JPH06305032A - Method for forming three dimensional shape - Google Patents

Method for forming three dimensional shape

Info

Publication number
JPH06305032A
JPH06305032A JP5125400A JP12540093A JPH06305032A JP H06305032 A JPH06305032 A JP H06305032A JP 5125400 A JP5125400 A JP 5125400A JP 12540093 A JP12540093 A JP 12540093A JP H06305032 A JPH06305032 A JP H06305032A
Authority
JP
Japan
Prior art keywords
dimensional
light
hologram
real image
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5125400A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Sakakibara
伸義 榊原
Masao Nagakubo
雅夫 永久保
Naohito Mizuno
直仁 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5125400A priority Critical patent/JPH06305032A/en
Publication of JPH06305032A publication Critical patent/JPH06305032A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0094Adaptation of holography to specific applications for patterning or machining using the holobject as input light distribution
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object

Abstract

PURPOSE:To provide a method wherein a required real image model of a three dimensional image is formed in a short time and accurately by using a hologram without difficult procedures and processings. CONSTITUTION:A monochromic ultraviolet laser light is made into a wide beam having a parallel phase face and is divided into a reference light 6 and an irradiation light 7 by means of a beam splitter and an aimed three dimensional body 1 is irradiated with the irradiation light 7. Then, a photosensitive plate 2 is irradiated with the reflected light 8 from a body 1 with the reference light 6 to form interference fringes (hologram). Then, when the developed photosensitive plate 2 is irradiated with the reference light, a three dimensional real image 10 of the aimed three dimensional body is formed and when a nucleus 9 is arranged at the position and a photocurable resin 12 is dropped down on the nucleus 9, the resin is cured at the actual image part where the light is focused to formed a real image model of a solid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微細加工方法に係り、特
に高精度三次元形状形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine processing method, and more particularly to a high precision three-dimensional shape forming method.

【0002】[0002]

【従来の技術】従来、光造形法またはステレオリソグラ
フィと呼ばれる三次元形状を形成する方法として、光硬
化性材料にレーザ光を照射しつつ走査させて形成するも
のがある。(レーザ研究 第18巻 第7号、精密工学
会誌58/3/1992等)。即ち、レーザビームを樹
脂の液面に照射し、照射スポットを掃引すると薄板状の
硬化層が形成される。この硬化層を順次積層していくこ
とにより任意の三次元形状を形成できる。
2. Description of the Related Art Conventionally, as a method of forming a three-dimensional shape called stereolithography or stereolithography, there is a method of scanning a photocurable material while irradiating it with laser light. (Laser Research Vol. 18, No. 7, Journal of Precision Engineering 58/3/1992, etc.). That is, by irradiating the liquid surface of the resin with the laser beam and sweeping the irradiation spot, a thin plate-shaped cured layer is formed. Arbitrary three-dimensional shapes can be formed by sequentially laminating the hardened layers.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
方法では1層づつ積層するため形成時間が非常に長いこ
とや、1層の厚みだけの段差ができてしまい高精度の三
次元形状が形成できないといった問題がある。本発明
は、上述した問題を鑑みてなされたものであり、レーザ
の可干渉性・単色性を利用して、回折を用いることで空
間的に光の強度分布(実像)を形成し、この光の強度分
布に応じた光硬化性材料の化学変化により三次元形状を
短時間で高精度に実現することを目的とする。
However, in the above method, since the layers are laminated one by one, the forming time is very long, and a step having a thickness of one layer is formed, so that a highly accurate three-dimensional shape cannot be formed. There is such a problem. The present invention has been made in view of the above-mentioned problems, and utilizes the coherence and monochromaticity of a laser to form a spatial light intensity distribution (real image) by using diffraction. It is intended to realize a three-dimensional shape with high accuracy in a short time by chemically changing the photo-curable material according to the intensity distribution of.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め第一発明の構成は、光硬化性材料に光を照射して照射
領域を選択的に固化させる三次元形状形成方法におい
て、形成対象である三次元物体から発する光の三次元強
度分布を、少なくとも一枚のホログラムで形成するホロ
グラム形成工程と、前記ホログラムで前記三次元物体の
立体実像を再生する像再生工程と、材料供給手段により
供給される前記光硬化性材料に前記立体実像をあてて該
光硬化性材料を固化させる固化工程とからなることを特
徴とする。この第一関連発明の構成は、前記材料供給手
段が、前記実像位置に設置された十分に小さな核に、上
部から前記光硬化性材料を滴下する手段であることを特
徴とする。第二関連発明の構成は、前記ホログラム形成
工程が、計算機で前記三次元物体の発光分布強度パター
ンを求めて感板を形成する工程であることを特徴とす
る。
In order to solve the above-mentioned problems, the structure of the first invention is a three-dimensional shape forming method for irradiating a photo-curable material with light to selectively solidify an irradiation area. The three-dimensional intensity distribution of light emitted from the three-dimensional object is a hologram forming step of forming at least one hologram, an image reproducing step of reproducing a three-dimensional real image of the three-dimensional object with the hologram, and a material supply means. And a solidifying step of solidifying the photo-curable material by applying the stereoscopic real image to the supplied photo-curable material. The configuration of the first related invention is characterized in that the material supplying means is a means for dropping the photocurable material from above onto a sufficiently small nucleus provided at the real image position. The configuration of the second related invention is characterized in that the hologram forming step is a step of obtaining a light emission distribution intensity pattern of the three-dimensional object by a computer to form a sensitive plate.

【0005】そして第二発明の構成は、被加工材料に光
を照射して照射領域を選択的に分解させる三次元形状形
成方法において、形成対象である三次元物体から発する
光の三次元強度分布を、少なくとも一枚のホログラムで
形成するホログラム形成工程と、前記ホログラムで前記
三次元物体の立体実像を再生する像再生工程と、再生さ
れた前記立体実像の位置に前記被加工材料と光の強度に
よって反応する加工媒体とを配置して前記実像の形状を
穿つ加工工程とからなることを特徴とする。
According to the structure of the second invention, in the three-dimensional shape forming method of irradiating the material to be processed with light to selectively decompose the irradiation area, the three-dimensional intensity distribution of the light emitted from the three-dimensional object to be formed. , A hologram forming step of forming at least one hologram, an image reproducing step of reproducing a three-dimensional real image of the three-dimensional object with the hologram, and the intensity of the work material and light at the position of the reproduced three-dimensional real image. And a processing medium which reacts with each other, and a processing step of piercing the shape of the real image.

【0006】[0006]

【作用】まず、実空間に存在する目的形状の物体にレー
ザ光(単色で回折現象を起こすもの、即ちコヒーレント
性を有するレーザー)を照射し、これと同時にコヒーレ
ントなリファレンス光(参照光)を、所定の位置に配置
した感板に照射すると、物体から散乱した光とリファレ
ンス光とが干渉を起こし、回折パターンが感板に形成、
記録される。この感板に形成されたパターンは、三次元
空間イメージデータに空間的なフーリエ変換を施した、
逆空間のデータに相当するパターンとなる。次に、この
感板に形成されたパターンに再びレファレンス光を照射
すると、実空間パターンにフーリエ再変換を施すことに
相当し、元の物体の三次元イメージが復元され、所定の
位置に立体実像として光が集光する。
First, a laser beam (a monochromatic laser that causes a diffraction phenomenon, that is, a laser having coherence) is applied to an object having a target shape existing in a real space, and at the same time, a coherent reference beam (reference beam) is emitted. When the sensitive plate arranged at a predetermined position is irradiated, the light scattered from the object and the reference light interfere with each other, and a diffraction pattern is formed on the sensitive plate.
Will be recorded. The pattern formed on this sensing plate is a three-dimensional spatial image data subjected to spatial Fourier transform,
The pattern corresponds to the data in the reciprocal space. Next, when the pattern formed on the touch panel is irradiated with the reference light again, it is equivalent to performing the Fourier retransformation on the real space pattern, and the three-dimensional image of the original object is restored, and the stereoscopic real image is placed at a predetermined position. As the light is condensed.

【0007】この立体実像の集光位置に、光の強度に対
応して硬化する光硬化性材料を配置すれば、この感光性
材料の固化によって三次元形状が具現化する。また、こ
の位置に光の強度に対応して反応を起こすような加工媒
体と被加工材料を配置すれば(例えばエッチングや堆積
等)この光の強度分布を反映した形状に加工される。な
お、本発明に於いて配慮すべき点は、たとえば光硬化性
材料の光感度が高すぎると集光していなくてもある程度
の光の強度で固化してしまう恐れがあるため、これを防
ぐ手立てが必要である。そのため最適な光硬化性材料を
選択することも大切であるが、その一方法として関連発
明では集光部に非常に小さな核を配置し、これに上部か
ら感光性材料を滴下することで核の表面のみに常に感光
性材料が存在し、これが固化してもこの表面には感光性
材料が常に供給されるようにしている。こうすることで
本来集光していない領域には感光性材料が存在しないの
で余分な位置で感光性材料が固化せず、所望の形状を得
る。
If a photo-curable material that cures according to the intensity of light is arranged at the position where the three-dimensional real image is condensed, a three-dimensional shape is realized by solidifying the photosensitive material. Further, if a processing medium and a material to be processed that cause a reaction corresponding to the intensity of light are arranged at this position (for example, etching, deposition, etc.), a shape that reflects the intensity distribution of this light is processed. The point to be taken into consideration in the present invention is that, for example, if the photosensitivity of the photocurable material is too high, it may be solidified by a certain intensity of light even if it is not condensed. Needs some help. Therefore, it is important to select the most suitable photo-curable material, but as one method, in the related invention, a very small nucleus is placed in the light-collecting part, and the photosensitive material is dropped from the top of this to form the core. The photosensitive material is always present only on the surface, and even if it solidifies, the photosensitive material is always supplied to this surface. By doing so, since the photosensitive material does not exist in the area where light is not originally collected, the photosensitive material does not solidify at an extra position and a desired shape is obtained.

【0008】ホログラムパターンを記録する感板は必ず
しも実際のホログラムを形成する必要はなく、感板上に
パターンが出来上がっておりさえすれば良いので、コン
ピュータで理想とする三次元形状からフーリエ変換計算
を行って逆空間パターンを求め、パターンを直接描き出
して感板にする。
It is not always necessary to form an actual hologram on the touch panel for recording the hologram pattern, and it is sufficient that the pattern is completed on the touch panel. Therefore, a computer can perform Fourier transform calculation from an ideal three-dimensional shape. Go to find the reciprocal space pattern and draw out the pattern directly to make a touch panel.

【0009】また、複数のホログラムを用いて像を再生
する場合には、異なるホログラムには異なる波長を充て
ると、再生像は重ね合わせることができるので、その複
数分の光源で像を形成するためコントラストの強い立体
実像が形成できる。この実像に対して上記の方法で感光
性材料を供給する。もしくは第二発明のように、透光性
感光性材料を用いてその材料の体積中に立体実像を再生
させて固化させ、三次元形状を形成する。
Further, in the case of reproducing an image using a plurality of holograms, the reproduced images can be overlapped by allocating different wavelengths to different holograms. A stereoscopic real image with strong contrast can be formed. A photosensitive material is supplied to the real image by the above method. Alternatively, as in the second invention, a three-dimensional shape is formed by using a translucent photosensitive material and reproducing a three-dimensional real image in the volume of the material to solidify it.

【0010】[0010]

【発明の効果】この再生する実像は元の物体形状をその
まま再生した立体像なので、従来技術のレーザビームを
走査して一層づつ固化させる方法のように、形成時間と
形成精度がトレードオフの関係にはならず、また短時間
で一度に全体の三次元形状ができ、精度の高い形成が可
能である。また感板上のパターンを、回折を用いて形成
する代わりに、コンピュータ等を用いて計算によって逆
空間の強度分布パターンを求めて感板を形成し、これを
用いて光を集光して形成すれば実物を用いずとも目的の
形状が得られるばかりでなく、任意の形状が得られる利
点がある。さらに光学の手段を像再生工程に適用して像
の拡大縮小も自在にでき、形成しにくい微小な目的形状
でも、扱いやすい大きさの模型で実現できるという利点
もある。
Since the real image to be reproduced is a stereoscopic image in which the original object shape is reproduced as it is, there is a trade-off relationship between the forming time and the forming accuracy as in the conventional method of scanning and solidifying the laser beam one by one. In addition, the entire three-dimensional shape can be formed at once in a short time, and highly accurate formation is possible. Instead of forming the pattern on the touch panel using diffraction, a computer is used to calculate the intensity distribution pattern in the reciprocal space to form the touch panel, which is then used to focus the light. If so, not only the desired shape can be obtained without using an actual product, but there is an advantage that an arbitrary shape can be obtained. Further, there is an advantage that an optical means can be applied to the image reproducing process to enlarge and reduce the image freely, and even a minute target shape that is difficult to form can be realized with a model of a size that is easy to handle.

【0011】[0011]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。 (第一実施例)図1は本発明の三次元形状形成方法を実
施する工程を模式的に示す。図1(a)はホログラム形成
工程を示し、周知のホログラムを形成する手段である。
必要とする光硬化樹脂は紫外線で硬化するものがほとん
どであるので、単色の紫外線レーザー光源3からのレー
ザー光を光学系4を用いて平行な位相面を持つ幅広いビ
ームにしてビームスプリッタ5でレファレンス光6と照
射光7にする。この照射光7を目的の三次元物体1に照
射する。そして物体1からの反射光8をレファレンス光
6と共に感板2に照射させ、干渉縞(ホログラム)を感
板上に形成する。感光後は写真現像してパターンを定着
させる。なお感板2上に余分な光を感光させないよう
に、この工程は暗室で実行される。
EXAMPLES The present invention will be described below based on specific examples. (First Embodiment) FIG. 1 schematically shows steps for carrying out the three-dimensional shape forming method of the present invention. FIG. 1A shows a hologram forming step, which is a well-known means for forming a hologram.
Most of the required photo-curing resins are those that are cured by ultraviolet light, so the laser beam from the monochromatic ultraviolet laser light source 3 is converted into a wide beam having parallel phase planes by using the optical system 4 and the reference is made by the beam splitter 5. Light 6 and irradiation light 7 are used. This irradiation light 7 is applied to the target three-dimensional object 1. Then, the reflected light 8 from the object 1 is irradiated onto the sensitive plate 2 together with the reference light 6 to form interference fringes (hologram) on the sensitive plate. After exposure, the pattern is fixed by developing the photograph. It should be noted that this step is performed in a dark room so that the photosensitive plate 2 is not exposed to excessive light.

【0012】次に図1(b) に示すように、現像した感板
2にレファレンス光6を照射すると所定の位置に目的の
三次元物体の立体実像10が形成される。(なお、図1
(b)の実像10の位置は図1(a) で作成した像の位置を
示してはいない。)その位置に光硬化樹脂を固定するた
めの核9を配置し、その核9に樹脂供給ユニット11か
ら光硬化樹脂12を滴下していくと、光が集光している
実像部分で樹脂は硬化する。光硬化樹脂12は供給され
続け、光強度が樹脂の感光しきい値以下になるところま
で固化が続き、固体の実像モデルを形成する。
Next, as shown in FIG. 1 (b), when the developed photosensitive plate 2 is irradiated with the reference light 6, a stereoscopic real image 10 of a target three-dimensional object is formed at a predetermined position. (Note that Figure 1
The position of the real image 10 in (b) does not show the position of the image created in FIG. 1 (a). ) A nucleus 9 for fixing the photocurable resin is arranged at that position, and the photocurable resin 12 is dropped from the resin supply unit 11 to the nucleus 9, and the resin is removed in the real image portion where the light is condensed. Harden. The photo-curing resin 12 is continuously supplied, and solidification continues until the light intensity becomes equal to or lower than the photosensitivity threshold of the resin to form a solid real image model.

【0013】光硬化樹脂は紫外線に当たると瞬時に硬化
を開始し、数秒程度で完全に所定量硬化する。但し選択
した光硬化樹脂にもよるがおおむね体積的にではなく照
射された表面層のみ硬化する。硬化量は照射された光エ
ネルギー量で決まり、小さなエネルギー密度のレーザー
では一定量の固化が完了するのに時間がかかる。つま
り、集光していない領域では固化するのに時間がかか
る。そのため集光してエネルギー密度の高い立体実像領
域は短時間でその全体像を創成できる。逆に必要以上に
再生像を照射し続けると樹脂の固化が実像周囲の領域ま
で進行して空間分解能を低下させてしまう。そのため、
選択した光硬化樹脂に対するレーザー照射時間は有限値
をとるが、詳細な条件は各種組合わせた実験により決め
られる。核9の上から樹脂12を滴下する場合、図2に
示すように連続して注ぐようにしても上記の理由により
問題はなく、固化した部分13が核が太るように成長し
て実像が実体化されていく。ただし樹脂の滴下は重力を
利用しており一方方向の供給となるため、核9の配置は
実像の最下部とした方がよい。また無駄を省くためにも
実像以上の領域に樹脂を滴下することはしない。
The photocurable resin starts to cure instantly when it is exposed to ultraviolet rays, and completely cures in a predetermined amount within a few seconds. However, depending on the photo-curable resin selected, the surface layer that is irradiated is cured rather than substantially in volume. The amount of curing is determined by the amount of light energy applied, and it takes time to complete a certain amount of solidification with a laser having a small energy density. That is, it takes time to solidify in a region where light is not collected. Therefore, a stereoscopic real image area having a high energy density by condensing can create the whole image in a short time. On the contrary, if the reproduced image is continuously irradiated more than necessary, the solidification of the resin proceeds to the area around the real image and the spatial resolution is lowered. for that reason,
The laser irradiation time for the selected photo-curable resin has a finite value, but the detailed conditions are determined by various combined experiments. When the resin 12 is dropped from the top of the core 9, there is no problem even if the resin 12 is continuously poured as shown in FIG. 2 for the above reason, and the solidified portion 13 grows so that the core becomes thick and the real image becomes a substantial image. Will be transformed. However, since the dropping of the resin utilizes gravity and is supplied in one direction, it is better to arrange the nucleus 9 at the bottom of the real image. Further, in order to save waste, the resin is not dropped onto the area above the real image.

【0014】光硬化樹脂には光重合性プレオリマー(オ
リゴマー)、光重合性モノマー(モノマー)、光重合開
始剤などが混合されているが、一般にオリゴマーが多い
と粘性が高くなり、微細な構造を形成しにくくなること
から、モノマーを希釈剤として含めているものがある。
形成の細かさは用いる感光性材料の粘性などの物性で決
まるが、極限としては、用いる樹脂の分子クラスターの
大きさ、または再生光の波長のレベルまで可能である。
The photo-curable resin is mixed with a photo-polymerizable pre-oligomer (oligomer), a photo-polymerizable monomer (monomer), a photo-polymerization initiator and the like. Generally, when the amount of the oligomer is large, the viscosity becomes high and a fine structure is formed. Some of them include a monomer as a diluent because they are difficult to form.
The fineness of formation is determined by the physical properties such as viscosity of the photosensitive material used, but as a limit, it is possible up to the size of the molecular cluster of the resin used or the level of the wavelength of the reproduction light.

【0015】(第二実施例)また図3のホログラムパタ
ーン感板30、32、34のように、感板を複数枚用い
て多角面から実像を再生するようにしてもよい。この場
合は物体の三次元形状を一方向からだけではなく多方面
から再生するので完全に立体形状が再現でき、また実像
が重ね合わせとなるので実像の輝度が増大することにな
り、光硬化樹脂に対して相乗効果をもつ。従ってこの場
合は再生像のコントラストが高いことから、透明容器3
6に光感度がそれほど高くない光硬化樹脂38を入れて
実像再生位置に配置しておいて立体実像再生を行って
も、実像部分の表面のみ硬化されて細部まで目的の形状
が素早く形成され、その周辺まで硬化が及ぶことはない
ようにできる。レーザー照射はパルス化して固化速度の
調節を行ってもよい。またこの際に、異なるパターン感
板に対してそれぞれ異なる波長でホログラムを形成して
おけば再生時にお互い妨害することもなく、さらに光硬
化樹脂として二波以上の光励起で硬化するタイプのもの
を使用すると、光硬化樹脂の光感度をあまり気にするこ
となく、重ね合わされた実像部分だけの形状を形成でき
る。なお、実像が形成される位置の下部は容器の底であ
るか、もしくは図中のようなモデル台37が必要であ
る。
(Second Embodiment) Further, as in the hologram pattern sensitive plates 30, 32 and 34 of FIG. 3, a plurality of sensitive plates may be used to reproduce a real image from a polygonal surface. In this case, the three-dimensional shape of the object is reproduced not only from one direction but also from many directions, so that the three-dimensional shape can be perfectly reproduced, and since the real images are superposed, the brightness of the real image is increased. Have a synergistic effect on. Therefore, in this case, since the reproduced image has high contrast, the transparent container 3
Even when the photocurable resin 38 having a low photosensitivity is placed in 6 and placed at the real image reproducing position to reproduce a stereoscopic real image, only the surface of the real image portion is cured to quickly form a desired shape in detail, It is possible to prevent the curing from reaching the periphery. The laser irradiation may be pulsed to control the solidification rate. At this time, if holograms are formed on different patterned plates at different wavelengths, they will not interfere with each other during reproduction, and a type of photo-curing resin that cures by photoexcitation of two or more waves will be used. Then, the shape of only the superimposed real image portion can be formed without paying much attention to the photosensitivity of the photocurable resin. The bottom of the position where the real image is formed is the bottom of the container, or the model stand 37 as shown in the figure is required.

【0016】(第三実施例)また、再生モデルの加工材
料としての光励起エッチング性のブロック40とそのブ
ロック台44全体を反応性溶液42に浸しておき、立体
実像が形成される位置にブロック40を配置し、ホログ
ラム実像を再生すると、光の集光する実像部分のみエッ
チング反応が生じてブロック40が浸食され、立体実像
形状がくり抜かれたブロック40が形成される(図
4)。なおこの場合エッチングを起こすためのレーザー
は紫外線に限らない。また、エッチング反応が継続する
ために、ブロックがレーザー光に対して透明で、屈折率
がエッチング液とあまり異ならない材料で出来たものを
用い、エッチング開始端がブロックの表面に位置してい
ることが必要である。なお、この第三実施例ではブロッ
ク40とブロック台44全体を反応性溶液42に浸した
が、反応性溶液に限るものではなく、例えば反応性ガス
等、反応性媒体であればよい。
(Third Embodiment) Further, the photo-excited etching block 40 as a processing material for the reproduction model and the entire block base 44 are soaked in the reactive solution 42, and the block 40 is placed at a position where a stereoscopic real image is formed. And the hologram real image is reproduced, an etching reaction occurs only in the real image portion where the light is condensed, and the block 40 is eroded to form the block 40 in which the three-dimensional real image shape is hollowed (FIG. 4). In this case, the laser for causing etching is not limited to ultraviolet rays. In order for the etching reaction to continue, the block is made of a material that is transparent to the laser light and has a refractive index that does not differ significantly from that of the etching liquid, and the etching start end is located on the surface of the block. is necessary. In addition, in the third embodiment, the entire block 40 and the block base 44 are immersed in the reactive solution 42, but the reactive solution is not limited and any reactive medium such as a reactive gas may be used.

【0017】また他に、いずれの方法でもレンズ等の光
学系を用いると、このホログラム再生像を自由に拡大・
縮小できるので、例えば手頃な大きさでモデルを作り、
このモデルを基にホログラムを作成し、像再生時に光学
系で縮小すれば、形成しにくい微小モデルが瞬時にして
形成できる利点がある。
Besides, in any of the methods, when an optical system such as a lens is used, this hologram reproduced image can be freely magnified.
Since it can be reduced, for example, make a model with a reasonable size,
If a hologram is created based on this model and then reduced by an optical system during image reproduction, there is an advantage that a minute model that is difficult to form can be instantly formed.

【0018】ホログラム形成工程で形成されるホログラ
ムは、実物や模型を元に実際に光学的操作で形成するだ
けでなく、コンピュータなどで計算されて直接描画され
る三次元物体をフーリエ変換して逆空間パターンを算出
し、そのパターンを感板に形成したホログラムであって
もよく、従って実物が複雑でホログラムを作りにくい場
合等に適用できる。さらに実物もしくは模型がなくても
図面から任意の形状を創作してモデリングすることもで
き、拡大・縮小も自在にできる。
The hologram formed in the hologram forming step is not only formed by an actual optical operation based on an actual object or a model, but also a three-dimensional object which is calculated by a computer or the like and directly drawn is Fourier-transformed to be inversed. It may be a hologram in which a spatial pattern is calculated and the pattern is formed on a touch panel, and therefore, it can be applied to the case where a real object is complicated and it is difficult to form a hologram. Furthermore, even if there is no real thing or model, it is possible to create an arbitrary shape from the drawing and model it, and it is possible to expand and contract freely.

【0019】以上のように、所望の三次元立体像の実体
モデルを、困難な手順、工程を必要とせずホログラムを
用いて短時間に高精度に形成する方法を示した。
As described above, a method for forming a desired three-dimensional stereoscopic image substantial model using a hologram with high precision in a short time without requiring difficult procedures and steps has been shown.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した第一実施例の主な工程図。FIG. 1 is a main process diagram of a first embodiment to which the present invention is applied.

【図2】本発明を適用した第一実施例の要部詳細斜視
図。
FIG. 2 is a detailed perspective view of essential parts of a first embodiment to which the present invention is applied.

【図3】本発明を適用した第二実施例の要部工程図。FIG. 3 is a main part process chart of a second embodiment to which the present invention is applied.

【図4】本発明を適用した第三実施例の要部工程図。FIG. 4 is a main part process chart of a third embodiment to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 三次元物体 2 ホログラムパターン感板 3 単色レーザー光源 4 光学系 5 ビームスプリッター 6 レファレンス光(参照光) 7 照射光 8 散乱光 9 核 10 再生立体実像 11 光硬化樹脂供給ユニット 12 光硬化樹脂 13 核上で固化した樹脂 30、32、34 ホログラムパターン感板 36 透明容器 37 モデル台 38 光硬化樹脂 40 透明ブロック 42 透明反応溶液 44 ブロック台 1 3D Object 2 Hologram Pattern Sensitive Plate 3 Monochromatic Laser Light Source 4 Optical System 5 Beam Splitter 6 Reference Light (Reference Light) 7 Irradiation Light 8 Scattered Light 9 Nucleus 10 Reproduced Stereoscopic Image 11 Photocuring Resin Supply Unit 12 Photocuring Resin 13 Nucleus Resin solidified above 30, 32, 34 Hologram pattern sensitive plate 36 Transparent container 37 Model stand 38 Photocurable resin 40 Transparent block 42 Transparent reaction solution 44 Block stand

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/027 G03H 1/22 8106−2K // B29K 105:24 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G03F 7/027 G03H 1/22 8106-2K // B29K 105: 24

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光硬化性材料に光を照射して照射領域を選
択的に固化させる三次元形状形成方法において、 形成対象である三次元物体から発する光の三次元強度分
布を、少なくとも一枚のホログラムで形成するホログラ
ム形成工程と、 前記ホログラムで前記三次元物体の立体実像を再生する
像再生工程と、 材料供給手段により供給される前記光硬化性材料に前記
立体実像をあてて該光硬化性材料を固化させる固化工程
と、からなることを特徴とする三次元形状形成方法。
1. A three-dimensional shape forming method of irradiating a photo-curable material with light to selectively solidify an irradiation area, wherein at least one three-dimensional intensity distribution of light emitted from a three-dimensional object to be formed is at least one sheet. A hologram forming step of forming a hologram of the three-dimensional object, an image reproducing step of reproducing a three-dimensional real image of the three-dimensional object with the hologram, and applying the three-dimensional real image to the photocurable material supplied by a material supplying unit to perform the photocuring. A three-dimensional shape forming method comprising: a solidifying step of solidifying a conductive material.
【請求項2】前記材料供給手段が、 前記実像位置に設置された十分に小さな核に、上部から
前記光硬化性材料を滴下する手段であることを特徴とす
る請求項1に記載の三次元形状形成方法。
2. The three-dimensional structure according to claim 1, wherein the material supplying means is a means for dropping the photocurable material from above onto a sufficiently small nucleus placed at the real image position. Shape forming method.
【請求項3】前記ホログラム形成工程が、 計算機で前記三次元物体の発光分布強度パターンを求め
て感板を形成する工程であることを特徴とする請求項1
に記載の三次元形状形成方法。
3. The hologram forming step is a step of forming a sensitive plate by obtaining a light emission distribution intensity pattern of the three-dimensional object by a computer.
The method for forming a three-dimensional shape according to.
【請求項4】被加工材料に光を照射して照射領域を選択
的に分解させる三次元形状形成方法において、 形成対象である三次元物体から発する光の三次元強度分
布を、少なくとも一枚のホログラムで形成するホログラ
ム形成工程と、 前記ホログラムで前記三次元物体の立体実像を再生する
像再生工程と、 再生された前記立体実像の位置に前記被加工材料と光の
強度によって反応する加工媒体とを配置して前記実像の
形状を穿つ加工工程と、からなることを特徴とする三次
元形状形成方法。
4. A three-dimensional shape forming method in which a material to be processed is irradiated with light to selectively decompose an irradiation area, and a three-dimensional intensity distribution of light emitted from a three-dimensional object to be formed is determined by at least one sheet. A hologram forming step of forming a hologram, an image reproducing step of reproducing a three-dimensional real image of the three-dimensional object with the hologram, and a processing medium which reacts at the position of the reproduced three-dimensional real image with the material to be processed and the intensity of light. And a processing step of arranging to form the shape of the real image, the three-dimensional shape forming method.
JP5125400A 1993-04-27 1993-04-27 Method for forming three dimensional shape Pending JPH06305032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5125400A JPH06305032A (en) 1993-04-27 1993-04-27 Method for forming three dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5125400A JPH06305032A (en) 1993-04-27 1993-04-27 Method for forming three dimensional shape

Publications (1)

Publication Number Publication Date
JPH06305032A true JPH06305032A (en) 1994-11-01

Family

ID=14909199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5125400A Pending JPH06305032A (en) 1993-04-27 1993-04-27 Method for forming three dimensional shape

Country Status (1)

Country Link
JP (1) JPH06305032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063034A2 (en) * 1999-06-25 2000-12-27 Volkswagen Aktiengesellschaft Method for producing magnesium containing metal castings
US6967342B2 (en) 2003-07-31 2005-11-22 Fusion Uv Systems, Inc. Method and apparatus for improved ultraviolet (UV) treatment of large three-dimensional (3D) objects
WO2017115077A1 (en) * 2015-12-30 2017-07-06 Daqri Holographics Ltd Dynamic holography focused depth printing device
US10802440B2 (en) 2015-12-30 2020-10-13 Dualitas Ltd. Dynamic holography non-scanning printing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063034A2 (en) * 1999-06-25 2000-12-27 Volkswagen Aktiengesellschaft Method for producing magnesium containing metal castings
EP1063034A3 (en) * 1999-06-25 2004-03-10 Volkswagen Aktiengesellschaft Method for producing magnesium containing metal castings
US6967342B2 (en) 2003-07-31 2005-11-22 Fusion Uv Systems, Inc. Method and apparatus for improved ultraviolet (UV) treatment of large three-dimensional (3D) objects
WO2017115077A1 (en) * 2015-12-30 2017-07-06 Daqri Holographics Ltd Dynamic holography focused depth printing device
CN107850867A (en) * 2015-12-30 2018-03-27 杜尔利塔斯有限公司 Dynamic holographic depth of focus printing equipment
US10802440B2 (en) 2015-12-30 2020-10-13 Dualitas Ltd. Dynamic holography non-scanning printing device
US10976703B2 (en) 2015-12-30 2021-04-13 Dualitas Ltd Dynamic holography focused depth printing device
US11586144B2 (en) 2015-12-30 2023-02-21 Dualitas Ltd Dynamic holography focused depth printing device

Similar Documents

Publication Publication Date Title
EP0107379A1 (en) Data storage medium
US20100316959A1 (en) Methods for forming sheeting with a composite image that floats and a master tooling
JP2003043904A (en) Method for improving holographic writing by using beam apodization
JPS63214939A (en) Method and apparatus for tracing carrier of digital recording information
JPH0341126A (en) Method of forming stereoscopic model by utilizing photocurable composition having thickness self-controlled due to separated phase
CN1443305A (en) Coupling elements for surface plasmon resonance sensors
JP3039165B2 (en) Optical recording film and manufacturing method thereof
JP2002510836A (en) Reverse optical mastering for data storage disks
TW478032B (en) Method and device for laser plotting, hologram master and the manufacturing method thereof
US7618564B2 (en) Microstructure and method for producing microstructures
T O’Neill et al. Refractive elements produced in photopolymer layers
JPH06305032A (en) Method for forming three dimensional shape
Chatwin et al. Characterisation of epoxy resins for microstereolithographic rapid prototyping
US6501571B1 (en) Three-dimensional holographic stamping of multi-layer bit-oriented non-linear optical media
JP2008268451A (en) Optical element, master standard, resin master, resin mold, and metal mold
JPS61225012A (en) Formation of three-dimensional configuration
JP2023518791A (en) Large-area holographic optical element replication method and large-area holographic optical element replicated thereby
JPS6299753A (en) Formation of three-dimensional shape
JPH04229417A (en) Optical information recording apparatus
JP3593359B2 (en) Hologram fabrication method
JP3257825B2 (en) Method for producing duplicate hologram
Corbel et al. Computer-aided manufacture of three-dimensional objects by laser space-resolved photopolymerization
KR20230024571A (en) Curved holographic optical element using transparent blocks and manufacturing method
Gallego et al. Analysis of the fabrication of diffractive optical elements in photopolymers
JP2011118075A (en) Method for producing hologram