JPH06306584A - Manufacture of raw material molding for vacuum deposition - Google Patents

Manufacture of raw material molding for vacuum deposition

Info

Publication number
JPH06306584A
JPH06306584A JP11793093A JP11793093A JPH06306584A JP H06306584 A JPH06306584 A JP H06306584A JP 11793093 A JP11793093 A JP 11793093A JP 11793093 A JP11793093 A JP 11793093A JP H06306584 A JPH06306584 A JP H06306584A
Authority
JP
Japan
Prior art keywords
pellet
raw material
vapor deposition
organic binder
vacuum deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11793093A
Other languages
Japanese (ja)
Inventor
Akira Mitsui
彰 光井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP11793093A priority Critical patent/JPH06306584A/en
Publication of JPH06306584A publication Critical patent/JPH06306584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To facilitate the manufacture of the ceramic-based raw material molding for vacuum deposition with a high yield rate by removing an organic binder from a pellet mixture of ceramic powder and organic binder, and further sintering the pellet. CONSTITUTION:The raw material molding for the vacuum deposition to be used at the time of forming a thin film is manufactured by the vacuum deposition methods. Accordingly, a pellet of kneaded materials is produced by kneading the ceramic powder being a vapor deposition source with the organic binder. Thereafter, the organic binder is removed from the pellet and further, the pellet is sintered. The pellet or kneaded materials is introduced into a crucible made of alumina, heated in air, then the binder is thermally decomposed to be removed and heated, as it is, up to 1500 deg.C and the pellet is sintered to manufacture the vapor deposition raw material molding. In this way, the ceramic-based raw material molding for vacuum deposition with its shape and dimensions in good order is manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜を真空蒸着法で形
成する際に用いられる真空蒸着用原料成形体の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a raw material compact for vacuum vapor deposition used when a thin film is formed by vacuum vapor deposition.

【0002】[0002]

【従来の技術】真空蒸着法、特にEB(electron beam
)蒸着法で用いられるセラミックス系の原料成形体に
おいて、いわゆるチャンクと一般的に呼ばれる1mm〜5
mm程度の不定形の成形体が用いられてきた。従来、これ
らは大きな成形体を破砕し焼結する方法、溶融凝固法な
どにより製造されている。
2. Description of the Related Art Vacuum deposition method, especially EB (electron beam)
) In a ceramic raw material compact used in the vapor deposition method, 1 mm to 5 which is generally called a chunk.
An irregular shaped body of about mm has been used. Conventionally, these are manufactured by a method of crushing and sintering a large compact, a melt solidification method, or the like.

【0003】[0003]

【発明が解決しようとする課題】ところが、上述の方法
では形状や寸法を制御するのは困難で、成形体作製後、
分級の工程が必要でありコストアップとなる上、原料歩
留まりも低下させていた。本発明の目的は、従来技術が
有していた前述の問題点を解消しようとするものであ
る。
However, it is difficult to control the shape and dimensions by the above-mentioned method.
In addition to the need for a classification process, the cost is increased and the raw material yield is also reduced. An object of the present invention is to solve the above-mentioned problems that the prior art has.

【0004】[0004]

【課題を解決するための手段】本発明は、真空蒸着法に
よって、薄膜を形成する際に用いられる真空蒸着用原料
成形体の製造方法において、蒸着源となるセラミックス
粉末と、有機バインダーとを混練して混練物ペレットを
作製した後に、前記ペレットから有機バインダーを取り
除き、さらに、ペレットを焼結することを特徴とする真
空蒸着用原料成形体の製造方法を提供するものである。
The present invention is a method for producing a raw material compact for vacuum vapor deposition used for forming a thin film by a vacuum vapor deposition method, in which a ceramic powder serving as a vapor deposition source and an organic binder are kneaded. The present invention provides a method for producing a raw material compact for vacuum vapor deposition, which comprises producing a kneaded product pellet, removing the organic binder from the pellet, and sintering the pellet.

【0005】本発明において用いる蒸着源となるセラミ
ックス粉末としては、例えば、酸化物、炭化物などが挙
げられる。
Examples of the ceramic powder used as a vapor deposition source in the present invention include oxides and carbides.

【0006】本発明において用いる有機バインダーは、
混練物の易加工性をもたせるために用いるものであり、
例えば、ポリスチレン、アクリル樹脂、ポリエチレン、
ポリプロピレン、ポリアセタール、ポリカーボネイト、
ポリアミド等の熱可塑性樹脂やパラフィンワックス、マ
イクロクリスタリンワックスなどのワックス類、可塑
剤、滑剤、分散剤などが挙げられる。
The organic binder used in the present invention is
It is used to make the kneaded material easy to process,
For example, polystyrene, acrylic resin, polyethylene,
Polypropylene, polyacetal, polycarbonate,
Examples include thermoplastic resins such as polyamide, waxes such as paraffin wax and microcrystalline wax, plasticizers, lubricants and dispersants.

【0007】また、セラミックス粉末と有機バインダー
との混練方法としては、特に限定されないが、ラボプラ
ストミル、ニーダー混練機、ロール混練機、単軸混練
機、2軸混練機等の通常の混練機による混練方法が挙げ
られる。
The kneading method of the ceramic powder and the organic binder is not particularly limited, but may be a usual kneading machine such as Labo Plastomill, kneader kneader, roll kneader, single-screw kneader or twin-screw kneader. A kneading method can be mentioned.

【0008】前記有機バインダーは、真空蒸着時に蒸着
原料に存在するのは好ましくなく、焼結の前に取り除く
方が好ましい。取り除く方法としては、特に限定されな
いが、加熱分解、溶媒抽出、酸分解などによる方法が挙
げられる。なお、前記有機バインダーは、蒸着に影響し
ない程度に残留していても本発明を損なわない。
The organic binder is preferably not present in the vapor deposition material during vacuum vapor deposition, and is preferably removed before sintering. The removing method is not particularly limited, but examples thereof include a method by thermal decomposition, solvent extraction, acid decomposition and the like. The organic binder does not impair the present invention even if the organic binder remains to the extent that vapor deposition is not affected.

【0009】本発明において、蒸着原料となるセラミッ
クス粉末と、熱可塑性樹脂、ワックス等からなる有機バ
インダーとを混練した混練物は、その性質として熱可塑
性を有しており、いわゆる熱可塑性プラスチックと同様
の加工性を有している。したがって、熱可塑性プラスチ
ックと同様の取扱いが可能であり、自由に所望の形状に
容易に加工が可能である。すなわち、本発明の方法によ
る混練物はプラスチックと同様の加工がそのまま応用で
きるため、ペレタイザー等の加工装置により混練物の形
状、寸法の揃った混練物ペレットを容易に作製できる。
In the present invention, a kneaded product obtained by kneading a ceramic powder as a vapor deposition material and an organic binder made of a thermoplastic resin, wax or the like has thermoplasticity as a property, and is similar to a so-called thermoplastic. It has the workability of. Therefore, it can be handled in the same manner as thermoplastics, and can be easily processed into a desired shape. That is, since the kneaded product according to the method of the present invention can be directly applied with the same processing as that of plastic, a kneaded product pellet having a uniform shape and size can be easily produced by a processing device such as a pelletizer.

【0010】蒸着原料はある程度の機械的強度を持たせ
たり、場合によっては、2種類以上の原料を用いた場合
など、それらが反応生成物や固溶物を形成したほうが、
一般的に蒸着が有利であり、これら反応生成物や固溶物
を形成させる意味においても、蒸着原料は焼結されるこ
とが好ましい。
The vapor deposition materials should have a certain degree of mechanical strength, and in some cases, when two or more kinds of materials are used, it is preferable that they form a reaction product or a solid solution.
Vapor deposition is generally advantageous, and in terms of forming these reaction products and solid solutions, the vapor deposition raw material is preferably sintered.

【0011】[0011]

【作用】本発明の製造方法を用いることにより、形状と
寸法の整った真空蒸着用原料成形体(チャンク)を容易
に作製できる。したがって、本発明の方法によれば分級
の工程が不要であり、原料歩留まりも高く、低コストで
真空蒸着用原料成形体を作製できる。
By using the manufacturing method of the present invention, a raw material compact (chunk) for vacuum deposition having a uniform shape and dimensions can be easily manufactured. Therefore, according to the method of the present invention, the step of classification is not required, the raw material yield is high, and the raw material compact for vacuum vapor deposition can be manufactured at low cost.

【0012】[0012]

【実施例】【Example】

実施例1 錫を含んだ酸化インジウム(ITO)粉末(88重量
%)とポリエチレンペレット(4重量%)とポリスチレ
ンペレット(8重量%)および少量の可塑剤をラボプラ
ストミルを用いて150℃中、5kg/cm2 で加圧
し、1時間混練し、混練物を得た。その混練物をペレタ
イザーを用いて、直径約3mm、長さ約4mmの混練物
ペレットを500g作製した。このペレットをアルミナ
製のるつぼに入れ、空気中で加熱し、バインダーを熱分
解させ取り除き、そのまま1500℃まで昇温し、ペレ
ットを焼結させ、蒸着原料成形体を作製した。
Example 1 Tin-containing indium oxide (ITO) powder (88% by weight), polyethylene pellets (4% by weight), polystyrene pellets (8% by weight) and a small amount of plasticizer were used in a Labo Plastomill at 150 ° C. It was pressurized at 5 kg / cm 2 and kneaded for 1 hour to obtain a kneaded product. The kneaded product was pelletized with a pelletizer to prepare 500 g of kneaded product pellets having a diameter of about 3 mm and a length of about 4 mm. The pellets were placed in an alumina crucible and heated in air to thermally decompose and remove the binder, the temperature was raised to 1500 ° C., and the pellets were sintered to produce a vapor deposition material compact.

【0013】作製した蒸着原料成形体を蒸着用ハースに
多数個充填し、350℃に加熱したガラス基板上に、電
子ビーム蒸着により、ITO薄膜を製膜した。蒸着は、
スピティングも見られず、非常に安定していた。蒸着速
度、および酸素流量を最適化することによって、比抵抗
が2. 0×10-4ΩcmのITO薄膜が得られた。
A large number of the formed vapor deposition raw material compacts were filled in a vapor deposition hearth, and an ITO thin film was formed on a glass substrate heated to 350 ° C. by electron beam vapor deposition. Evaporation is
There was no spiting and it was very stable. By optimizing the vapor deposition rate and the oxygen flow rate, an ITO thin film having a specific resistance of 2.0 × 10 −4 Ωcm was obtained.

【0014】実施例2 ガリウムを含んだ酸化亜鉛(GZO)粉末(88重量
%)とポリエチレンペレット(4重量%)とポリスチレ
ンペレット(8重量%)および少量の可塑剤をラボプラ
ストミルを用いて150℃中、5kg/cm2 で加圧
し、1時間混練し、混練物を得た。その混練物をペレタ
イザーを用いて、直径約3mm、長さ約4mmの混練物
ペレットを500g作製した。このペレットをアルミナ
製のるつぼに入れ、空気中で加熱し、バインダーを熱分
解させ取り除き、そのまま1500℃まで昇温し、ペレ
ットを焼結させ、蒸着原料成形体を作製した。
Example 2 Zinc oxide (GZO) powder containing gallium (88% by weight), polyethylene pellets (4% by weight), polystyrene pellets (8% by weight) and a small amount of plasticizer were used in a Labo Plastomill using 150 The mixture was pressurized at 5 kg / cm 2 in ° C and kneaded for 1 hour to obtain a kneaded product. The kneaded product was pelletized with a pelletizer to prepare 500 g of kneaded product pellets having a diameter of about 3 mm and a length of about 4 mm. The pellets were placed in an alumina crucible and heated in air to thermally decompose and remove the binder, and the temperature was raised to 1500 ° C. to sinter the pellets to produce a vapor deposition material compact.

【0015】作製した蒸着原料成形体を蒸着用ハースに
多数個充填し、350℃に加熱したガラス基板上に、電
子ビーム蒸着により、GZO薄膜を製膜した。蒸着は、
スピティングも見られず、非常に安定していた。蒸着速
度、および酸素流量を最適化することによって、比抵抗
が2. 0×10-4ΩcmのGZO薄膜が得られた。
A large number of the formed vapor deposition raw material compacts were filled in a vapor deposition hearth, and a GZO thin film was formed on a glass substrate heated to 350 ° C. by electron beam vapor deposition. Evaporation is
There was no spiting and it was very stable. By optimizing the deposition rate and the oxygen flow rate, a GZO thin film having a specific resistance of 2.0 × 10 −4 Ωcm was obtained.

【0016】実施例3 炭化チタン(TiC)粉末(85重量%)とポリエチレ
ンペレット(5重量%)とポリスチレンペレット(10
重量%)および少量の可塑剤をラボプラストミルを用い
て150℃中、5kg/cm2 で加圧し、1時間混練
し、混練物を得た。その混練物をペレタイザーを用い
て、直径約3mm、長さ約4mmの混練物ペレットを5
00g作製した。このペレットを有機溶媒中に入れて、
有機バインダーを溶媒で抽出させた後、カーボン製のる
つぼに入れ、アルゴン雰囲気中でぺレットを2000℃
の温度で焼結させ、蒸着原料成形体を作製した。
Example 3 Titanium carbide (TiC) powder (85% by weight), polyethylene pellets (5% by weight) and polystyrene pellets (10%)
(Wt%) and a small amount of plasticizer were pressed at 150 ° C. at 5 kg / cm 2 using a Labo Plastomill and kneaded for 1 hour to obtain a kneaded product. Using a pelletizer, mix the kneaded material into pellets of 5 mm in diameter and 4 mm in length.
00g was produced. Put this pellet in an organic solvent,
After extracting the organic binder with a solvent, put it in a carbon crucible and place the pellet at 2000 ° C in an argon atmosphere.
Sintering was carried out at the temperature of to produce a vapor deposition material compact.

【0017】作製した蒸着原料成形体を蒸着用ハースに
多数個充填し、200℃に加熱したガラス基板上に、電
子ビーム蒸着により、TiC薄膜を製膜した。
A large number of the formed vapor deposition raw material compacts were filled in a vapor deposition hearth, and a TiC thin film was formed on a glass substrate heated to 200 ° C. by electron beam vapor deposition.

【0018】[0018]

【発明の効果】本発明の製造方法により、これまで困難
であった、形状と寸法が整っている、さまざまなセラミ
ックス系真空蒸着用原料成形体(チャンク)を歩留まり
よく容易に作製できる。
According to the manufacturing method of the present invention, it is possible to easily manufacture various ceramic-based material for vacuum deposition (chunk) having a uniform shape and size, which has been difficult until now, with a high yield.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】真空蒸着法によって、薄膜を形成する際に
用いられる真空蒸着用原料成形体の製造方法において、
蒸着源となるセラミックス粉末と、有機バインダーとを
混練して混練物ペレットを作製した後に、前記ペレット
から有機バインダーを取り除き、さらに、ペレットを焼
結することを特徴とする真空蒸着用原料成形体の製造方
法。
1. A method of manufacturing a raw material compact for vacuum vapor deposition used for forming a thin film by the vacuum vapor deposition method, comprising:
After forming a kneaded material pellet by kneading a ceramic powder to be a vapor deposition source and an organic binder, the organic binder is removed from the pellet, and further, the pellet is sintered, which is characterized by comprising: Production method.
JP11793093A 1993-04-21 1993-04-21 Manufacture of raw material molding for vacuum deposition Pending JPH06306584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11793093A JPH06306584A (en) 1993-04-21 1993-04-21 Manufacture of raw material molding for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11793093A JPH06306584A (en) 1993-04-21 1993-04-21 Manufacture of raw material molding for vacuum deposition

Publications (1)

Publication Number Publication Date
JPH06306584A true JPH06306584A (en) 1994-11-01

Family

ID=14723729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11793093A Pending JPH06306584A (en) 1993-04-21 1993-04-21 Manufacture of raw material molding for vacuum deposition

Country Status (1)

Country Link
JP (1) JPH06306584A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459396B2 (en) 2004-11-29 2008-12-02 Tokyo Electron Limited Method for thin film deposition using multi-tray film precursor evaporation system
US7484315B2 (en) 2004-11-29 2009-02-03 Tokyo Electron Limited Replaceable precursor tray for use in a multi-tray solid precursor delivery system
US7488512B2 (en) * 2004-11-29 2009-02-10 Tokyo Electron Limited Method for preparing solid precursor tray for use in solid precursor evaporation system
US7651570B2 (en) 2005-03-31 2010-01-26 Tokyo Electron Limited Solid precursor vaporization system for use in chemical vapor deposition
US7708835B2 (en) 2004-11-29 2010-05-04 Tokyo Electron Limited Film precursor tray for use in a film precursor evaporation system and method of using
US7846256B2 (en) 2007-02-23 2010-12-07 Tokyo Electron Limited Ampule tray for and method of precursor surface area

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459396B2 (en) 2004-11-29 2008-12-02 Tokyo Electron Limited Method for thin film deposition using multi-tray film precursor evaporation system
US7484315B2 (en) 2004-11-29 2009-02-03 Tokyo Electron Limited Replaceable precursor tray for use in a multi-tray solid precursor delivery system
US7488512B2 (en) * 2004-11-29 2009-02-10 Tokyo Electron Limited Method for preparing solid precursor tray for use in solid precursor evaporation system
US7638002B2 (en) 2004-11-29 2009-12-29 Tokyo Electron Limited Multi-tray film precursor evaporation system and thin film deposition system incorporating same
US7708835B2 (en) 2004-11-29 2010-05-04 Tokyo Electron Limited Film precursor tray for use in a film precursor evaporation system and method of using
US7651570B2 (en) 2005-03-31 2010-01-26 Tokyo Electron Limited Solid precursor vaporization system for use in chemical vapor deposition
US7846256B2 (en) 2007-02-23 2010-12-07 Tokyo Electron Limited Ampule tray for and method of precursor surface area

Similar Documents

Publication Publication Date Title
JPH11350004A (en) Binder system for powder injection molding
EP0296552B1 (en) Metal binder and molding composition
JP2003525828A (en) Injection molding of zirconia-based structural materials by wet method
JPH06306584A (en) Manufacture of raw material molding for vacuum deposition
US4820462A (en) Method of removing binder material from shaped preform by extracting in liquidized fluid
US5354534A (en) Method for manufacturing sintered parts
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JPH0313503A (en) Method for degreasing molding for powder metallurgy, binder and supercritical fluid
JPH11100660A (en) Ito pellet for vapor deposition and its production
JP3547464B2 (en) Manufacturing method of sintered molded products
JPH06128603A (en) Production of injection-molded powder metallurgical product
US4737327A (en) Process for producing silicon carbide sintered product
CN114472879B (en) Adhesive for pure titanium powder injection molding and preparation method and application thereof
JPH02204355A (en) Production of sinterable mixture
JPS5926653B2 (en) How to form cemented carbide
JPH03257101A (en) Method for degreasing powder green compact
JPH08104978A (en) Ito vapor-deposition material and its production
JPH0823042B2 (en) Metal injection molding method
JPH04186803A (en) Magnetic powder molded body and degreasing method thereof, and binder for magnetic powder molded body
KR19980016010A (en) PROCESS FOR PREPARING CERAMIC INJECTION MOLDING PRODUCT
JP2001234202A (en) Producing method for powder sintered body
JPH06322407A (en) Binder used for ultra-hard powder injection molding
CN116809923A (en) Preparation method of MIM (metal-insulator-metal) feed with low surface roughness
EP0157879A1 (en) Process for producing a silicon carbide sintered product
JPH07188801A (en) Production of titanium sintered compact