319026B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
EP1260713B1 (en) Scroll compressor with Oldham coupling
KR20040016897A (en) Scroll type fluid machine
EP1851437B1 (en) Capacity varying type rotary compressor
KR20080093959A (en) Rotary compressor
EP1555437A1 (en) Compressor
JP2002213364A (en) Hermetic motor-driven compressor
JPH06307363A (en) Rotary compressor
JPH11173282A (en) Scroll compressor
CA2080629A1 (en) Orbiting rotary compressor with adjustable eccentric
US6544017B1 (en) Reverse rotation brake for scroll compressor
EP1197687A2 (en) Seal structure for compressor
JP2009257206A (en) Rotary compressor
EP2749736B1 (en) Compressor
US20120020817A1 (en) Reciprocating compressor
US4782569A (en) Method for manufacturing a rolling piston rotary compressor
US20050207926A1 (en) Scroll compressor
US5573389A (en) Scroll compressor having means for biasing an eccentric bearing towards a crank shaft
US7063518B2 (en) Bearing support and stator assembly for compressor
JPH11141470A (en) Scroll compressor
JP2002155877A (en) Scroll compressor
JP2010156364A (en) Fastening member and rotary compressor
KR100293733B1 (en) High efficiency valve device of hermetic electric compressor
EP2435702B1 (en) Light weight crankcase casting for compressor
JP4019620B2 (en) Hermetic compressor
JPS6341589Y2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090621

LAPS Cancellation because of no payment of annual fees