JPH06306404A - Production of sintered compact and powder for the compact - Google Patents

Production of sintered compact and powder for the compact

Info

Publication number
JPH06306404A
JPH06306404A JP5120593A JP12059393A JPH06306404A JP H06306404 A JPH06306404 A JP H06306404A JP 5120593 A JP5120593 A JP 5120593A JP 12059393 A JP12059393 A JP 12059393A JP H06306404 A JPH06306404 A JP H06306404A
Authority
JP
Japan
Prior art keywords
powder
compact
density
sintered
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5120593A
Other languages
Japanese (ja)
Inventor
Senji Fujita
宣治 藤田
Kiyoshi Suzuki
喜代志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP5120593A priority Critical patent/JPH06306404A/en
Publication of JPH06306404A publication Critical patent/JPH06306404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered compact improved in wear resistance, etc., by C, having a high green density and high sintered density and especially without its toughness being lowered due to segregation of C. CONSTITUTION:The powder of a 13%-Cr SUS (Stainless steel) having <= about 149mum particle diameter produced by gas atomization and fine CB powder having 10-40mmmu particle diameter and having 40-300ml/100g oil absorption are mixed respectively in a specified amt., 1wt.% of zinc stearate is added as a binder, and the mixture is charged into a bladed mixing agitator and sufficiently agitated. The surface of the SUS powder after being agitated is covered almost uniformly with the fine CB powder. The powder is compacted and sintered to obtain a sintered compact excellent in compact density and sintered density and without any C segregation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧粉焼結品の製造方法
及び圧粉焼結用粉体に係り、特に高C含有とすることに
よって焼結品の耐摩耗性等を向上させた圧粉焼結品の製
造方法及び圧粉焼結用粉体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder compact sintered product and a powder compact for powder compact sintering, and in particular, the high C content improves the wear resistance of the sintered product. The present invention relates to a method for manufacturing a green compact sintered product and a powder for green compact sintering.

【0002】[0002]

【従来の技術】従来、SUS粉末の圧粉焼結品において
耐摩耗性を向上するため、SUS粉末に黒鉛粉末(グラ
ファイト)を混合した混合粉末を用いて圧粉成形し、焼
結するといったことがなされていた。また、SUS粉末
をアトマイズで製造する際に用いる溶湯中に予めCを添
加しておき、Cがプレアロイされた状態のSUS粉末を
用いる場合もあった。
2. Description of the Related Art Conventionally, in order to improve wear resistance in a powder-sintered product of SUS powder, powder-compacting and sintering using a powder mixture of SUS powder and graphite powder (graphite). Was being done. In addition, in some cases, C was pre-alloyed in the molten metal used for producing the SUS powder by atomization, and the SUS powder in which C was prealloyed was used.

【0003】[0003]

【発明が解決しようとする課題】ところが、グラファイ
ト混合の場合には、グラファイトの偏析が生じ、焼結品
の品質が不良となる場合があった。また、Cをプレアロ
イした場合には、偏析の問題はないものの圧粉密度を向
上することができず、焼結品の密度を向上できないた
め、品質の良い焼結品の製造が困難であった。
However, when graphite is mixed, segregation of graphite may occur, resulting in poor quality of the sintered product. Further, when C is prealloyed, although there is no problem of segregation, it is not possible to improve the green compact density and the density of the sintered product cannot be improved, so that it is difficult to manufacture a high quality sintered product. .

【0004】そこで、本発明においては、Cによる耐摩
耗性等の向上を達成しつつ、圧粉密度及び焼結密度の高
い圧粉焼結品を製造するための製造方法及び圧粉焼結用
粉体を提供することを目的とする。
Therefore, in the present invention, a manufacturing method for manufacturing a green compact sintered product having a high green compact density and a high sintering density while achieving the improvement of the wear resistance and the like by C and the green compact sintering method. The purpose is to provide a powder.

【0005】[0005]

【課題を解決するための手段及び作用】かかる目的を達
成するためになされた本発明の圧粉焼結品の製造方法
は、金属又は合金粉末とカーボンブラック微粉末とを機
械的に切りながら混合撹拌した圧粉材料を用いて圧粉成
形し、焼結することを特徴とする。
Means and Actions for Solving the Problems The method for producing a powder-sintered product of the present invention, which has been made to achieve the above object, comprises mixing metal or alloy powder and carbon black fine powder while mechanically cutting them. It is characterized in that it is formed into a compact by using the agitated compact material and then sintered.

【0006】カーボンブラック(以下、CBと記載す
る)は、ファーネスブラック(Furnace bla
ck)とかアセチレンブラック(Acetylene
black)などとしてよく知られている様に、粒径1
-3μm程度と非常に微細で球状を呈する。このため、
圧粉焼結に通常用いられる金属・合金粉末に比べて極め
て小さい。一方、炭化水素等が気相中で熱分解されて形
成されるものであるため、タール分を含んでおり、粘着
性がある。この様に、金属・合金粉末とは粒径が大きく
異なること、及びCBはその粘着性がありCB同士が団
子状にまとまり易いことから、単に金属・合金粉末とC
Bとを混合撹拌しただけでは、両者が分離した状態にな
り偏析状態が生じ易い。
Carbon black (hereinafter referred to as CB) is a furnace black (Furnace bla).
ck) or acetylene black (Acetylene)
As is well known as black), particle size 1
It is very fine and has a spherical shape of about 0 -3 μm. For this reason,
It is extremely small compared to the metal / alloy powders that are usually used for green compact sintering. On the other hand, since it is formed by thermally decomposing a hydrocarbon or the like in the gas phase, it contains a tar component and is sticky. As described above, since the particle size is significantly different from that of the metal / alloy powder, and the CB has the adhesiveness and the CBs are likely to be aggregated in a dumpling shape, the CB is simply different from the metal / alloy powder.
If only B and B are mixed and stirred, both are separated and a segregation state is likely to occur.

【0007】しかし、本発明によれば、機械的に切りな
がら混合撹拌するから、CBの微粉末は団子状になら
ず、金属・合金粉末の表面に均一にまぶされた状態とな
る。従って、偏析のない焼結品が製造できる。また、微
粉末であるので、CBが、圧粉成形の際に金属・合金粉
末の隙間を埋め、圧粉成形密度を向上させる。従って、
最終製品における焼結密度も向上する。
However, according to the present invention, since the fine particles of CB are mixed and stirred while being mechanically cut, the fine powder of CB is not sprinkled into particles, but is uniformly sprinkled on the surface of the metal / alloy powder. Therefore, a sintered product without segregation can be manufactured. Further, since it is a fine powder, CB fills the gap between the metal / alloy powder at the time of compacting and improves the compacting density. Therefore,
The sintered density in the final product is also improved.

【0008】また、本発明の圧粉焼結品の製造方法は、
請求項2記載の様に、金属又は合金の粉末表面に予めC
B微粉末をまぶした圧粉焼結用粉体を用いて圧粉成形
し、焼結することとしてもよい。この様にしておけば、
機械的に切りながら混合撹拌する必要がなく、便利であ
る。
Further, the method for producing a green compact sintered product of the present invention is as follows:
As described in claim 2, C is previously formed on the surface of the metal or alloy powder.
It is also possible to perform powder compacting using a powder for powder compact sintering sprinkled with B fine powder and sinter. If you do this,
It is convenient because there is no need to mix and stir while mechanically cutting.

【0009】なお、前記CB微粉末として、吸油量が1
50ml/100g以下のものを用いることが望まし
い。吸油量(タール分の含有量)が多いとそれほど圧粉
密度を向上できなくなるからである。これは、吸油量の
高いCBを用いると、その粘着性が高くなり過ぎ、圧粉
成形の時にCBがバネの様な役割を呈する結果、圧粉密
度をそれほど向上することができないためと考えられ
る。なお、さらに望ましくは吸油量が100ml/10
0g以下、より望ましくは50ml/100g以下とす
るとよい。吸油量が減るほど圧粉密度が向上する傾向に
あるからである。
The CB fine powder has an oil absorption of 1
It is desirable to use one of 50 ml / 100 g or less. This is because if the oil absorption amount (tar content) is large, the green compact density cannot be improved so much. This is considered to be because when CB having a high oil absorption amount is used, its adhesiveness becomes too high, and CB plays a role like a spring at the time of powder compaction, so that the powder compact density cannot be improved so much. . It is more desirable that the oil absorption is 100 ml / 10.
The amount is preferably 0 g or less, more preferably 50 ml / 100 g or less. This is because the green compact density tends to increase as the oil absorption decreases.

【0010】また、本発明は、圧粉焼結用粉体自体をも
対象とする。本発明の圧粉焼結用粉体は、金属又は合金
の粉末表面にCB微粉末をまぶしたものである。そし
て、やはり、前記CB微粉末は、吸油量が150ml/
100g以下であることが望ましく、さらに望ましくは
100ml/100g以下、より望ましくは50ml/
100g以下となる。前述の様に、吸油量が減るほど圧
粉密度が向上する傾向にあるからである。
The present invention is also directed to the powder for powder compact sintering itself. The powder for powder compact sintering of the present invention is obtained by sprinkling CB fine powder on the surface of a metal or alloy powder. And again, the CB fine powder has an oil absorption of 150 ml /
It is preferably 100 g or less, more preferably 100 ml / 100 g or less, and further preferably 50 ml /
It will be 100 g or less. This is because, as described above, the powder density tends to increase as the oil absorption decreases.

【0011】[0011]

【実施例】次に、本発明を一層明らかにするために、実
施例を以下に説明する。実施例では、ガスアトマイズに
より製造した13%Cr系のSUS粉末と、CB微粉末
とを用いて、C含有量を2.5wt%以下で種々変えた
円柱体(直径11.4mm,高さ9.0mm)の圧粉焼
結を行った。
EXAMPLES Next, examples will be described below in order to further clarify the present invention. In the examples, 13% Cr-based SUS powder produced by gas atomization and fine CB powder were used to form a cylinder (diameter 11.4 mm, height 9. 0 mm) powder compaction was performed.

【0012】SUS粉末は、JIS相当品でいうとSU
S410であり、粒径約149μm以下に分級したもの
を用いた。CB微粉末としては、下記表の様な粒径等を
有するものを用いた。なお、表中の表示記号とは、各種
試験結果の図面上での表示記号を意味する。
[0012] SUS powder is a JIS equivalent product, SU
S410, which was classified to have a particle size of about 149 μm or less. As the CB fine powder, those having a particle size as shown in the following table were used. The display symbols in the table mean the display symbols of various test results on the drawing.

【0013】[0013]

【表1】 [Table 1]

【0014】圧粉成形に当たっては、上記SUS粉末と
CB微粉末とを最終製品で予定しているC含有量に基づ
いて所定量配合し、さらにバインダとしてステアリン酸
亜鉛を1wt%添加し、これをブレード付の混合撹拌機
に投入し、機械的に切りながら十分に混合撹拌した。混
合撹拌後のSUS粉末表面の電子顕微鏡写真を図1に示
す。この写真はNo.3のCB微粉末を用いた例であ
り、CB含有量が2.5wt%の条件の場合である。写
真で全体がぼやっとして金属光沢が確認できないのは、
SUS粉末表面に微細なCB微粉末がほぼ均一にまぶさ
れた状態であることを意味している。なお、CB微粉末
自体はさらに倍率をあげないと視認することはできな
い。
In powder compaction, the SUS powder and CB fine powder are blended in a predetermined amount based on the C content expected in the final product, and 1 wt% of zinc stearate is added as a binder. The mixture was put into a mixing stirrer with a blade, and was thoroughly mixed and stirred while being mechanically cut. An electron micrograph of the SUS powder surface after mixing and stirring is shown in FIG. This photo is No. This is an example using the CB fine powder of No. 3 and the case where the CB content is 2.5 wt%. The whole picture is blurred and the metallic luster cannot be confirmed in the photograph,
It means that the fine CB fine powder is almost uniformly sprinkled on the surface of the SUS powder. The CB fine powder itself cannot be visually recognized unless the magnification is further increased.

【0015】次に、このCB微粉末をまぶされたSUS
粉末を型に入れ、7t/cm2 の荷重にて圧粉成形を行
った。そして、真空中で最初に500℃にて30分焼結
を行うことによりバインダとして添加したステアリン酸
亜鉛を消失させ、次に、同じく真空中で1200℃にて
60分の焼結を行った。なお、No.1のCBを用いた
場合には、C含有量1.0%以上を狙ったときに混合撹
拌の時点でCが分離してしまい焼結品を得ることができ
なかった。また、No.2のCBを用いた場合には、C
含有量1.5%以上を狙ったときに混合撹拌の時点でC
が分離してしまい焼結品を得ることができなかった。
Next, SUS dusted with this CB fine powder
The powder was put into a mold and was compacted under a load of 7 t / cm 2 . Then, the zinc stearate added as a binder was eliminated by first performing the sintering at 500 ° C. for 30 minutes in vacuum, and then the sintering was performed at 1200 ° C. for 60 minutes in the same vacuum. In addition, No. When CB of No. 1 was used, when a C content of 1.0% or more was aimed at, C was separated at the time of mixing and stirring, and a sintered product could not be obtained. In addition, No. When CB of 2 is used, C
When aiming for a content of 1.5% or more, C at the time of mixing and stirring
Was separated, and a sintered product could not be obtained.

【0016】一方、従来技術との比較のため、Cをプレ
アロイしたSUS粉末を単独で用いて同様の条件で円柱
体を圧粉焼結すると共に(図中表示記号×)、CBに変
えてグラファイト(粒径約10μm)を用いて同様に圧
粉焼結を行った(図中表示記号◇)。
On the other hand, for comparison with the prior art, the SUS powder pre-alloyed with C was used alone to compact and sinter the cylindrical body under the same conditions (indicated by symbol X in the figure), and replace CB with graphite. Powder compacting was similarly performed using (particle size of about 10 μm) (indicated by symbol ◇).

【0017】まず、CBをまぶした粉体の性質について
調べた見掛け密度ADと流動度FRについて説明する。
なお、これらは、No.1〜No.4のCBを用いた場
合についてだけ計測し、No.5のCBを用いた場合に
ついては計測しなかった。見掛け密度ADの関係を調べ
た結果を図2に示す。図示の様に、CB含有量が多くな
る程、見掛け密度ADが低下した。CBの方がSUSよ
りも密度が小さいのであるから、これは当然である。一
方、吸油量が多いほどその低下の度合が大きいという傾
向が分かった。これは、吸油量が多いほど粘着性が高
く、全体としてかさばる様になるためと考えられる。
First, the apparent density AD and the fluidity FR which are obtained by examining the properties of the powder sprinkled with CB will be described.
In addition, these are No. 1-No. No. 4 was measured only when CB was used. No measurement was made for the case of using CB of 5. The result of examining the relationship of the apparent density AD is shown in FIG. As shown in the figure, the apparent density AD decreased as the CB content increased. This is natural because CB has a lower density than SUS. On the other hand, it was found that the greater the oil absorption amount, the greater the degree of the decrease. It is considered that this is because the larger the oil absorption amount, the higher the tackiness and the bulkiness becomes as a whole.

【0018】流動度FRは、図3に示す。給油量の最も
少ないNo.4のCBを用いる場合に流動性が最もよか
った。一方、給油量の最も多いNo.1のCBが流動性
が最も悪かった。なお、No.2とNo.3ではそれほ
ど流動性の差はなかった。今回計測しなかったがNo.
5を用いた場合にも、No.4同様にかなり流動性が良
くなることが予想される。
The flow rate FR is shown in FIG. No. with the smallest amount of oil supply The fluidity was best with 4 CB. On the other hand, no. CB of 1 had the worst liquidity. In addition, No. 2 and No. There was not much difference in liquidity at 3. Although it was not measured this time, No.
No. 5 is also used. As with No. 4, it is expected that the liquidity will improve considerably.

【0019】次に、Cプレアロイ品と、各実施例とにつ
いて圧粉成形後の圧粉密度GDを調べた結果を図4に示
す。図示の様に、No.3,4,5では著しく圧粉密度
が向上することが分かる。ここで、No.1とNo.3
は、粒径はほぼ同じで、前者の方が給油量が大きい。ま
た、No.2とNo.3は比表面積が比較的近いが、給
油量がNo.2の方が2倍となている。これらのことか
ら、給油量が少ない程、圧粉成形密度GDを向上させる
ことが分かる。このことは、同図(B)の様に給油量に
ついて整理してみるとより一層明瞭になる。
Next, FIG. 4 shows the results of examining the green compact density GD of the pre-alloyed C product and each of the examples after green compacting. As shown, No. It can be seen that in 3, 4, and 5, the green compact density is remarkably improved. Here, No. 1 and No. Three
Have almost the same particle size, and the former has a larger amount of oil supply. In addition, No. 2 and No. No. 3 has a relatively specific surface area, but the amount of lubrication is No. 3. 2 is doubled. From these, it can be seen that the smaller the amount of oil supply, the higher the green compact density GD. This becomes even clearer when the amount of refueling is arranged as shown in FIG.

【0020】次に、この圧粉成形体の脆さを調べるた
め、JISラトラー試験を行い、ラトラー値RVを計測
した結果を図5に示す。なお、ラトラー試験とは、金網
製のカゴ内に圧粉成形した試料を入れ、カゴを回転させ
たときに試料がどの程度崩れるかを計測する試験で、ラ
トラー値RVはカゴから落ちた量を示している。RV=
100%ということは、完全にばらばらになってカゴか
ら落ちたことを意味する。No.1,No.2のCBを
用いた場合には、CB混合量が0.5wt%,1.0w
t%程度でもかなり崩れ易いことが分かった。このこと
から、給油量が大きいと、成形体が脆いということが分
かる。一方、No.3のCBを用いた場合は2.5wt
%についてもほとんど崩れなかった。No.4のCB
は、2.0wt%以上ではほとんど崩れてしまった。こ
のことから、同じ程度の給油量であるならば、粒径が小
さい方が崩れ難いということも分かった。但し、最も重
要な要素は給油量と考えられる。No.1とNo.3で
は粒径はほとんど同じなのに、前者はきわめて崩れ易い
のに対し、後者はほとんど崩れないからである。
Next, in order to examine the brittleness of this green compact, a JIS Rattler test was conducted and the Rattler value RV was measured. The results are shown in FIG. The Ratler test is a test in which a powder-molded sample is placed in a cage made of wire mesh and the extent to which the sample collapses when the cage is rotated is measured. The Ratler value RV is the amount dropped from the cage. Shows. RV =
100% means that it completely fell apart and fell from the basket. No. 1, No. When CB of 2 was used, the CB mixed amount was 0.5 wt%, 1.0 w
It was found that even at about t%, it was likely to collapse. From this, it can be seen that the molded body is brittle when the amount of oil supply is large. On the other hand, No. 2.5wt when using 3 CB
There was almost no change in the percentage. No. CB of 4
Was almost destroyed at 2.0 wt% or more. From this, it was also found that the smaller the particle size, the more difficult it is to collapse if the amount of oil supplied is the same. However, the most important factor is considered to be the amount of refueling. No. 1 and No. In No. 3, the particle size is almost the same, but the former is liable to collapse, whereas the latter is almost irreversible.

【0021】次に、焼結後の状態について種々調べた結
果を説明する。まず、焼結前のCB添加量と、焼結後の
C含有量とを調べた結果を図6に示す。(A)から分か
るように、C含有量は焼結によりやや減少している。し
かし、(B)に示すように、SUS粉末自体が含有する
Oの量(通常0.2wt%)を添加したCBから引く
と、ほぼ、(添加したC)=(焼結後のC)となる。こ
れは焼結によるC含有量の低下は、添加したCBが消え
てなくなる訳ではなく、SUS粉末が含有していたOの
還元に使われたということを意味している。従って、C
Bを用いて歩留まりが悪くなった訳ではなく、グラファ
イトを添加しても同様の歩留まりとなる。また、Cプレ
アロイの場合も同様の歩留まりとなる。
Next, the results of various investigations on the state after sintering will be described. First, FIG. 6 shows the results of examining the CB addition amount before sintering and the C content after sintering. As can be seen from (A), the C content is slightly decreased by sintering. However, as shown in (B), when the amount of O contained in the SUS powder itself (usually 0.2 wt%) is subtracted from the added CB, it becomes approximately (added C) = (post-sintering C). Become. This means that the decrease in the C content due to sintering does not mean that the added CB does not disappear, but is used for the reduction of O contained in the SUS powder. Therefore, C
The yield does not deteriorate with B, and the same yield is obtained even if graphite is added. Further, in the case of C prealloy, the yield is similar.

【0022】次に、焼結密度SDについて調べて見た。
図7に示す様に、No.3,No.4,No.5が共に
焼結密度が良好で、給油量が多くなると焼結密度が低下
する傾向が分かった。これも、同図(B)に示すように
給油量について整理し直して見るとより一層明らかにな
る。
Next, the sintered density SD was examined and examined.
As shown in FIG. 3, No. 4, No. It was found that in both Nos. 5 and 5, the sintered density was good, and the sintered density tended to decrease as the amount of oil supply increased. This also becomes clearer when the oil supply amount is rearranged as shown in FIG.

【0023】また、幅方向収縮率と高さ方向収縮率とを
調べると、図8に示す様に、Cプレアロイの比較例で
は、ほとんど収縮がないことが分かった。従って、焼結
による焼き締りが少なく、焼結密度が十分に上がらな
い。このことは、製品強度の向上が望めないことを意味
している。一方、グラファイトの比較例と本実施例で
は、C含有量の高い部分でかなりの収縮率となった。従
って、CプレアロイよりもCB混合型の方が焼き締りが
良好なことが分かった。一方、混合型であっても、グラ
ファイトを用いた比較例ではCの偏析により、じん性が
低くなった。これに対し、CBを用いた実施例では焼結
品にC偏析がなく、じん性が良好であった。
Further, when the shrinkage ratio in the width direction and the shrinkage ratio in the height direction were examined, it was found that there was almost no shrinkage in the comparative example of C prealloy as shown in FIG. Therefore, the compaction due to sintering is small and the sintered density cannot be sufficiently increased. This means that no improvement in product strength can be expected. On the other hand, in the comparative example of graphite and this example, the shrinkage rate was considerably high in the portion having a high C content. Therefore, it was found that the CB mixed type had a better shrinkage than the C prealloy. On the other hand, even in the mixed type, the toughness was lowered in the comparative example using graphite due to the segregation of C. On the other hand, in the example using CB, the sintered product had no C segregation and had good toughness.

【0024】この様に、CBを用いると、同じC含有量
の焼結品を製造する場合に、圧粉成形密度を向上させ、
焼結密度も向上させ、強度の高い製品を得ることがで
き、しかもC偏析が生じないので、じん性も良い製品を
製造することができる。また、この場合、特にC含有量
の多い焼結品を製造するに当たっては給油量が小さいほ
どよい。そして、図7の(B)図によれば、概ね150
ml/100gを境に焼結密度が向上することから、1
50ml/100g以下とするとよいということが分か
る。そして、ラトラー値RVや圧粉成形密度GD等を総
合勘案した場合には、望ましくは100ml/100g
以下、特に、50ml/100g以下であると一層よい
ということが分かった。特に、C含有量2.0wt%程
度のものを製造する場合には、給油量が100ml/1
00g以下に抑制されるべきである。
Thus, when CB is used, when a sintered product having the same C content is manufactured, the green compact density is improved,
A product having high strength can be obtained by improving the sintering density, and since C segregation does not occur, a product having good toughness can be manufactured. Further, in this case, the smaller the amount of oil supply, the better in producing a sintered product having a particularly high C content. Then, according to the diagram of FIG.
Since the sintered density improves at the boundary of ml / 100g, 1
It can be seen that the amount should be 50 ml / 100 g or less. And, when considering the Ratler value RV and the green compacting density GD comprehensively, it is preferably 100 ml / 100 g.
In the following, it has been found that it is particularly preferable that the amount is 50 ml / 100 g or less. In particular, when a C content of about 2.0 wt% is produced, the oil supply amount is 100 ml / 1
Should be suppressed below 00g.

【0025】以上本発明の実施例を説明したが、本発明
は上述した実施例に限定されるものではなく、その要旨
を逸脱しない範囲内で種々なる態様にて実現することが
できることはいうまでもない。例えば、SUS粉末以外
の各種金属・合金粉末を用いての圧粉焼結においても本
発明を適用することができることはもちろんである。
Although the embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to the above-mentioned embodiments and can be implemented in various modes without departing from the scope of the invention. Nor. For example, it goes without saying that the present invention can be applied to the powder compact sintering using various metal / alloy powders other than SUS powder.

【0026】[0026]

【発明の効果】以上説明した様に、本発明の圧粉焼結品
の製造方法及び圧粉焼結用粉体によれば、Cによる耐摩
耗性等の向上を達成しつつ、圧粉密度及び焼結密度の高
い圧粉焼結品を製造することができ、特にCの偏析によ
るじん性低下を来すということもない。特に、請求項
3,5に記載のように、給油量の少ないCBを用いる
と、C含有量の多めの製品を製造する場合に、圧粉密度
及び焼結密度を向上させる効果が高い。
As described above, according to the method for producing a powder compact sintered product and the powder for powder compact sintering of the present invention, while improving wear resistance and the like by C, the powder compact density can be achieved. Further, it is possible to manufacture a powder compact sintered product having a high sintering density, and in particular, segregation of C does not cause deterioration in toughness. In particular, as described in claims 3 and 5, when CB with a small amount of oil supply is used, the effect of improving the green compact density and the sintering density is high when a product with a large C content is manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例におけるCBをまぶした状態のSUS
粉末の粒子構造の顕微鏡写真である。
FIG. 1 is an SUS coated with CB according to an embodiment.
It is a microscope picture of the particle structure of powder.

【図2】 実施例の圧粉成形用粉体の見掛け密度を計測
した結果のグラフである。
FIG. 2 is a graph of the results of measuring the apparent density of the powder for powder compacting of the example.

【図3】 実施例の圧粉成形用粉体の流動度を計測した
結果のグラフである。
FIG. 3 is a graph showing the results of measuring the fluidity of the powder for powder compacting of the example.

【図4】 実施例及び比較例による圧粉成形体の圧粉密
度を計測した結果のグラフである。
FIG. 4 is a graph showing the results of measuring the green density of green compacts according to Examples and Comparative Examples.

【図5】 実施例の圧粉成形体についてラトラー値を計
測した結果のグラフである。
FIG. 5 is a graph showing a result of measuring a ratler value of the powder compact of the example.

【図6】 実施例の圧粉焼結体についてCB混合量と焼
結後のC含有量との関係を計測した結果のグラフであ
る。
FIG. 6 is a graph showing the results of measuring the relationship between the CB mixed amount and the C content after sintering for the powder compacts of Examples.

【図7】 実施例及び比較例の圧粉焼結体について焼結
密度を計測した結果のグラフである。
FIG. 7 is a graph showing the results of measuring the sintered density of the green compacts of Examples and Comparative Examples.

【図8】 実施例及び比較例の圧粉焼結体について幅方
向及び高さ方向の収縮率を計測した結果のグラフであ
る。
FIG. 8 is a graph showing the results of measuring shrinkage ratios in the width direction and the height direction of the powder compacts of Examples and Comparative Examples.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 金属又は合金粉末とカーボンブラック微
粉末とを機械的に切りながら混合撹拌した圧粉材料を用
いて圧粉成形し、焼結することを特徴とする圧粉焼結品
の製造方法。
1. A method for producing a powder compact sintered product, which comprises compacting and sintering a powder compact material obtained by mixing and stirring metal or alloy powder and carbon black fine powder while mechanically cutting the powder. Method.
【請求項2】 金属又は合金の粉末表面に予めカーボン
ブラック微粉末をまぶした圧粉焼結用粉体を用いて圧粉
成形し、焼結することを特徴とする圧粉焼結品の製造方
法。
2. The production of a compacted sintered product characterized by compacting and sintering using a compacting powder for compaction, which is prepared by previously sprinkling carbon black fine powder on the surface of a powder of metal or alloy. Method.
【請求項3】 前記カーボンブラック微粉末として、吸
油量が150ml/100g以下のものを用いることを
特徴とする請求項1又は請求項2記載の圧粉焼結品の製
造方法。
3. The method for producing a green compact sintered product according to claim 1, wherein an oil absorption amount of 150 ml / 100 g or less is used as the carbon black fine powder.
【請求項4】 金属又は合金の粉末表面にカーボンブラ
ック微粉末をまぶした圧粉焼結用粉体。
4. A powder for powder compact sintering, which is obtained by sprinkling carbon black fine powder on the surface of a metal or alloy powder.
【請求項5】 前記カーボンブラック微粉末は、吸油量
が150ml/100g以下であることを特徴とする請
求項4記載の圧粉焼結用粉体。
5. The powder for green compact sintering according to claim 4, wherein the fine carbon black powder has an oil absorption of 150 ml / 100 g or less.
JP5120593A 1993-04-22 1993-04-22 Production of sintered compact and powder for the compact Pending JPH06306404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5120593A JPH06306404A (en) 1993-04-22 1993-04-22 Production of sintered compact and powder for the compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5120593A JPH06306404A (en) 1993-04-22 1993-04-22 Production of sintered compact and powder for the compact

Publications (1)

Publication Number Publication Date
JPH06306404A true JPH06306404A (en) 1994-11-01

Family

ID=14790108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5120593A Pending JPH06306404A (en) 1993-04-22 1993-04-22 Production of sintered compact and powder for the compact

Country Status (1)

Country Link
JP (1) JPH06306404A (en)

Similar Documents

Publication Publication Date Title
US5108493A (en) Steel powder admixture having distinct prealloyed powder of iron alloys
US4676831A (en) Powder mixture containing talloil free of segregation
US3652261A (en) Iron powder infiltrant
KR101061346B1 (en) Mixed powders for powder metallurgy, green compacts and sintered bodies
GB2071159A (en) Fe based powder mixtures containing binders
CN100532606C (en) Iron-based powder combination
US5217683A (en) Steel powder composition
JP4176965B2 (en) Methods for improving the dynamic properties of iron-based powder compositions and compacted / sintered products
JP2007031744A (en) Powdery mixture for powder metallurgy
JP2898461B2 (en) Mixed powder and binder for powder metallurgy
JP2002501440A (en) Prealloyed copper-containing powder and its use in the production of diamond tools
JPH06510331A (en) Iron-based powder composition with good dimensional stability after sintering
JPH06306404A (en) Production of sintered compact and powder for the compact
US4015947A (en) Production of sintered aluminum alloy articles from particulate premixes
JPS591764B2 (en) Iron-copper composite powder and its manufacturing method
US3503720A (en) Rhenium-refractory metal alloys
JP2778410B2 (en) Anti-segregation mixed powder for powder metallurgy
JP4912188B2 (en) Mixed powder for powder metallurgy, its green compact, and sintered body
JPH0827536A (en) Production of sintered compact of stainless steel
JPS58100602A (en) Production of dispersion reinforced metallic powder
JPH0214401B2 (en)
JPH075921B2 (en) Method for producing composite alloy steel powder with excellent compressibility
JPS62188708A (en) Production of low-oxygen low-carbon metallic powder for sintering
JP2022155986A (en) Powder material for additive manufacturing and manufacturing method for molding using the powder material
JPH1030136A (en) Manufacture of sintered titanium alloy