JPH06306444A - Method for melting extra low carbon and extra low nitrogen steel in vacuum degassing apparatus - Google Patents

Method for melting extra low carbon and extra low nitrogen steel in vacuum degassing apparatus

Info

Publication number
JPH06306444A
JPH06306444A JP10304993A JP10304993A JPH06306444A JP H06306444 A JPH06306444 A JP H06306444A JP 10304993 A JP10304993 A JP 10304993A JP 10304993 A JP10304993 A JP 10304993A JP H06306444 A JPH06306444 A JP H06306444A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
refractory
molten steel
extra low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10304993A
Other languages
Japanese (ja)
Inventor
Masato Mikuni
正人 三国
Kanji Aizawa
完二 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10304993A priority Critical patent/JPH06306444A/en
Publication of JPH06306444A publication Critical patent/JPH06306444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To prevent the invasion of the air from an atmosphere exposing part which is not immersed into molten steel in an immersed tubes arranged at the lower part of a degassing vessel, and to efficiently melt an extra low carbon and extra low nitrogen steel. CONSTITUTION:The outer periphery of refractory 5 in each of the immersed tubes 1 is surrounded with an enclosure 2, and into the enclosure 2, hydrogen or mixed gas of the hydrogen and inert gas is supplied as the seal gas from a gas introducing pipe 4 to shut off the invasion of the air from the refractory 5. By shutting off the air, the absorption of nitrogen into the molten steel is prevented and also, hydrogen atom H generated by decomposing the gaseous hydrogen (H2), becomes nuclei for generating CO bubble to promote the decarburization of the molten steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、溶鋼中のガス成分、
特に溶鋼中の窒素、炭素を低減するための真空脱ガス装
置による極低炭、極低窒素鋼の溶製法に関するものであ
る。
FIELD OF THE INVENTION The present invention relates to gas components in molten steel,
In particular, the present invention relates to a method for melting ultra-low carbon and ultra-low nitrogen steel by a vacuum degassing device for reducing nitrogen and carbon in the molten steel.

【0002】[0002]

【従来の技術】真空脱ガス法は、鋼中の水素等の気体を
脱ガス処理によって除去する目的で開発されたものであ
るが、最近では溶鋼の脱酸、脱炭、成分調整など、その
用途は急速に拡大している。真空脱ガスで処理される溶
鋼は、鋼種によって窒素の混入を極度に嫌うものがあ
る。窒素は鋼の靭性を低下させるためであり、最近では
極低炭素鋼の炭素とともに加工性を低下させる要因とし
てその低減が求められている。この窒素の混入は、その
殆どが空気中に含まれる窒素からくる。鋼をRH脱ガス
槽により脱ガス処理する場合は、脱ガス槽下部の一対の
上昇側および下降側の浸漬管を溶鋼中に浸漬し、浸漬管
により溶鋼を外気から遮断しつつ、脱ガス処理する。
2. Description of the Related Art The vacuum degassing method was developed for the purpose of removing gases such as hydrogen in steel by degassing treatment, but recently, deoxidation of molten steel, decarburization, composition adjustment, etc. Applications are expanding rapidly. Some molten steels processed by vacuum degassing are extremely reluctant to mix nitrogen depending on the steel type. This is because nitrogen reduces the toughness of the steel, and recently, the reduction thereof has been required as a factor that reduces the workability together with the carbon of the ultra-low carbon steel. Most of this nitrogen contamination comes from nitrogen contained in the air. When degassing steel with a RH degassing tank, the pair of ascending and descending dipping pipes at the bottom of the degassing tank are immersed in molten steel, and the degassing treatment is performed while the molten steel is shielded from the outside air. To do.

【0003】真空脱ガス装置は脱ガス処理中、密封され
ていて、溶鋼の還流を起こさせるために浸漬管部から溶
鋼内に気体を吹込んでいるが、この場合の気体はアルゴ
ンガスであり、窒素を混入させるものではない。そこで
本発明者らは、窒素混入の原因となる空気が侵入する経
路を調べたところ、脱ガス処理中に耐火物が露出してい
る唯一の場所である浸漬管外周からであることがわかっ
た。
The vacuum degassing apparatus is hermetically sealed during the degassing process, and gas is blown into the molten steel from the dipping pipe portion in order to cause reflux of the molten steel. In this case, the gas is argon gas. It does not mix nitrogen. Therefore, the inventors of the present invention have investigated the path through which air, which causes nitrogen contamination, enters, and found that it is from the outer circumference of the immersion pipe, which is the only place where the refractory is exposed during the degassing process. .

【0004】浸漬管は、一般に円筒状芯金の内周および
外周とその下端を耐火物で覆って構成される。このよう
に耐火物が覆われていること、および円筒状芯金の存在
で従来は浸漬管外周部からの空気の侵入はないと思われ
ていた。しかし、真空脱ガス装置は通常の工業窯炉と異
なり、脱ガス処理中は脱ガス槽内の気圧が 0.2〜200mmH
g 程度まで減圧されるという特殊条件下となる。このた
め、浸漬管の外周に空気が吸引され、耐火物組織の亀
裂、微細な気孔、耐火物と芯金間の間隙等を通り、しか
も芯金が埋設されていてもその下端を迂回して溶鋼中に
混入するものと思われる。
The dip tube is generally constructed by covering the inner and outer circumferences of a cylindrical cored bar and its lower end with a refractory material. It has been conventionally thought that air does not enter from the outer peripheral portion of the dip tube due to the refractory material being covered and the presence of the cylindrical core metal. However, the vacuum degasser differs from the ordinary industrial kiln in that the atmospheric pressure in the degassing tank is 0.2 to 200 mmH during the degassing process.
Under special conditions, the pressure is reduced to about g. For this reason, air is sucked into the outer periphery of the immersion pipe, passes through cracks in the refractory structure, minute pores, gaps between the refractory and the core bar, and even if the core bar is buried, it bypasses the lower end. It seems to be mixed in molten steel.

【0005】従来の脱ガス処理における窒素ピックアッ
プ防止技術として、特開昭60−174815号公報に記載され
た発明がある。これによれば、浸漬管の先端近傍内部に
不活性ガスを吹込みつつ脱ガス処理するので、浸漬管を
介して系内に大気が侵入しなくなるというものである。
しかしながら、浸漬管先端部の溶損が進行すると、浸漬
管内部に設けた不活性ガス通路が損傷を受け、使用初期
から末期に至るまで同じように窒素ピックアップを防止
することができない。
As a conventional technique for preventing nitrogen pickup in the degassing process, there is an invention described in JP-A-60-174815. According to this, since the degassing process is performed while injecting an inert gas into the vicinity of the tip of the dip tube, the atmosphere is prevented from entering the system through the dip tube.
However, as the melting loss of the tip of the dip tube progresses, the inert gas passage provided inside the dip tube is damaged, and it is not possible to prevent nitrogen pickup from the beginning to the end of use.

【0006】また、特開昭61−295315号公報、あるいは
特開平2−228416号公報には、浸漬管の外周をアルゴン
ガスあるいは不活性ガスでガスシールする方法が示され
ている。この方法では浸漬管の損耗に関係なく、外周か
らの空気の混入を防ぐことができるが、シール用の高価
なアルゴンガスが多量に必要であり、費用が嵩むことに
なる。
Further, JP-A-61-295315 or JP-A-2-228416 discloses a method of sealing the outer circumference of the immersion tube with argon gas or an inert gas. With this method, it is possible to prevent air from entering from the outer circumference regardless of the wear of the dip tube, but a large amount of expensive argon gas for sealing is required, resulting in an increase in cost.

【0007】[0007]

【発明が解決しようとする課題】かかる点に鑑み本発明
が解決しようとしている課題は、高価なアルゴンガス等
の不活性ガスを用いずあるいは極力低減して大気中の窒
素の吸収を防止することができるとともに、より効率的
に脱ガス処理を行うことができる真空脱ガス処理装置に
よる極低炭、極低窒素鋼の溶製法を提供することを目的
とするものである。
In view of the above points, the problem to be solved by the present invention is to prevent absorption of nitrogen in the atmosphere without using expensive inert gas such as argon gas or by reducing it as much as possible. In addition to the above, it is an object of the present invention to provide a method for melting ultra-low carbon and ultra-low nitrogen steel by a vacuum degassing apparatus capable of more efficiently performing degassing.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
の本発明は、円筒状芯金の内周および外周を耐火物で被
覆してなる上昇側浸漬管および下降側浸漬管を備えた真
空脱ガス装置による極低炭、極低窒素鋼の溶製法におい
て、真空脱ガス処理中に前記の上昇側浸漬管および下降
側浸漬管の少なくとも耐火物多孔体が溶湯に浸漬されな
い大気への露出部分を囲いで包囲し、当該囲い内に水素
もしくは水素と不活性ガスの混合ガスを供給して前記耐
火物多孔体の露出部分をガスで覆い、大気との接触を遮
断してガスシールすることを特徴とする真空脱ガス装置
による極低炭、極低窒素鋼の溶製法である。
SUMMARY OF THE INVENTION To achieve the above object, the present invention provides a vacuum provided with an ascending-side dipping pipe and a descending-side dipping pipe in which a cylindrical cored bar is covered with a refractory material on its inner and outer circumferences. In the melting process of ultra-low carbon and ultra-low nitrogen steel with a degasser, at least the refractory porous body of the ascending-side dipping pipe and the descending-side dipping pipe is not exposed to the atmosphere during vacuum degassing. To enclose the exposed portion of the refractory porous body with a gas by supplying hydrogen or a mixed gas of hydrogen and an inert gas into the enclosure to block the contact with the atmosphere and seal the gas. It is a method of melting ultra-low carbon and ultra-low nitrogen steel using a characteristic vacuum degassing device.

【0009】なお、本発明では、水素もしくは水素と不
活性ガスの混合ガスを、浸漬管耐火物の下端部に設けた
多孔質耐火物を介して積極的に溶鋼中に混入させるよう
にするのが好ましい。
In the present invention, hydrogen or a mixed gas of hydrogen and an inert gas is positively mixed into the molten steel through the porous refractory provided at the lower end of the immersion pipe refractory. Is preferred.

【0010】[0010]

【作用】図1に示すように、脱ガス処理中に脱ガス槽9
の下部に接合フランジ8を介して接続された浸漬管1の
外周を囲い2で覆ってやって、水素もしくは水素と不活
性ガスの混合したシールガス3をガス導入管4を用いて
浸漬管耐火物5の周囲に送り込んでガスシールすると、
囲い2の内側には空気6が侵入できなくなるので、取鍋
14内の溶鋼7への窒素の混入を防ぐことができる。シー
ルガスとして水素を含んだものを用いる理由は、従来溶
鋼との反応性がなく、鋼品質を低下させることもないこ
とから、多用されてきたアルゴンガスより容積単価にし
て数10分の1と安いことによる。
As shown in FIG. 1, the degassing tank 9 is used during the degassing process.
The outer circumference of the dip pipe 1 connected to the lower part of the via a joint flange 8 is covered with an enclosure 2, and a seal gas 3 containing hydrogen or a mixture of hydrogen and an inert gas is fired using a gas introduction pipe 4 When it is sent around the object 5 and gas sealed,
Since air 6 cannot enter the inside of the enclosure 2, it is a ladle.
It is possible to prevent nitrogen from being mixed into the molten steel 7 in 14. The reason why the seal gas containing hydrogen is used is that it has no reactivity with molten steel and does not deteriorate the quality of steel. It's cheap.

【0011】また水素ガスの加熱に伴う容積変化はAr等
の不活性ガスと同オーダであることに加えて水素を混入
することにより次のような溶鋼の脱ガス処理を促進させ
る効果があることが主な理由である。すなわち、鋼中に
取り込まれた水素分子は水素原子に分解する(H2 →2
H)。水素は従来は脱ガス処理によってむしろ除去すべ
きものと考えられていたが比較的容易に除去できること
と、減圧された溶鋼表面近傍でしか脱炭反応が起こらな
くなる。C≦50ppm の極低炭素領域では水素原子HがCO
気泡発生核となり脱炭反応を助ける。したがってむしろ
積極的に水素を溶鋼中に混入させてもよい。また脱水素
処理中に水素の混入を極力避けたい場合は、水素と不活
性ガスの混合ガスを用いる。このとき混合する不活性ガ
スとしてはアルゴンガス、ヘリウム等の鋼品質を低下さ
せないものがよい。
Further, the volume change due to heating of the hydrogen gas is in the same order as that of an inert gas such as Ar, and in addition, there is an effect of promoting the degassing treatment of molten steel as described below by mixing hydrogen. Is the main reason. That is, the hydrogen molecules taken into the steel decompose into hydrogen atoms (H 2 → 2
H). It was conventionally thought that hydrogen should be removed rather by degassing, but it can be removed relatively easily, and the decarburization reaction occurs only near the surface of the molten steel under reduced pressure. In the extremely low carbon region of C ≦ 50ppm, hydrogen atom H becomes CO
It becomes a bubble generating nucleus and helps the decarburization reaction. Therefore, hydrogen may be positively mixed into the molten steel. Further, when it is desired to avoid mixing of hydrogen during the dehydrogenation process as much as possible, a mixed gas of hydrogen and an inert gas is used. The inert gas mixed at this time is preferably an argon gas, helium or the like that does not deteriorate the quality of steel.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1において、2本の浸漬管1は接合フランジ8
によって脱ガス槽9の下端に着脱自在に取付けられてい
る。13はOリングを示す。この浸漬管1は、骨格として
の円筒状芯金10の外周および内周と下端を浸漬管耐火物
5で被覆してある。浸漬管耐火物5は不定形耐火物、定
形耐火物を問わないが、一般には外周、内周ともに不定
形耐火物にするか、または外周を不定形耐火物、内周を
定形耐火物で構成される。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, two immersion pipes 1 are joined flanges 8
Is detachably attached to the lower end of the degassing tank 9. 13 indicates an O-ring. In this dip tube 1, a cylindrical cored bar 10 as a skeleton has an outer periphery, an inner periphery and a lower end covered with a dip pipe refractory material 5. The immersion pipe refractory 5 may be either an irregular refractory or a regular refractory, but generally, the outer periphery and the inner periphery are either irregular refractory, or the outer periphery is an irregular refractory and the inner periphery is a regular refractory. To be done.

【0013】上昇側の浸漬管1にはArガス導入管12が埋
設してあり、導入管12を通して脱ガス槽9外から導かれ
たArガスが上昇側の浸漬管1の内面に吹き込まれ取鍋14
内の溶鋼7を脱ガス槽9内に導き、ここで溶鋼7の脱ガ
スを行った後、下降側の浸漬管1を介して取鍋14に還流
されるようになっている。以上からなる浸漬管1の外周
に囲い2を設ける。囲い2は耐熱性のものであれば材質
は問わないが、耐久性、経済性などの点で耐火物で被覆
された金属製が好ましい。RH式真空脱ガス装置のよう
に浸漬管1が二つある場合は、一つ囲いで両方を包囲し
てもよいが、浸漬管1の着脱あるいはその補修の邪魔に
なりやすいので、それぞれの浸漬管1の別々の囲い2を
設けるのが好ましい。囲い2の取付け個所も浸漬管1の
着脱や補修に邪魔にならないように接合フランジ8に取
付けるのが好ましい。シール用ガス導入管4は囲い2に
接続し、囲い2と浸漬管耐火物5外周から内部に水素も
しくは水素と不活性ガスからなるシールガス3を導入で
きるようにしている。
An Ar gas introducing pipe 12 is embedded in the ascending side immersion pipe 1, and Ar gas introduced from the outside of the degassing tank 9 through the introducing pipe 12 is blown into the inside of the ascending side immersion pipe 1 and taken in. Pot 14
The molten steel 7 therein is introduced into a degassing tank 9, where the molten steel 7 is degassed, and thereafter, the molten steel 7 is refluxed to the ladle 14 through the dipping pipe 1 on the descending side. An enclosure 2 is provided on the outer circumference of the immersion tube 1 constructed as described above. The enclosure 2 may be made of any material as long as it is heat-resistant, but is preferably made of a metal covered with a refractory material in terms of durability and economy. When there are two dip tubes 1 as in the RH type vacuum degassing device, both may be enclosed by one enclosure, but it is easy to attach or detach the dip tube 1 or repair it, so that each dip It is preferable to provide a separate enclosure 2 for the tube 1. It is preferable that the enclosure 2 is also attached to the joint flange 8 so as not to interfere with the attachment / detachment or repair of the dip tube 1. The sealing gas introduction pipe 4 is connected to the enclosure 2 so that hydrogen or a sealing gas 3 composed of hydrogen and an inert gas can be introduced into the interior from the enclosure 2 and the outer periphery of the immersion pipe refractory 5.

【0014】なお、囲い2と浸漬管耐火物5外周に水素
ガスを導入する際には、まずガス導入管4からAr等の不
活性ガスを供給して囲い2と浸漬管耐火物5との間に存
在する空気を不活性ガスと置換し、酸素ガスを除去した
後、水素ガスを供給することによって水素ガス爆発を防
止する。脱ガス終了時には、逆に囲い2と浸漬管耐火物
5との間に存在する水素を不活性ガスに置換した後、浸
漬管1を上昇させて脱ガスを終了することにより水素ガ
ス爆発を防止する。
When hydrogen gas is introduced into the outer circumference of the enclosure 2 and the immersion pipe refractory 5, first, an inert gas such as Ar is supplied from the gas introduction pipe 4 so that the enclosure 2 and the immersion pipe refractory 5 are separated from each other. The air existing between them is replaced with an inert gas, oxygen gas is removed, and then hydrogen gas is supplied to prevent explosion of hydrogen gas. At the end of the degassing, conversely, the hydrogen existing between the enclosure 2 and the immersion pipe refractory 5 is replaced with an inert gas, and then the immersion pipe 1 is raised to complete the degassing to prevent the hydrogen gas explosion. To do.

【0015】浸漬管1と囲い2との接触部分からの水素
ガス(H2 )の漏れを防止するため不定形耐火物を圧入
して密閉してある。万一、多少の水素ガス漏れがあって
も、燃焼するだけであり水素爆発が起きる危険性はな
い。図2は、横軸に脱ガス処理前の溶鋼中窒素含有量を
とり、縦軸に脱ガス処理後の窒素含有量をとって、本発
明法のシールをしたときと従来法とを比較したものであ
る。図中黒丸は本発明のシール方法を用い、水素ガスを
浸漬管1本当たり500Nl /min 送り込んでシールした場
合を示す。
In order to prevent hydrogen gas (H 2 ) from leaking from the contact portion between the immersion pipe 1 and the enclosure 2, an irregular refractory material is press-fitted and sealed. Even if some hydrogen gas leaks, it just burns and there is no danger of hydrogen explosion. In FIG. 2, the horizontal axis represents the nitrogen content in the molten steel before the degassing treatment, and the vertical axis represents the nitrogen content in the molten steel after the degassing treatment. The seals of the method of the present invention were compared with the conventional method. It is a thing. In the figure, the black circles indicate the case where the sealing method of the present invention is used and hydrogen gas is fed at a rate of 500 Nl / min per dipping tube for sealing.

【0016】溶鋼ヒートサイズはいずれも 275〜295 t
で、RH脱ガス槽の溶鋼還流量は180 t/min である。
図2から明らかなように、本発明の方法を用いれば、浸
漬管耐火物を介して空気中の窒素を吸収するのを防ぐこ
とができ、従来達成困難であった10ppm 以下のレベルま
で溶鋼中の窒素を低減することができた。また、安価な
水素を用いたので、シールガスコストも極めて安く抑え
ることができた。さらに、キルド処理後の水素、酸素レ
ベルも従来と比べて差のないレベルであった。
Molten steel heat size is 275 to 295 t
The molten steel reflux rate in the RH degassing tank is 180 t / min.
As is clear from FIG. 2, the use of the method of the present invention makes it possible to prevent absorption of nitrogen in the air through the dip tube refractory, and to a level of 10 ppm or less, which was difficult to achieve in the conventional molten steel. It was possible to reduce nitrogen. In addition, since cheap hydrogen was used, the cost of the seal gas could be kept extremely low. Furthermore, the hydrogen and oxygen levels after the killing treatment were at the same level as in the conventional case.

【0017】図3は、水素をより積極的に溶鋼中に吸収
させ、脱炭速度の変化を調査した結果である。図示のよ
うに溶鋼中に水素を吸収させた場合には脱炭速度が従来
例よりも一層向上させることができる。溶鋼中に水素を
積極的に溶鋼中に吸収させるためには、たとえば図4に
示すように浸漬管耐火物5の下端部により多孔質性に富
んだ多孔質耐火物5aを設けガス導入管4から供給され
る水素ガス量を1000Nl/min に増して浸漬管耐火物5内
に導入するだけでなく多孔質耐火物5aを通して水素ガ
スを溶鋼7中に混入するようにすればよい。このように
することによって前記図3に示すような極低炭域での脱
炭速度の向上、到達の低下が認められる。
FIG. 3 shows the results of investigating changes in the decarburization rate by allowing hydrogen to be more positively absorbed in the molten steel. When hydrogen is absorbed in the molten steel as shown in the figure, the decarburization rate can be further improved as compared with the conventional example. In order to positively absorb hydrogen in the molten steel, for example, as shown in FIG. 4, the lower end portion of the immersion pipe refractory 5 is provided with a porous refractory 5a having high porosity and the gas introduction pipe 4 is provided. The amount of hydrogen gas supplied from 1000 Nl / min is not only introduced into the immersion pipe refractory 5 but hydrogen gas may be mixed into the molten steel 7 through the porous refractory 5a. By doing so, an improvement in the decarburization rate and a decrease in the reached C in the extremely low coal area as shown in FIG. 3 are observed.

【0018】なお、積極的に水素ガスを溶鋼7中に混入
して溶鋼に一旦溶解した水素は減圧しない限り大気中
に放散することはない。溶鋼中に水素ガスを直接吹き込
んでも爆発する危険がないことは実証されているので直
接、水素ガスが溶鋼中に混入することによる爆発の心配
はない。
It should be noted that hydrogen H, which has been positively mixed with the molten steel 7 and once dissolved in the molten steel, is not released into the atmosphere unless the pressure is reduced. Since it has been proved that there is no danger of explosion even if hydrogen gas is blown directly into the molten steel, there is no concern about explosion due to hydrogen gas being mixed into the molten steel directly.

【0019】[0019]

【発明の効果】以上述べたように、本発明では安価な水
素を用いて浸漬管耐火物の周囲をシールし、空気中の窒
素の混入を防止したので極低炭素域での窒素のピックア
ップを防止できるようになった。また好ましくは水素の
特性を利用して、より積極的に水素を浸漬管耐火物を介
して溶鋼中に混入させながら脱ガス処理することによ
り、高純度の極低炭素鋼が溶製できる。
As described above, according to the present invention, since inexpensive hydrogen is used to seal the periphery of the refractory for the immersion pipe to prevent nitrogen from being mixed in the air, it is possible to pick up nitrogen in an extremely low carbon region. It came to be able to prevent it. Further, preferably, by utilizing the characteristics of hydrogen and by degassing while more positively mixing hydrogen into the molten steel through the immersion pipe refractory, a very pure ultra low carbon steel can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法に係る真空脱ガス装置を示す断面図で
ある。
FIG. 1 is a sectional view showing a vacuum degassing apparatus according to the method of the present invention.

【図2】脱ガス処理前の溶鋼中の(ppm) と脱ガス処理
後の溶鋼中の(ppm) との関係を本発明法と従来法とを
比較して示すグラフである。
FIG. 2 is a graph showing the relationship between N (ppm) in molten steel before degassing and N (ppm) in molten steel after degassing, comparing the method of the present invention with the conventional method.

【図3】溶鋼中の濃度の推移を本発明法と従来法とを
比較して示すグラフである。
FIG. 3 is a graph showing changes in the C concentration in molten steel, comparing the method of the present invention with the conventional method.

【図4】従来法に係る真空脱ガス装置を示す断面図であ
る。
FIG. 4 is a sectional view showing a vacuum degassing apparatus according to a conventional method.

【符号の説明】[Explanation of symbols]

1 浸漬管 2 囲い 3 シールガス 4 ガス導入管 5 浸漬管耐火物 6 空気 7 溶鋼 8 接合フランジ 9 脱ガス槽 10 芯金 11 スラグ 12 Arガス導入管 13 Oリング 14 取鍋 1 Immersion pipe 2 Enclosure 3 Seal gas 4 Gas introduction pipe 5 Immersion pipe Refractory 6 Air 7 Molten steel 8 Joint flange 9 Degassing tank 10 Core 11 Slag 12 Ar gas introduction pipe 13 O-ring 14 Ladle

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒状芯金の内周および外周を耐火物で
被覆してなる上昇側浸漬管および下降側浸漬管を備えた
真空脱ガス装置による極低炭、極低窒素鋼の溶製法にお
いて、真空脱ガス処理中に前記の上昇側浸漬管および下
降側浸漬管の少なくとも耐火物が溶湯に浸漬されない大
気への露出部分を囲いで包囲し、当該囲い内に水素もし
くは水素と不活性ガスの混合ガスを供給して前記耐火物
の露出部分をガスで覆い、大気との接触を遮断してガス
シールすることを特徴とする真空脱ガス装置による極低
炭、極低窒素鋼の溶製法。
1. A method for melting ultra-low carbon and ultra-low nitrogen steel by a vacuum degassing apparatus equipped with an ascending-side dipping pipe and a descending-side dipping pipe in which the inner circumference and the outer circumference of a cylindrical cored bar are covered with a refractory material. In the above, in the vacuum degassing process, at least the refractory of the ascending side immersion pipe and the descending side immersion pipe is surrounded by an atmosphere which is not immersed in the molten metal and is surrounded by an enclosure. Of the refractory is covered with a gas to supply a mixed gas of the gas, the contact with the atmosphere is cut off to seal the gas by vacuum degassing equipment, .
【請求項2】 水素もしくは水素と不活性ガスの混合ガ
スを、浸漬管耐火物の下端部に設けた多孔質耐火物を介
して積極的に溶鋼中に混入させる請求項1記載の極低
炭、極低窒素鋼の溶製法。
2. The ultra-low carbon according to claim 1, wherein hydrogen or a mixed gas of hydrogen and an inert gas is positively mixed into the molten steel through a porous refractory provided at the lower end of the immersion pipe refractory. , Melting method of ultra low nitrogen steel.
JP10304993A 1993-04-28 1993-04-28 Method for melting extra low carbon and extra low nitrogen steel in vacuum degassing apparatus Pending JPH06306444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10304993A JPH06306444A (en) 1993-04-28 1993-04-28 Method for melting extra low carbon and extra low nitrogen steel in vacuum degassing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10304993A JPH06306444A (en) 1993-04-28 1993-04-28 Method for melting extra low carbon and extra low nitrogen steel in vacuum degassing apparatus

Publications (1)

Publication Number Publication Date
JPH06306444A true JPH06306444A (en) 1994-11-01

Family

ID=14343821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10304993A Pending JPH06306444A (en) 1993-04-28 1993-04-28 Method for melting extra low carbon and extra low nitrogen steel in vacuum degassing apparatus

Country Status (1)

Country Link
JP (1) JPH06306444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528981A (en) * 2000-03-29 2003-09-30 ユジノール Vacuum treatment of molten metal with simultaneous stripping by helium injection
JP2007239062A (en) * 2006-03-10 2007-09-20 Jfe Steel Kk Method for producing titanium-containing ultra-low carbon steel slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528981A (en) * 2000-03-29 2003-09-30 ユジノール Vacuum treatment of molten metal with simultaneous stripping by helium injection
JP5010086B2 (en) * 2000-03-29 2012-08-29 アルセロールミタル・フランス Vacuum processing of molten metal with simultaneous stripping by helium injection.
JP2007239062A (en) * 2006-03-10 2007-09-20 Jfe Steel Kk Method for producing titanium-containing ultra-low carbon steel slab

Similar Documents

Publication Publication Date Title
US5143355A (en) Apparatus for manufacturing oxygen-free copper
JPH06306444A (en) Method for melting extra low carbon and extra low nitrogen steel in vacuum degassing apparatus
JPH0551626A (en) Smelting method for steel containing extremely low carbon and extremely low nitrogen by vacuum degassing equipment
EP0092652B1 (en) Apparatus for treating molten metal and method for refining steel melts
US3236635A (en) Method for degassing molten metal
JPH0146563B2 (en)
US3159478A (en) Process and apparatus for treating molten metals
JP2000212641A (en) High speed vacuum refining of molten steel
CA1202181A (en) Process to produce low hydrogen steel
JPH11279624A (en) Refining method of high-nitrogen stainless steel
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
Sano et al. Decarburization reaction of molten iron of low carbon concentration with vacuum suction degassing method
KR101198589B1 (en) Method of refining of high Cr ferrite stainless steel and refining apparatus thereby
JPH05287356A (en) Ladle refining method
JPH06306441A (en) Method for refining steel
JPH01147016A (en) Method for reducing nitrogen in vacuum degasification of molten steel
JPH04131317A (en) Rh vacuum degassing treatment
Yamaguchi et al. Development of Hydrogen Gas Injection Method for Promoting Decarburization of Ultra-low Carbon Steel in RH Degasser
JPS5816018A (en) Melting method for al-stainless steel
Tsukamoto et al. Effect of alloying elements on porosity formation in laser welding of heavy section steel plates
JPH08277416A (en) Production of clean steel
JPH08295922A (en) Method for melting extremely low nitrogen steel
JPH08120325A (en) Production of high cleanness extra low carbon steel
JPH0317217A (en) Production of clean steel
JPH10152719A (en) Method for melting high cleanliness steel