JPH06305827A - Production of glass ceramic having machinability - Google Patents

Production of glass ceramic having machinability

Info

Publication number
JPH06305827A
JPH06305827A JP5099388A JP9938893A JPH06305827A JP H06305827 A JPH06305827 A JP H06305827A JP 5099388 A JP5099388 A JP 5099388A JP 9938893 A JP9938893 A JP 9938893A JP H06305827 A JPH06305827 A JP H06305827A
Authority
JP
Japan
Prior art keywords
plate
weight
glass
glass powder
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5099388A
Other languages
Japanese (ja)
Inventor
Yukinobu Uomoto
幸伸 魚本
Mikio Shinoda
幹雄 篠田
Yasuhiko Ikeda
泰彦 池田
Tadaki Murakami
忠▲き▼ 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryoden Kasei Co Ltd
Mitsubishi Electric Corp
Original Assignee
Ryoden Kasei Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryoden Kasei Co Ltd, Mitsubishi Electric Corp filed Critical Ryoden Kasei Co Ltd
Priority to JP5099388A priority Critical patent/JPH06305827A/en
Publication of JPH06305827A publication Critical patent/JPH06305827A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain the subject ceramic resistant to cracking, chipping, etc., and having excellent heat-resistance, electrical insulation, mechanical strength, etc., by forming a plate composed of two kinds of crystalline glass powders having respective specific compositions at a specific ratio and burning the formed plate by a specific method at a specific temperature. CONSTITUTION:A plate 1 is formed by the compression forming of a mixture of (A) 25-95wt.% of crystalline glass powder composed of 11.0-11.5wt.% of K2O, 23.5-24.8wt.% of MgO, 55.0-56.8wt.% of SiO2, 8.4-12.6wt.% of F2 and 0.86-0.99wt.% of ZrO2 and (B) 5-75wt.% of crystalline glass powder composed of 5.0-6.0wt.% of K2O, 9.5-11.0wt.% of MgO, 46.0-48.0wt.% of SiO2, 21.0-23.0wt.% of CaO, 0.2-0.5wt.% of CaF2, 5.0-6.5wt.% of MgF2 and 8.0-8.5wt.% of P305. The formed plate 1 is surrounded by granular or flaky fluorine-containing mineral 3, placed on a supporting refractory 5 placed in a refractory container 2 in a state inclined to the furnace floor surface by 15-65 deg. and heated at 1050-1100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気絶縁性、耐熱性、
機械的強度に優れ、かつ精密な寸法精度を必要とする加
工部品が、機械加工により容易にえられる機械加工性を
有するガラスセラミックスの製法に関する。さらに詳し
くは、電機・電子機器、精密機器などの耐熱絶縁部品
(基板、熱処理治具材)、構造支持部材(耐熱ボビン、
センサー支持部品)などとして、有用に使用できる機械
加工性を有するガラスセラミックスの製法に関する。
BACKGROUND OF THE INVENTION The present invention relates to electric insulation, heat resistance,
The present invention relates to a process for producing glass ceramics, which has excellent mechanical strength and has machinability that allows machined parts that require precise dimensional accuracy to be easily obtained by machining. More specifically, heat-resistant insulating parts (substrates, heat treatment jig materials), structural support members (heat-resistant bobbins, etc.) for electrical and electronic equipment, precision equipment, etc.
The present invention relates to a method for producing glass ceramics having machinability that can be usefully used as a sensor support part).

【0002】[0002]

【従来の技術】機械加工性を有するセラミックスとして
は、特開昭63-50365号公報に示されているマイカ粉末と
ZnO-SiO2-B23系セラミックスで構成されたも
のや、ガラスハンドブック(作花済夫、境野照雄、高橋
克明編、(株)朝倉書店、1982年発行)215〜216頁に示
されているようなガラス中にマイカ結晶を析出させたも
のが知られている。
2. Description of the Related Art Examples of machinable ceramics include those composed of mica powder and ZnO-SiO 2 -B 2 O 3 -based ceramics disclosed in JP-A-63-50365, and the Glass Handbook. (Mitsuo Sakuhana, Teruo Sakaino, Katsuaki Takahashi, Asakura Shoten Co., Ltd., published in 1982) It is known that mica crystals are precipitated in glass as shown on pages 215 to 216.

【0003】特開昭63-50365号公報に示されているセラ
ミックスの製法は、マイカ粉末とZnO-SiO2-B2
3系セラミックスとの混合物を1000℃付近の温度でホッ
トプレスして作製する方法である。
The method for producing ceramics disclosed in Japanese Patent Laid-Open No. 63-50365 is based on mica powder and ZnO-SiO 2 -B 2 O.
This is a method of hot pressing a mixture with 3 series ceramics at a temperature around 1000 ° C.

【0004】また、前記ガラスハンドブックに示されて
いる製法は、ガラス中にマイカ結晶(フッ素金雲母)を
析出させる方法との記載があるのみで、その詳細は述べ
られていないが、ガラス中からマイカ結晶(四ケイ素マ
イカ)、ディオプサイド結晶、アパタイト結晶などを結
晶化させて作製する本発明の方法と、焼成により細晶化
ガラスを製造するという点では似ているものの、その焼
成方法は不明であるが成形体を水平に設置するという通
常の方法で行なったものと推察される。
Further, the manufacturing method shown in the above glass handbook only describes a method of precipitating mica crystals (fluorine phlogopite) in the glass, and the details thereof are not mentioned, but from the glass Although it is similar to the method of the present invention in which a mica crystal (tetrasilicon mica), a diopside crystal, an apatite crystal and the like is crystallized, in that it produces a fine crystallized glass by firing, the firing method is Although it is unknown, it is presumed that it was carried out by the usual method of horizontally setting the molded body.

【0005】[0005]

【発明が解決しようとする課題】特開昭63-50365号公報
は、ホットプレスで作製するため、本発明の製法とは異
なり、さらに前記ガラスハンドブック記載の製法も詳細
はわからない。しかし、前記従来法記載の組成を用い、
常温、常圧での従来法による焼成ではガラスから所望の
結晶を析出させ、かつえられたガラスセラミックスが欠
陥(クラック、カケ)の少ないものをうることは困難で
あると推察される。
Since Japanese Patent Laid-Open No. 63-50365 is manufactured by hot pressing, the manufacturing method described in the above glass handbook is not known in detail, unlike the manufacturing method of the present invention. However, using the composition described in the conventional method,
It is presumed that it is difficult to deposit desired crystals from glass and obtain glass ceramics having few defects (cracks, chips) by conventional firing at room temperature and atmospheric pressure.

【0006】さらに、成形体の寸法(厚さ、大きさ)が
大きくなればなるほど、とくに焼成過程でクラック、カ
ケなどの欠陥が発生しやすくなり、そのため製品ロスが
多い。
Further, as the size (thickness, size) of the molded product increases, defects such as cracks and chips are more likely to occur, especially during the firing process, resulting in more product loss.

【0007】[0007]

【課題を解決するための手段】本発明者は、先に1000℃
以上の耐熱性を有し、機械的強度および電気絶縁性に優
れ、かつ精密加工部品が容易に製作でき、大型寸法品の
製造も容易な、新しい材料組成の高強度易加工性ガラス
セラミックスの製法を提案(特願平2-30253号)した
が、本発明では前記発明をさらに発展させ、所望の結晶
を析出させた結晶化ガラスで、クラック、カケなどの欠
陥の少ない、優れた加工性を有するガラスセラミックス
を製造する方法を見出したものである。
Means for Solving the Problems The present inventor first found that 1000 ° C.
A high-strength and easily-processable glass-ceramic manufacturing method with a new material composition that has the above heat resistance, excellent mechanical strength and electrical insulation properties, can be easily manufactured into precision-machined parts, and is easy to manufacture large-sized products. (Japanese Patent Application No. 2-30253), the present invention is a further development of the present invention, a crystallized glass in which desired crystals are deposited, with few defects such as cracks and chips, and excellent workability. The present inventors have found a method for producing the glass ceramics.

【0008】すなわち本発明は、(a)組成が化合物換算
でK2O 11.0〜11.5%(重量%、以下同様)、MgO 2
3.5〜24.8%、SiO2 55.0〜56.8%、F2 8.4〜12.6%
およびZrO2 0.86〜0.99%の結晶化ガラス粉末A25〜
95%と(b)組成が化合物換算でK2O 5.0〜6.0%、M
gO 9.5〜11.0%、SiO2 46.0〜48.0%、CaO 2
1.0〜23.0%、CaF2 0.2〜0.5%、MgF2 5.0〜6.5
%およびP25 8.0〜8.5%の結晶化ガラス粉末B5〜7
5%とを配合したものを加圧成形して板状成形体を作製
し、1050〜1100℃で加熱してガラスセラミックスを製造
する方法であって、前記板状成形体を周辺が粒状または
鱗片状のフッ素含有鉱物で囲まれるようにして、耐火物
容器中に焼成炉の炉床面に対し15〜65°の角度を有する
支持耐熱物上で、加熱処理を行なうことを特徴とする機
械加工性を有するガラスセラミックスの製法に関する。
That is, in the present invention, (a) the composition is K 2 O 11.0 to 11.5% (wt%, the same applies hereinafter), MgO 2
3.5~24.8%, SiO 2 55.0~56.8%, F 2 8.4~12.6%
And ZrO 2 0.86 to 0.99% crystallized glass powder A25 to
95% and (b) composition is K 2 O 5.0 to 6.0%, M
gO 9.5 to 11.0%, SiO 2 46.0 to 48.0%, CaO 2
1.0~23.0%, CaF 2 0.2~0.5%, MgF 2 5.0~6.5
% And P 2 O 5 8.0 to 8.5% of the crystallized glass powder B5~7
A method for producing a plate-shaped molded body by pressure-molding a mixture of 5% and a glass ceramics by heating at 105-1100 ° C., wherein the plate-shaped molded body has a granular or scaly periphery. Machining, characterized in that heat treatment is carried out on a supporting heat-resistant material having an angle of 15 to 65 ° with respect to the hearth surface of the firing furnace in a refractory container so as to be surrounded by the fluorine-containing mineral The present invention relates to a method for producing glass ceramics having properties.

【0009】[0009]

【作用】本発明の製法によると、原粉粉末の板状成形体
を焼成炉の炉床面に対し、15〜65°の角度を有する支持
耐熱物上で焼成するため、成形体が収縮をおこし始めて
も摩擦抵抗が少なく、かつ自重が有効に働き、クラッ
ク、カケなどの欠陥が発生しにくい。とくに成形体が大
形寸法になればなるほど、その効果が顕著である。
According to the manufacturing method of the present invention, since the plate-shaped molded body of the raw powder is fired on the supporting heat resistant material having an angle of 15 to 65 ° with respect to the hearth surface of the firing furnace, the molded body shrinks. Even if it starts to occur, the frictional resistance is small, the self-weight works effectively, and defects such as cracks and chips are unlikely to occur. In particular, the larger the molded body, the more remarkable the effect.

【0010】本発明の製法によれば、950°以上の耐熱
性を有し、機械強度(曲げ強さ)は800〜2000kg/cm2
優れ、欠陥が少なく、かつ精密加工が切削加工などで容
易にできる安価なガラスセラミックスがえらえる。
According to the manufacturing method of the present invention, it has a heat resistance of 950 ° or more and an excellent mechanical strength (bending strength) of 800 to 2000 kg / cm 2 , has few defects, and can be used for precision machining such as cutting. You can easily select inexpensive glass ceramics.

【0011】[0011]

【実施例】本発明においては、原料として結晶化ガラス
粉末Aおよび結晶化ガラス粉末Bの2種類の組成のガラ
ス粉末を使用する。
EXAMPLE In the present invention, glass powders having two kinds of compositions, crystallized glass powder A and crystallized glass powder B, are used as raw materials.

【0012】本発明で用いられる結晶化ガラス粉末A
は、化合物換算でK2O:11.0〜11.5%、MgO:23.5
〜24.8%、SiO2:55.0〜56.8%、F2:8.4〜12.6%
およびZrO2:0.86〜0.99%の組成からなる。
Crystallized glass powder A used in the present invention
Is calculated as K 2 O: 11.0 to 11.5%, MgO: 23.5%
~24.8%, SiO 2: 55.0~56.8% , F 2: 8.4~12.6%
And ZrO 2: consisting of from 0.86 to 0.99% of the composition.

【0013】前記結晶化ガラス粉末Aは、前記した組成
の結晶化ガラスがえられる方法で製造されたものであれ
ばとくに限定されないが、たとえば前記組成になるよう
に調合された原料を溶融ルツボにいれ、1400〜1500℃の
温度で加熱溶融し、急冷してガラスの塊状物をえ、次に
ボールミルやジェットミルなどで平均粒径5μm程度以
下に微粉砕したものを使用することができる。
The crystallized glass powder A is not particularly limited as long as it is produced by a method capable of obtaining a crystallized glass having the above-mentioned composition. For example, a raw material prepared to have the above-mentioned composition is put into a molten crucible. It is possible to use one that is heated and melted at a temperature of 1400 to 1500 ° C., rapidly cooled to obtain a glass lump, and then finely pulverized with a ball mill, a jet mill or the like to have an average particle size of about 5 μm or less.

【0014】つぎに本発明で用いられる結晶化ガラス粉
末Bは、化合物換算でK2O:5.0〜6.0%、MgO:9.5
〜11.0%、SiO2:46.0〜48.0%、CaO:21.0〜23.
0%、CaF2:0.2〜0.5%、MgF2:5.0〜6.5%およ
びP25:8.0〜8.5%の組成からなる。
Next, the crystallized glass powder B used in the present invention contains K 2 O: 5.0 to 6.0% and MgO: 9.5 in terms of compound.
~11.0%, SiO 2: 46.0~48.0% , CaO: 21.0~23.
0%, CaF 2: 0.2~0.5% , MgF 2: consisting of 8.0 to 8.5% of the composition: 5.0 to 6.5% and P 2 O 5.

【0015】前記結晶化ガラス粉末Bも、前記した組成
の結晶化ガラスがえられる方法で製造されたものであれ
ばとくに限定されないが、たとえば前記組成になるよう
に調合された原料を結晶化ガラス粉末Aの製法と同様の
条件で加熱、溶融したのち、平均粒径5μm程度以下に
微粉砕したものを使用することができる。
The crystallized glass powder B is not particularly limited as long as it is produced by a method capable of obtaining crystallized glass having the above-mentioned composition. For example, a raw material prepared to have the above-mentioned composition is used as the crystallized glass. A powder obtained by heating and melting under the same conditions as in the production method of powder A and then finely pulverized to an average particle size of about 5 μm or less can be used.

【0016】結晶化ガラス粉末Aおよび結晶化ガラス粉
末Bとも前記組成範囲から離脱すると、加熱溶融時にガ
ラス化しにくく、かつ溶融炉から取り出すときに一部結
晶化がおこり好ましくない。
If both the crystallized glass powder A and the crystallized glass powder B deviate from the above compositional range, it is not preferable because vitrification is difficult during heating and melting, and a part of crystallization occurs when taking out from the melting furnace.

【0017】結晶化ガラス粉末A、Bの粒径は、5μm
程度以下が好ましく、それをこえると、それを用いた成
形体は、加熱過程で均一に焼成できず緻密なガラスセラ
ミックスをえにくくなる。
The grain size of the crystallized glass powders A and B is 5 μm.
It is preferably not more than about a certain degree, and if it exceeds it, a molded body using it cannot be uniformly fired in the heating process, and it becomes difficult to obtain a dense glass ceramics.

【0018】えられた2種のガラス粉末を、ガラス粉末
A25〜95%、ガラス粉末B5〜75%、好ましくはガラス
粉末A30〜90%、ガラス粉末B10〜70%の比率になるよ
うに混ぜ合わせて混合粉末が調製される。
The two kinds of glass powders thus obtained are mixed so as to have a ratio of glass powder A 25 to 95%, glass powder B 5 to 75%, preferably glass powder A 30 to 90% and glass powder B 10 to 70%. To prepare a mixed powder.

【0019】2種のガラスを前記の比率で混ぜ合わせて
使用するのはつぎのような理由による。
The reason why the two kinds of glass are mixed and used in the above ratio is as follows.

【0020】すなわち、結晶化ガラス粉末Aは、加熱す
ると600℃付近から四ケイ素マイカ結晶を主に析出する
タイプであり、この結晶化ガラス単独では、機械加工性
に優れるものの、緻密な焼成体がえられ難く機械的強度
がおとり好ましくない。
That is, the crystallized glass powder A is of a type in which tetrasilicon mica crystals are mainly precipitated from around 600 ° C. when heated, and this crystallized glass alone is excellent in machinability but does not give a dense fired body. It is difficult to obtain and mechanical strength is unfavorable.

【0021】一方結晶化ガラス粉末Bは、加熱すると85
0℃付近からディオプサイド結晶、アパタイト結晶およ
びマイカ結晶などを主体とする結晶が析出するタイプの
もので、焼成体は、緻密化し、また機械的強度にすぐれ
たものがえられるが、硬くて、機械加工性に乏しいな
ど、それぞれ単独では、本発明の目的とするガラスセラ
ミックスをうることができない。
On the other hand, the crystallized glass powder B is heated to 85
It is a type in which crystals mainly composed of diopside crystals, apatite crystals, mica crystals, etc. precipitate from around 0 ° C. The fired body can be densified and has excellent mechanical strength, but it is hard. The glass ceramics, which are the object of the present invention, cannot be obtained by themselves, such as poor machinability.

【0022】したがって本発明では、結晶化ガラス粉末
Aと結晶化ガラス粉末Bの配合比率を25〜95:5〜75の
重量比率に組合わせたものを用いる。
Therefore, in the present invention, a combination of the crystallized glass powder A and the crystallized glass powder B in a weight ratio of 25 to 95: 5 to 75 is used.

【0023】この範囲で用いると、えられる焼成体は、
緻密化し、電気絶縁性、耐熱性および機械的強度にすぐ
れ、機械加工性も良好なガラスセラミックスをうること
ができる。
When used in this range, the obtained fired body is
It is possible to obtain a glass ceramic that is densified, has excellent electrical insulation, heat resistance and mechanical strength, and has good machinability.

【0024】つぎに、前記のように配合された粉末を加
圧成形して板状成形体を作製し、1050〜1100℃で加熱し
てセラミックをうるがその際、本発明では前記板状成形
体を周辺が粒状または鱗片状のフッ素含有鉱物で囲まれ
るようにして、耐火物容器中に焼成炉の炉床面に対し15
〜65°の角度を有する支持耐熱物上で、加熱処理を行な
うという従来と異なる方法をとる。
Next, the powder compounded as described above is pressure-molded to prepare a plate-shaped molded body, which is heated at 1050 to 1100 ° C. to obtain a ceramic. At that time, in the present invention, the plate-shaped molding is carried out. The body is surrounded by granular or scaly fluorine-containing minerals and placed in a refractory container against the hearth of the firing furnace.
Heat treatment is performed on a supporting heat-resistant material having an angle of ~ 65 °, which is different from the conventional method.

【0025】まず板状成型体を作製する方法は、通常用
いられる方法で行なうことができ、とくに限定されない
が、以下その一例を示す。
First, the method for producing the plate-shaped molded article can be carried out by a method generally used and is not particularly limited, but one example thereof will be shown below.

【0026】前記の割合で配合された混合粉末に、前記
混合粉末100重量部に対して通常5〜10%程度の濃度の
ポリビニルアルコールなどの有機バインダー水溶液5〜
10部を添加し、たとえばスパルタンリューザーなどの造
粒機により50〜100μm程度の粒子に造粒する。この造
粒物を金型に充填し、加圧力500〜1000kg/cm2で成形
し、成形体を作製する。
To the mixed powder mixed in the above proportion, an organic binder aqueous solution such as polyvinyl alcohol having a concentration of about 5 to 10% is usually added to 100 parts by weight of the mixed powder.
Add 10 parts, and granulate into particles of about 50 to 100 μm with a granulator such as a Spartan Luzer. This granulated product is filled in a mold and molded at a pressing force of 500 to 1000 kg / cm 2 to prepare a molded body.

【0027】えられた成形体を1050〜1100℃、3〜5時
間加熱し、焼成体とすることにより、ガラスセラミック
スを製造する。前記加熱温度が1050℃未満になると充分
緻密な焼成体がえられ難く、とくに機械的強度、電気絶
縁性などがおとり、好ましくない。一方、1100℃をこえ
ると、内部に大きな気孔が介在したり、また析出した結
晶も成長したりして、多孔質となるため好ましくない。
加熱時間が3時間より短いばあい、析出する結晶(たと
えばマイカ、ディオプサイドなど)量が少なく強度に乏
しいものとなる。
Glass ceramics are manufactured by heating the obtained molded body at 1050-1100 ° C. for 3-5 hours to obtain a fired body. If the heating temperature is less than 1050 ° C., it is difficult to obtain a sufficiently dense fired product, and mechanical strength and electrical insulation are particularly poor, which is not preferable. On the other hand, if the temperature exceeds 1100 ° C., large pores are present inside, and the precipitated crystal grows, which is not preferable because it becomes porous.
If the heating time is shorter than 3 hours, the amount of precipitated crystals (for example, mica, diopside, etc.) will be small and the strength will be poor.

【0028】一方5時間より長いばあい、多孔質となり
やすい。
On the other hand, if it is longer than 5 hours, it tends to become porous.

【0029】つぎに、前記した成形体を焼成する際の本
発明の特徴である耐火物容器中の板状成形体の設置方法
および焼成方法の一実施例を図面に基づいて説明する。
Next, an embodiment of a method of installing a plate-shaped molded article in a refractory container and a method of firing, which is a feature of the present invention when firing the above-mentioned molded article, will be described with reference to the drawings.

【0030】図1は、本発明の一実施例を示す断面図
で、図2は従来の一般的な板状成形品の焼成方法を示す
断面図である。ここで1は板状成形体、2は耐火物容
器、3はフッ素含有鉱物、4は焼成炉の炉床面を示す。
5は板状成形体を支持し、炉床面に対し15〜65℃の角度
を有する支持耐熱物である。また、αはそのときの板状
成形体1と焼成炉の炉床面4との角度を示す。
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional general method for firing a plate-shaped molded product. Here, 1 is a plate-shaped molded body, 2 is a refractory container, 3 is a fluorine-containing mineral, and 4 is a hearth surface of a firing furnace.
Reference numeral 5 is a supporting heat-resistant material that supports the plate-shaped compact and has an angle of 15 to 65 ° C. with respect to the hearth surface. Further, α indicates an angle between the plate-shaped compact 1 and the hearth surface 4 of the firing furnace at that time.

【0031】前記板状成形体1は前記した成形方法でえ
られたものであり、その寸法は厚さ30mm、幅200mm、長
さ200mm程度のものが好ましい。
The plate-shaped molded body 1 is obtained by the above-described molding method, and its dimensions are preferably about 30 mm in thickness, 200 mm in width and 200 mm in length.

【0032】本発明で用いる耐火物容器2の例として
は、たとえばムライト、アルミナ系の耐火物で、その大
きさはたとえば高さ600mm、幅300mm、長さ300mmのもの
を用いることができ、板状成形体の設置の方法は図1の
ように、焼成炉の炉床面4に対してその角度αが15〜65
°の角度を有する支持耐熱物上にのせフッ素含有鉱物中
に埋める。なお、設置の角度が15℃未満では効果が少な
く65°を越える場合は板状成形体の自重が下方端部に集
中するため、変形を越し易い。焼成炉の例としては、た
とえば電気炉、ガス炉などを使用することができる。
As an example of the refractory container 2 used in the present invention, for example, a mullite or alumina refractory material having a height of 600 mm, a width of 300 mm and a length of 300 mm can be used. As shown in FIG. 1, the method for installing the green compact has an angle α of 15 to 65 with respect to the hearth surface 4 of the firing furnace.
It is placed on a supporting refractory material having an angle of ° and embedded in a fluorine-containing mineral. If the installation angle is less than 15 ° C, the effect is small, and if the installation angle exceeds 65 °, the weight of the plate-shaped molded body is concentrated on the lower end portion, so that the deformation easily occurs. As an example of the firing furnace, for example, an electric furnace or a gas furnace can be used.

【0033】板状成形体を焼成するばあいに、板状成形
体の周辺を粒状または、鱗片状のフッ素含有鉱物3で囲
んで焼成するのは、結晶化ガラス中のフッ素成分の飛散
を防止し、所望の結晶ができやすいようにするためで、
通常採られている方法である。
When the plate-shaped compact is fired, the periphery of the plate-shaped compact is surrounded by the granular or scale-like fluorine-containing mineral 3 and fired to prevent the scattering of the fluorine component in the crystallized glass. In order to facilitate the formation of the desired crystals,
This is the method usually adopted.

【0034】フッ素含有鉱物3の例として、たとえば合
成フッ素金雲母、フッ化マグネシウム、ケイフッ化カリ
などが使用されるが、粒径は30〜100μm程度が好まし
い。30μm未満のばあい、板状成形体を埋め込み難く、
また100μmを超えると板状成形体との接触がわるく、
結晶化ガラス中のフッ素が拡散しやすい。
As examples of the fluorine-containing mineral 3, synthetic fluorophlogopite, magnesium fluoride, potassium silicofluoride and the like are used, but the particle size is preferably about 30 to 100 μm. When it is less than 30 μm, it is difficult to embed a plate-shaped molded body,
Further, if it exceeds 100 μm, contact with the plate-shaped molded body is poor,
Fluorine in crystallized glass easily diffuses.

【0035】欠陥が発生するのは、成形体が加熱により
収縮をおこし始める時点、すなわちガラス中から結晶が
析出しはじめる600〜850℃の温度付近から現れるばあい
が多い。本発明のガラスセラミックスの収縮率は、成形
体の寸法を基準とすると16〜20%の線収縮率があるた
め、成形体が収縮しはじめると支持耐熱物と接する部分
で摩擦抵抗が発生し、成形体がこれに打ち勝たないばあ
いにクラック、カケなどの欠陥が発生しやすい。とくに
成形体の自重がかかる下面にこれら欠陥が発生し、収縮
とともに成長する。
Defects often occur when the compact begins to contract due to heating, that is, near the temperature of 600 to 850 ° C. at which crystals start to precipitate from the glass. The shrinkage rate of the glass-ceramics of the present invention has a linear shrinkage rate of 16 to 20% based on the dimensions of the molded body, so that when the molded body begins to shrink, frictional resistance occurs at the portion in contact with the supporting heat resistant material, If the molded body does not overcome this, defects such as cracks and chips are likely to occur. In particular, these defects occur on the lower surface of the compact, which is subject to its own weight, and grow with shrinkage.

【0036】したがって、板状成形体をのせた支持耐熱
物が焼成炉の炉焼面に平行に設置する図2に示すような
従来法では、板状成形体2の下面に欠陥が発生しやす
い。
Therefore, in the conventional method as shown in FIG. 2 in which the supporting heat-resistant material on which the plate-shaped compact is placed is installed in parallel with the firing surface of the firing furnace, defects are likely to occur on the lower surface of the plate-shaped compact 2. .

【0037】本発明の効果は炉床面に対し15〜65°の角
度を有する支持耐熱物上で板状成形体を焼成するため、
収縮とともに成形体の自重で摩擦係数を小さくさせる作
用が考えられ、欠陥の発生を防止しているもの思われ
る。
The effect of the present invention is that the plate-shaped molded body is fired on the supporting heat-resistant material having an angle of 15 to 65 ° with respect to the hearth surface,
It is considered that the shrinkage causes the friction coefficient to decrease due to the self-weight of the molded body, which prevents the occurrence of defects.

【0038】本発明の方法と従来法を比較すると、とく
に板状成形体が大型寸法品になるほど効果が明らかで炉
床面に平行にして焼成する従来法に比べて、クラック、
カケなどの欠陥の発生は顕著に少なくなる。
Comparing the method of the present invention with the conventional method, the effect becomes clearer as the plate-shaped molded article becomes larger in size, and cracks, as compared with the conventional method of firing parallel to the hearth surface,
Occurrence of defects such as chips is significantly reduced.

【0039】本発明のガラスセラミックスはマイカ結晶
とディオプサイド結晶を含有したもので前記したような
理由からクラック、カケなどを含まない。したがって本
発明のガラスセラミックスは950℃以上の耐熱性を有
し、結晶化ガラスの配合比率にもよるが機械的強度(曲
げ強さ)は、800〜2000kg/cm2を有する。また、切削性
などの機械加工性に優れ、精密加工品が容易に加工でき
る。
The glass-ceramic of the present invention contains a mica crystal and a diopside crystal and does not contain cracks, chips, etc. for the reasons described above. Therefore, the glass ceramics of the present invention have heat resistance of 950 ° C. or higher, and have mechanical strength (bending strength) of 800 to 2000 kg / cm 2 depending on the compounding ratio of crystallized glass. In addition, it has excellent machinability such as machinability and can easily process precision products.

【0040】つぎに本発明の製法をさらに実施例に基づ
き説明する。
Next, the production method of the present invention will be further described based on examples.

【0041】[実施例1]平均粒径4μmの結晶化ガラ
ス粉末A1000gと、平均粒径4μmの結晶化ガラス粉末
B1000gとを秤量して、ボールミルで5時間混合した。
Example 1 1000 g of crystallized glass powder A having an average particle size of 4 μm and 1000 g of crystallized glass powder B having an average particle size of 4 μm were weighed and mixed in a ball mill for 5 hours.

【0042】つぎにこの混合物1000gに対し、ポリビニ
ルアルコール(3%水溶液)を100g添加し、スパルタ
ンリューザで造粒して平均粒径60μmの造粒物を製造
し、前記造粒物を60℃で12時間乾燥した。
Next, to 1000 g of this mixture, 100 g of polyvinyl alcohol (3% aqueous solution) was added and granulated with a Spartan Luzer to produce a granulated product having an average particle size of 60 μm. And dried for 12 hours.

【0043】この操作を繰り返し、2000gの造粒物を準
備した。つぎに前記造粒物を厚さ300mm、幅200mm、長さ
200mmの金型に充填し、徐々に加圧し、エアー抜きを行
い、最終的に1ton/cm2の圧力で3分間加圧して、厚さ
約28mm、幅200mm、長さ200mmの板状成形体を作製した。
This operation was repeated to prepare 2000 g of a granulated product. Next, the granules are 300 mm thick, 200 mm wide, and long
Fill a mold of 200mm, gradually pressurize and bleed air, and finally pressurize at a pressure of 1ton / cm 2 for 3 minutes to obtain a plate-shaped molded body with a thickness of about 28mm, a width of 200mm, and a length of 200mm. Was produced.

【0044】つぎに高さ220mm、幅250mm、長さ250mmの
ムライト製の耐火容器を準備し、内部に平均粒径45μm
程度の合成フッ素金雲母粉末を充填し、この中に成形体
を挿入した。成形体は、炉床面に対して15°の角度を有
する支持耐熱物上にのせ、さらにフッ素金雲母粉末を充
填しセットした。つぎに常温の焼成炉にいれ、1080℃ま
で1.5℃/分の昇温速度であげ、3時間保持したのち、
スイッチを切り、自然徐冷して、炉温が50℃以下になっ
て焼成炉から取り出した。
Next, a refractory container made of mullite having a height of 220 mm, a width of 250 mm and a length of 250 mm was prepared, and the average particle diameter was 45 μm inside.
About a certain amount of synthetic fluorophlogopite powder was filled, and the molded body was inserted therein. The compact was placed on a supporting heat-resistant material having an angle of 15 ° with respect to the hearth surface and further filled with fluorophlogopite powder to set. Next, put it in a firing furnace at room temperature, raise the temperature up to 1080 ° C at a rate of 1.5 ° C / min, and hold for 3 hours.
The switch was turned off, and the mixture was allowed to cool slowly, and the temperature of the furnace became 50 ° C or lower, and it was taken out of the firing furnace.

【0045】収縮率は、厚さ、幅、長さとも平均で18%
程度であり、顕微鏡(倍率10倍)でで外観を観察した
ところクラック、カケなどの欠陥はなかった。この試料
から機械的強度(曲げ強さ)、電気絶縁抵抗、ショアー
硬度および切削加工性、熱膨張率、熱変形温度を測定し
た。
Shrinkage rate is 18% on average for thickness, width and length
When the appearance was observed with a microscope (10 times magnification), there were no defects such as cracks and chips. From this sample, mechanical strength (bending strength), electric insulation resistance, Shore hardness and machinability, thermal expansion coefficient, and thermal deformation temperature were measured.

【0046】曲げ強さは、厚さ3mm、幅4mm、長さ50mm
の寸法品を試験片として、(株)島津製作所のオートグ
ラフを用い、支点間30mm、クロスヘッド速度0.5mm/分
で3点曲げ法で評価した。
The bending strength is 3 mm in thickness, 4 mm in width and 50 mm in length.
Using the autograph manufactured by Shimadzu Corporation as a test piece, the three-dimensional bending method was evaluated by a three-point bending method with a fulcrum distance of 30 mm and a crosshead speed of 0.5 mm / min.

【0047】電気絶縁抵抗としては、体積抵抗率をJISC
2141(電気絶縁用セラミックス材料試験方法)に準じ
て常態で測定した。ショアー硬度は、ショアー硬度計を
用いて測定した。
As the electrical insulation resistance, the volume resistivity is JIS C
It was measured in the normal state according to 2141 (Ceramic material test method for electrical insulation). The Shore hardness was measured using a Shore hardness meter.

【0048】機械加工性は、厚さ5mm、幅50mm、長さ50
mmの寸法品を試験片として、つぎの方法により、判断し
た。すなわち、ボール盤とドリル径0.2、0.5、1.0、3.
0、5.0mmφの超硬ドリル(K-10)を用いて、試験辺に
貫通孔を設け、その穴の加工状態を観察することによ
り、判断した。貫通穴ができないばあいは、加工不可、
貫通穴を設けることができるが、穴の周辺にカケなどの
欠陥が有るばあいは、加工可とし、貫通穴がカケなどの
欠陥なしにスムーズに加工できたばあいは、加工良と判
断し、表1に記載した。
Machinability is as follows: thickness 5 mm, width 50 mm, length 50
A test piece having a size of mm was used for the judgment by the following method. That is, drilling machine and drill diameter 0.2, 0.5, 1.0, 3.
Judgment was made by using a 0, 5.0 mmφ carbide drill (K-10) to form a through hole on the test side and observing the processed state of the hole. If no through hole is possible, machining is not possible,
Through holes can be provided, but if there is a defect such as a chip around the hole, it is possible to machine.If the through hole can be processed smoothly without defects such as a chip, it is judged to be good. , As shown in Table 1.

【0049】熱膨張率は、厚さ3mm、幅3mm、長さ20mm
の寸法品を試験片として、常温から約900℃まで測定
し、平均熱膨張率を求めた。なお、昇温速度は10℃/分
で行った。
The coefficient of thermal expansion is 3 mm in thickness, 3 mm in width, and 20 mm in length.
The specimen with the dimension of was used as a test piece, and the temperature was measured from room temperature to about 900 ° C to obtain the average coefficient of thermal expansion. The heating rate was 10 ° C./min.

【0050】熱変形温度は、厚さ1mm、幅5mm、長さ5
mmの寸法品を試験片として、荷重 2.5kg/cm2を加え、熱
機械分析(TMA)で行ない、熱収縮をおこし始める温
度を熱変形温度とした。昇温速度は10℃/分で行った。
The heat distortion temperature is as follows: thickness 1 mm, width 5 mm, length 5
A load of 2.5 kg / cm 2 was applied to a test piece with a size of mm as a test piece, and thermomechanical analysis (TMA) was performed. The temperature at which heat shrinkage started was taken as the heat distortion temperature. The temperature rising rate was 10 ° C./min.

【0051】実施例1で作製したガラスセラミックスの
混合組成、焼成条件およびそれぞれの特性を表1に示
す。
Table 1 shows the mixed composition of the glass-ceramics produced in Example 1, firing conditions and their respective properties.

【0052】[実施例2]平均粒径4μmの結晶化ガラ
ス粉末A500gと、平均粒径4μmの結晶化ガラス粉末
B1500gとを秤量して、ボールミルで5時間混合した。
Example 2 500 g of crystallized glass powder A having an average particle size of 4 μm and 1500 g of crystallized glass powder B having an average particle size of 4 μm were weighed and mixed in a ball mill for 5 hours.

【0053】つぎにこの混合物1000gに、ポリビニルア
ルコール(3%水溶液)を100g添加し、スパルタンリ
ューザで造粒して平均粒径60μmの造粒物を製造し、前
記造粒物を60℃で12時間乾燥した。この操作を繰り返
し、2000gの造粒物を準備した。
Next, to 1000 g of this mixture, 100 g of polyvinyl alcohol (3% aqueous solution) was added, and the mixture was granulated with a Spartan Luzer to produce a granulated product having an average particle size of 60 μm. It was dried for 12 hours. This operation was repeated to prepare 2000 g of a granulated product.

【0054】つぎに、板状成形体の作製は、実施例1と
同じ方法で行い、厚さ約26mm、幅200mm、長さ200mmの
寸法品をえた(実施例1より厚さが薄いのは、比重が大
きい結晶化ガラス粉末Bの配合比率が大きくなっている
ためである)。
Next, the production of the plate-shaped molded body was carried out in the same manner as in Example 1 to obtain a size product having a thickness of about 26 mm, a width of 200 mm and a length of 200 mm (though the thickness is thinner than that in Example 1). This is because the compounding ratio of the crystallized glass powder B having a large specific gravity is large).

【0055】実施例2では、耐火物容器に入れた板状成
形品を実施例1と同様に炉床面に対して45°の角度を有
する支持耐熱物上にセットした。つぎに常温の焼成炉に
入れ、1050℃まで1.5℃/分の昇温速度で上げ、3時間
保持したのちスイッチを切り、自然徐冷して炉温が200
℃以下になって、焼成炉から取り出した。収縮率はほぼ
実施例1と同様で、顕微鏡による外観観察でも同様にク
ラック、カケなどの欠陥は認められなかった。
In Example 2, the plate-shaped molded product placed in the refractory container was set on a supporting heat-resistant material having an angle of 45 ° with respect to the hearth surface, as in Example 1. Then, put it in a normal temperature firing furnace, raise it to 1050 ° C at a heating rate of 1.5 ° C / min, hold for 3 hours, turn off the switch, and allow it to cool slowly to 200 ° C.
When the temperature fell below ℃, it was taken out of the firing furnace. The shrinkage ratio was almost the same as that in Example 1, and similarly, no defects such as cracks and chips were observed even when the appearance was observed with a microscope.

【0056】以下実施例1と同様にして、実施例2で作
製したガラスセラミックスの機械的強度(曲げ強さ)、
電気絶縁性(体積抵抗率)、ショアー硬度、機械加工
性、熱膨張率、熱変形温度などを評価した。その結果を
実施例1と同様に表1に示す。
Then, in the same manner as in Example 1, the mechanical strength (bending strength) of the glass ceramics produced in Example 2
The electrical insulation properties (volume resistivity), Shore hardness, machinability, coefficient of thermal expansion, thermal deformation temperature, etc. were evaluated. The results are shown in Table 1 as in Example 1.

【0057】[実施例3]平均粒径4μmの結晶化ガラ
ス粉末A1900gと、平均粒径4μmの結晶化ガラス粉末
B100gとを秤量して、ボールミルで5時間混合した。
Example 3 1900 g of crystallized glass powder A having an average particle size of 4 μm and 100 g of crystallized glass powder B having an average particle size of 4 μm were weighed and mixed in a ball mill for 5 hours.

【0058】つぎにこの混合物1000gに、ポリビニルア
ルコール(3%水溶液)を100g添加し、スパルタンリ
ューザで造粒して平均粒径60μmの造粒物を製造し、前
記造粒物を60℃で12時間乾燥した。
Next, to 1000 g of this mixture, 100 g of polyvinyl alcohol (3% aqueous solution) was added, and the mixture was granulated by a Spartan Luzer to produce a granulated product having an average particle size of 60 μm. It was dried for 12 hours.

【0059】この操作を繰り返し、2000gの造粒物を準
備した。
This operation was repeated to prepare 2000 g of a granulated product.

【0060】板状成形品は、実施例1と同じ方法で行
い、厚さ約30mm、幅200mm、長さ200mmの寸法品をえた
(実施例1より厚さが厚いのは、比重が小さい結晶化ガ
ラスAの配合比率が大きくなっているためである)。
The plate-shaped molded product was obtained by the same method as in Example 1 to obtain a product having a thickness of about 30 mm, a width of 200 mm and a length of 200 mm (thicker than Example 1 is a crystal with a small specific gravity). This is because the compounding ratio of the fog glass A is large).

【0061】つぎに耐火物容器に入れた板状成形品を実
施例1と同様に炉床面に対し65°の角度を有する支持耐
熱物上にのせた耐火物容器を焼成炉に入れ、1100℃まで
1.5℃/分の昇温速度であげ、3時間保持したのち、ス
イッチを切り、自然徐冷して炉温が200℃以下になって
焼成炉から取り出した。収縮率は平均16%であった。ま
たえられたガラスセラミックスは、下部(耐火容器に近
接する部分)は、少し厚さが大きくなっており、焼成前
と比較して変化が認められたがクラック、カケなどの欠
陥は、認められなかった。下部の部分の変形は、ガラス
セラミックス自体の自重が集中したためであろう。クラ
ック、ワレなどの欠陥が発生しなければ、切削加工によ
り面精度をだすため、製品としては支障ない。
Then, the plate-shaped molded article placed in the refractory container was placed on a supporting heat-resistant material having an angle of 65 ° with respect to the hearth surface in the same manner as in Example 1, and the refractory container was placed in a firing furnace, and 1100 Up to ℃
The temperature was raised at a rate of 1.5 ° C./min and held for 3 hours, then switched off, and allowed to cool slowly, and the temperature of the furnace was reduced to 200 ° C. or lower, and the furnace was taken out of the firing furnace. The shrinkage rate was 16% on average. In the glass ceramics obtained, the lower part (the part close to the refractory container) had a slightly thicker thickness, and although changes were recognized compared to before firing, defects such as cracks and chips were recognized. There wasn't. The deformation of the lower part is probably due to the concentration of the weight of the glass ceramic itself. If defects such as cracks and cracks do not occur, the surface accuracy is obtained by cutting, so there is no problem as a product.

【0062】以下、実施例1と同様にして実施例3で作
製したガラスセラミックスの機械的強度(曲げ強さ)、
電気絶縁性(体積抵抗率)、ショアー硬度、機械加工
性、熱膨張率、熱変形温度などを評価した。その結果を
実施例1と同様に表1に示す。
Hereinafter, the mechanical strength (bending strength) of the glass ceramics produced in Example 3 in the same manner as in Example 1,
The electrical insulation properties (volume resistivity), Shore hardness, machinability, coefficient of thermal expansion, thermal deformation temperature, etc. were evaluated. The results are shown in Table 1 as in Example 1.

【0063】[比較例1]実施例1と同様にして、板状
成形品を作製した。つぎに耐火物容器に板状成形品を炉
床面に対して平行である従来法に近似した支持耐熱物上
にセットした以外は、実施例1と全く同様に焼成し、ガ
ラスセラミックスを作製した。えられたガラスセラミッ
クスは、端部中央1箇所に下部から上面にかけて貫通し
たクラックが発生するとともに、下部面コーナー部4個
所に小さなキレツが認められた。つぎに欠陥部を除いて
機械的強度(曲げ強さ)、電気絶縁性(体積抵抗率)、
ショアー硬度、機械加工性、熱膨張率、熱変形温度など
を評価した。その結果を実施例1と同様に表1に示す。
Comparative Example 1 In the same manner as in Example 1, a plate-shaped molded product was produced. Next, glass-ceramics were produced by firing in exactly the same manner as in Example 1 except that a plate-shaped molded article was set in a refractory container on a supporting heat-resistant material that was parallel to the hearth surface and approximated to the conventional method. . In the obtained glass ceramics, a crack penetrated from the lower part to the upper surface at one place at the center of the edge part, and small cracks were recognized at four places on the lower surface corner part. Next, excluding the defective part, mechanical strength (bending strength), electrical insulation (volume resistivity),
The Shore hardness, machinability, coefficient of thermal expansion, heat distortion temperature, etc. were evaluated. The results are shown in Table 1 as in Example 1.

【0064】[比較例2]実施例2と同様にして、板状
成形品を作製した。つぎに比較例1と同様に耐火物容器
に板状成形品を炉床面に対して平行にセットして、実施
例2と同様にして焼成し、ガラスセラミックスを作製し
た。えられたガラスセラミックスは、比較例1と同様に
端部中央1か所に下部から上面にかけて貫通したクラッ
クは発生し、板全体が少しソリが認められた。つぎに欠
陥部を除いて、機械的強度(曲げ強さ)、電気絶縁性
(体積抵抗率)、ショアー硬度、機械加工性、熱膨張
率、熱変形温度などを評価した。その結果を実施例1と
同様に表1に示す。
[Comparative Example 2] In the same manner as in Example 2, a plate-shaped molded product was produced. Next, as in Comparative Example 1, a plate-shaped molded product was set in a refractory container parallel to the hearth surface and fired in the same manner as in Example 2 to produce glass ceramics. As with Comparative Example 1, the obtained glass ceramic had a crack penetrating from the lower part to the upper surface at one place at the center of the end part, and a slight warp was observed on the entire plate. Next, the mechanical strength (bending strength), electrical insulation (volume resistivity), Shore hardness, machinability, coefficient of thermal expansion, thermal deformation temperature, etc. were evaluated excluding the defective portion. The results are shown in Table 1 as in Example 1.

【0065】[比較例3]実施例3と同様にして、板状
成形品を作製した。つぎに比較例1と同様に耐火物容器
に板状成形品を炉床面に対して平行にセットして、実施
例3と同様にして焼成し、ガラスセラミックスを作製し
た。えられたガラスセラミックスは、端部中央4箇所に
下部から上面にかけて、貫通したクラックが認められ
た。
[Comparative Example 3] In the same manner as in Example 3, a plate-shaped molded product was produced. Next, as in Comparative Example 1, a plate-shaped molded article was set in a refractory container parallel to the hearth surface and fired in the same manner as in Example 3 to produce glass ceramics. In the obtained glass ceramics, cracks penetrating from the lower portion to the upper surface were observed at four locations in the center of the end portion.

【0066】つぎに欠陥部を除いて、機械的強度(曲げ
強さ)、電気絶縁性(体積抵抗率)、ショアー硬度、機
械加工性、熱膨張率、熱変形温度などを評価した。その
結果を実施例1と同様に表1に示す。
Next, the mechanical strength (bending strength), electrical insulation (volume resistivity), Shore hardness, machinability, coefficient of thermal expansion, thermal deformation temperature, etc. were evaluated excluding the defective portion. The results are shown in Table 1 as in Example 1.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【発明の効果】本発明の製法によれば、クラック、カケ
などの欠陥が発生しにくいガラスセラミックスをうるこ
とができ、製造ロスが軽減し、低コストになる。
According to the manufacturing method of the present invention, it is possible to obtain glass ceramics in which defects such as cracks and chips are unlikely to occur, which reduces manufacturing loss and reduces cost.

【0069】またえられたガラスセラミックスは、電気
絶縁性であり耐熱温度(熱変形温度)が950〜1000℃と
耐熱性を有し、また機械的強度(曲げ強さ)も800〜200
0kg/cm2と優れた特性を示し、原料の結晶化ガラス粉末
の種類を適正に配合することにより、種々の要求特性に
対応できるものである。
The glass ceramics thus obtained are electrically insulating, have a heat resistance temperature (heat deformation temperature) of 950 to 1000 ° C., and have a mechanical strength (bending strength) of 800 to 200.
It exhibits excellent characteristics of 0 kg / cm 2 and can meet various required characteristics by properly mixing the kinds of raw material crystallized glass powder.

【0070】また、本発明によってえらえるガラスセラ
ミックスは、切削加工などの機械加工性を有するため、
前記の電機・電子機器、精密機器などの耐熱絶縁部品
(基板、熱処理治具材)、構造支持部材(耐熱ボビン、
センサー支持部品)などに有用に使用できる。
Since the glass ceramics obtained according to the present invention has machinability such as cutting work,
Heat-resistant insulating parts (boards, heat treatment jig materials), structural support members (heat-resistant bobbins,
It can be usefully used for sensor support parts).

【0071】さらに本発明の製法は、その製法自体が簡
単なため、低コストで前記ガラスセラミックをうること
ができる。
Further, since the production method of the present invention is simple, the glass ceramic can be obtained at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の機械加工性を有するガラスセラミック
スの製法の、一実施例による板状成形品の焼成方法を示
す断面図である。
FIG. 1 is a cross-sectional view showing a method for firing a plate-shaped molded article according to an embodiment of the method for producing a glass ceramic having machinability according to the present invention.

【図2】従来のガラスセラミックスの一般的な板状成形
品の焼成方法を示す断面図である。
FIG. 2 is a cross-sectional view showing a conventional method for firing a general plate-shaped molded article of glass ceramics.

【符号の説明】[Explanation of symbols]

1 板状成形体 2 耐火物容器 3 フッ素含有鉱物 4 焼成炉の炉床面 1 Plate-shaped compact 2 Refractory container 3 Fluorine-containing mineral 4 Hearth of firing furnace

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C03C 3/112 10/04 (72)発明者 池田 泰彦 兵庫県三田市三輪2丁目6番1号 菱電化 成株式会社内 (72)発明者 村上 忠▲き▼ 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社生産技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C03C 3/112 10/04 (72) Inventor Yasuhiko Ikeda 2-6-1, Miwa, Mita City, Hyogo Prefecture Ryoden Kasei Co., Ltd. (72) Inventor Tadashi Murakami ▲ 1-1 2-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)組成が化合物換算でK2O 11.0〜11.
5重量%、MgO 23.5〜24.8重量%、SiO2 55.0〜5
6.8重量%、F2 8.4〜12.6重量%およびZrO2 0.86〜
0.99重量%の結晶化ガラス粉末A25〜95重量%と(b)組
成が化合物換算でK2O 5.0〜6.0重量%、MgO 9.5〜
11.0重量%、SiO2 46.0 〜48.0重量%、CaO 21.
0〜23.0重量%、CaF2 0.2〜0.5重量%、MgF2 5.0
〜6.5重量%およびP25 8.0〜8.5重量%の結晶化ガラ
ス粉末B5〜75重量%とを配合したものを加圧成形して
板状成形体を作製し、1050〜1100℃で加熱してガラスセ
ラミックスを製造する方法であって、前記板状成形体
を、周辺が粒状または鱗片状のフッ素含有鉱物で囲まれ
るようにして、耐火物容器中に焼成炉の炉床面に対し15
〜65°の角度を有する支持耐熱物上で加熱処理を行うこ
とを特徴とする機械加工性を有するガラスセラミックス
の製法。
1. The composition (a) has a compound conversion of K 2 O 11.0 to 11.
5% by weight, MgO 23.5 to 24.8% by weight, SiO 2 55.0 to 5
6.8 wt%, F 2 8.4 to 12.6 wt% and ZrO 2 0.86 to
0.99% by weight of crystallized glass powder A 25-95% by weight, and (b) the composition is K 2 O 5.0-6.0% by weight, MgO 9.5-
11.0% by weight, SiO 2 46.0-48.0% by weight, CaO 21.
0 to 23.0% by weight, CaF 2 0.2 to 0.5% by weight, MgF 2 5.0
To 6.5 wt% and P 2 O 5 8.0 to 8.5 wt% crystallized glass powder B 5 to 75 wt% were blended to form a plate-shaped compact, which was heated at 1050-1100 ° C. A method for producing glass ceramics, wherein the plate-shaped molded body is surrounded by a granular or scale-like fluorine-containing mineral, and is contained in a refractory container with respect to the hearth surface of the firing furnace.
A process for producing a glass-ceramic having machinability, which comprises performing heat treatment on a supporting heat-resistant material having an angle of ~ 65 °.
JP5099388A 1993-04-26 1993-04-26 Production of glass ceramic having machinability Pending JPH06305827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5099388A JPH06305827A (en) 1993-04-26 1993-04-26 Production of glass ceramic having machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5099388A JPH06305827A (en) 1993-04-26 1993-04-26 Production of glass ceramic having machinability

Publications (1)

Publication Number Publication Date
JPH06305827A true JPH06305827A (en) 1994-11-01

Family

ID=14246128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5099388A Pending JPH06305827A (en) 1993-04-26 1993-04-26 Production of glass ceramic having machinability

Country Status (1)

Country Link
JP (1) JPH06305827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348525C (en) * 2004-09-28 2007-11-14 中南大学 Biological activity glass ceramics capable of cutting and its preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348525C (en) * 2004-09-28 2007-11-14 中南大学 Biological activity glass ceramics capable of cutting and its preparation method

Similar Documents

Publication Publication Date Title
EP2167434B1 (en) Azs refractory composition
EP1288177B2 (en) Porous high alumina cast refractory and method for its production
EP2006260B1 (en) Refractory composition for glass melting furnaces
JP2980457B2 (en) Base for sanitary ware and its manufacturing method
KR20080058353A (en) Sintered refractory product exhibiting enhanced thermal shock resistance
KR100262181B1 (en) Process for producing body of whiteware with high strength and excellent thermal impact resistance
JP5774135B2 (en) Sintered materials based on doped chromium oxide
JP4944610B2 (en) Green component for manufacturing sintered refractory products with improved bubble generation behavior
US8187990B2 (en) Hollow piece for producing a sintered refractory product exhibiting improved bubbling behaviour
KR20120022960A (en) Sintered product based on chromium oxide
JP3667403B2 (en) β-alumina electroformed refractory
EP1328490B1 (en) Refractory article
JPH06305827A (en) Production of glass ceramic having machinability
US5053370A (en) Aluminum oxide ceramics having improved mechanical properties
JPH03232740A (en) Production of high-strength and readily processable glass ceramics
JPH10218676A (en) Electrocast refractory based on betha-alumina
KR20220141290A (en) Particles for the manufacture of sintered refractory articles, batches for the manufacture of sintered refractory articles, processes for the manufacture of sintered refractory articles and sintered refractory articles
JP3368960B2 (en) SiC refractory
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
CN112062549B (en) Electric smelting zirconium corundum brick and preparation method thereof
RU2422405C1 (en) Crude mixture and method of producing high-strength refractory ceramic based on said mixture
JPH07109129A (en) Fire brick for lining float bath
CA1244486A (en) Insulating refractory
Montedo et al. Design, characterization and preparation of glass-ceramic glazes belonging to the LZSA glass system
JP2582443B2 (en) Cordierite refractories