JPH0630493B2 - Asynchronous data communication synchronization method - Google Patents

Asynchronous data communication synchronization method

Info

Publication number
JPH0630493B2
JPH0630493B2 JP62085573A JP8557387A JPH0630493B2 JP H0630493 B2 JPH0630493 B2 JP H0630493B2 JP 62085573 A JP62085573 A JP 62085573A JP 8557387 A JP8557387 A JP 8557387A JP H0630493 B2 JPH0630493 B2 JP H0630493B2
Authority
JP
Japan
Prior art keywords
signal
radio signal
notice
slave station
unit communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62085573A
Other languages
Japanese (ja)
Other versions
JPS63250938A (en
Inventor
佐野  友美
紀久雄 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62085573A priority Critical patent/JPH0630493B2/en
Publication of JPS63250938A publication Critical patent/JPS63250938A/en
Publication of JPH0630493B2 publication Critical patent/JPH0630493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は微弱な電波を用いて2局間(例えば親局と子局
との間)で非同期方式のデータ通信を行う際に、2局間
で同期をとるための方法に関するもので、特に交信電波
にノイズが混入する場合にも、容易に同期化できるよう
に交信データに同期用の予告信号を付加する方法に関す
る。 なお以下各図において同一の符号は同一または相当部分
を示す。また論理もしくはレベル“High”,“Low”は
単に“H”,“L”と記すものとする。
The present invention relates to a method for establishing synchronization between two stations when performing asynchronous data communication between two stations (for example, between a master station and a slave station) using weak radio waves, and particularly communication The present invention relates to a method of adding a notice signal for synchronization to communication data so that synchronization can be easily performed even when noise is mixed in radio waves. In the following drawings, the same reference numerals indicate the same or corresponding parts. Further, logic or levels “High” and “Low” are simply described as “H” and “L”.

【従来の技術】[Prior art]

従来より交信を行う2局(例えば親局および子局)の間
のデータ通信の同期化方法としては、同期通信方式と非
同期通信方式とがある。同期通信方式は親局が常時連続
して通信信号を出力し、その信号の中に定期的に同期用
のコードを挿入して親局と子局の間の信号の同期合わせ
(同期化)を行うものである。 本発明は、親局と子局とが電波を利用して通信を行い、
この際特に子局を電池で長時間(数年間)動作させなけ
ればならぬ用途を主対象としているが、このような用途
には子局が連続した電波を受信して、その中から同期用
コードを取出す前記の同期通信方式は子局が常に動作し
ている必要があり電池寿命が短くなること、子局内部の
制御やロジック内容が複雑となることなどから、高速信
号伝送等のメリットのある方法ではあるが好ましくな
い。 これに対し非同期通信方式では親局が必要な場合に随
時、通信信号を出力するもので、子局はこの時にのみそ
の交信手段を動作させればよいから電池の消耗も少くな
り前記のような用途に適している。 即ちこの非同期通信方式は一般的にはNRZ信号で例え
ばスタートビット(1ビット),データビット(8ビッ
ト),パリティビット(1ビット)、ストップビット
(1〜2ビット)の11〜12ビットからなるキャラクタを
所定間隔で所定個数連ねた単位交信文(ただし該間隔,
個数は当該単位交信文の始めのキャラクタを用いて単位
交信文ごとに示す場合もある)を一定時間以内の任意の
時間間隔で(つまり非同期で)授受するもので、この各
単位交信文には特に同期のためのキャラクタは付加され
ない。またこの場合、送信されるべき長いデータは一旦
8ビットごとに区切られ、このように区切られた各8ビ
ットの区分データの前と後にそれぞれスタートビットと
パリティ,ストップのビットを付加して送信する。 この非同期通信方式でのデータの送信終了から次のデー
タ出力までの同期合わせは通常、一定時間以上の無信号
状態(休止期間)を検知したのちスタートビットを検出
することにより行う。交信の休止期間には無信号状態と
なり、子局はこの無信号状態を検知して親局からの呼掛
け待ち状態になる。無信号状態では交信途中で受信々号
の異常等により同期ずれを起こした子局も同様に呼掛け
待ち状態になり、次の受信から同期合わせができるよう
にすることが一般的である。 ここでは子局は無信号状態が一定時間以上経過(タイム
アウト)したことを検知したら、子局の動作をイニシャ
ルモードへ強制的に戻すことにより、親、子局間の同期
合わせを行っている。また親局も子局との同期合わせの
ため子局との通信が異常と判断した時点で一定時間の休
止検知時間を設けて子局との同期合わせを行う。 第3図(1)は子局の受信復調信号の波形を、同図(2)は子
局の(内部のCPUの)動作モードのタイミングをそれ
ぞれ示している。同図(1)において1はキャラクタでこ
のキャラクタ1が通常1〜2ビットの所定の間隔で所定
個数連なったものが単位交信文である。子局のCPU
(図外)は同図(2)のように始めの休止期間ののち単位
交信文10の先頭キャラクタのスタートビット(図外)を
検出して受信処理モードに入っている。第4図(1),(2)
は親,子局の授受する信号を,また同図(3)は子局の動
作期間を大きなタイムスケールで示したものである。な
お同図(1),(2)は共に変調前または復調後のデジタル信
号に相当する。即ち同図(1)のような親局からの呼掛信
号11に対して、同図(3)のように子局は動作を開始し、
前記呼掛信号11の要求に答えて同図(2)のような応答信
号12を返送している。 第5図は同期合わせの動作を示すタイムチャートで、同
図(1)は空中電波を(但し便宜上変調前または復調後の
デジタル信号の波形で)、同図(2),(3)は子局の動作期
間を示している。そして同図(2)は子局が親局の呼掛け
信号11を始めから受信した場合を、同図(3)はこの呼掛
け信号11を途中から受信した場合をそれぞれ示してい
る。 即ち同図(2)のように、親局からの呼掛信号11(第5図
(1))を正常に受信した子局は正しいシーケンスで応答
信号12(同図(1))のデータ送信を完了した時点で動作
を停止する。しかし親局の呼掛信号11を途中から受信し
た子局は同図(3)のように、呼掛信号11内の先頭キャラ
クタのスタートビット(図外)の検知ができないため同
図(1)のような空中電波が静かになるまで送信電波をモ
ニタしながら待っている。ただしこの例では親局の呼掛
信号11が終わったのち、他の子局の応答信号12が無くな
るまで待っているものとする。さらに空中電波が静かに
なってからこの子局は一定の休止判定時間TWを経過し
た後、始めて同期合わせのための呼掛待ち時間TS1に
入る。ただし前記休止判定時間TW中にノイズ21が受信
された場合には、このノイズ21の消失後の新たな休止判
定時間TWを経たのち呼掛待ち時間TS2に入る。
Conventionally, there are a synchronous communication method and an asynchronous communication method as a method of synchronizing data communication between two stations (for example, a master station and a slave station) that communicate with each other. In the synchronous communication method, the master station always outputs a communication signal continuously, and periodically inserts a synchronization code in the signal to synchronize (synchronize) the signal between the master station and the slave station. It is something to do. In the present invention, a master station and a slave station communicate using radio waves,
At this time, the main purpose is mainly to use the slave station for a long time (several years) with a battery, but in such applications, the slave station receives continuous radio waves and synchronizes from it. The above-mentioned synchronous communication method for extracting the code has the merit of high-speed signal transmission, etc., because the slave station must always be operating, the battery life becomes short, and the control and logic contents inside the slave station become complicated. Although it is a certain method, it is not preferable. On the other hand, in the asynchronous communication system, the communication signal is output whenever the master station is needed, and the slave station only has to operate its communication means at this time, so the battery consumption is reduced and Suitable for use. That is, this asynchronous communication system is generally an NRZ signal and is composed of, for example, 11 to 12 bits of a start bit (1 bit), a data bit (8 bits), a parity bit (1 bit), and a stop bit (1 to 2 bits). A unit communication text in which a specified number of characters are connected at a specified interval (however,
The number of characters is sometimes given for each unit message using the first character of the unit message) and is transmitted and received at an arbitrary time interval within a fixed time (that is, asynchronously). In particular, no character for synchronization is added. Further, in this case, the long data to be transmitted is once divided into 8 bits, and a start bit, a parity bit, and a stop bit are added before and after each 8-bit segmented data thus divided and transmitted. . In this asynchronous communication method, synchronization from the end of data transmission to the output of the next data is normally performed by detecting a start bit after detecting a no-signal state (pause period) for a certain time or longer. During the communication idle period, the slave station is in a non-signal state, and the slave station detects this non-signal state and waits for a call from the master station. In a no-signal state, a slave station that has lost synchronization due to an abnormality in a received signal during communication is also in an interrogation waiting state, and synchronization is generally possible from the next reception. Here, when the slave station detects that no signal has passed for a certain period of time (timeout), it forcibly returns the operation of the slave station to the initial mode to synchronize the master station and the slave station. Further, the master station also establishes a pause detection time of a certain time when it determines that communication with the slave station is abnormal due to synchronization with the slave station, and performs synchronization with the slave station. FIG. 3 (1) shows the waveform of the reception demodulated signal of the slave station, and FIG. 3 (2) shows the timing of the operation mode (of the internal CPU) of the slave station. In FIG. 1 (1), 1 is a character, and a unit communication message is a character 1 in which a predetermined number of characters 1 are normally arranged at a predetermined interval. CPU of slave station
In (not shown), the start bit (not shown) of the first character of the unit communication text 10 is detected after the first pause period as shown in (2), and the reception processing mode is entered. Fig. 4 (1), (2)
Shows the signals sent and received by the parent and child stations, and Fig. 3 (3) shows the operating period of the child stations on a large time scale. Both (1) and (2) in the figure correspond to digital signals before or after demodulation. That is, in response to the interrogation signal 11 from the master station as shown in FIG. 1A, the slave station starts operation as shown in FIG. 3C,
In response to the request for the interrogation signal 11, a response signal 12 as shown in FIG. Fig. 5 is a time chart showing the synchronization operation. Fig. 5 (1) shows the airwaves (however, for convenience, it is the waveform of the digital signal before modulation or after demodulation), and Fig. 5 (2), (3) It shows the operating period of the station. Further, FIG. 2B shows the case where the slave station receives the interrogation signal 11 of the master station from the beginning, and FIG. 3C shows the case where the interrogation signal 11 is received from the middle. That is, as shown in Fig. 2 (2), the interrogation signal 11 (Fig. 5) from the master station.
The slave station which normally receives (1)) stops its operation when it completes the data transmission of the response signal 12 ((1) in the figure) in the correct sequence. However, the slave station that received the interrogation signal 11 of the master station from the middle cannot detect the start bit (not shown) of the first character in the interrogation signal 11 as shown in (3) of the same figure, and thus the same figure (1). Waiting while monitoring the transmitted radio waves until the airwaves such as are quiet. However, in this example, it is assumed that after the interrogation signal 11 of the master station ends, it waits until the response signals 12 of the other slave stations disappear. Further, after a certain pause determination time TW elapses after the aerial radio wave becomes quiet, the slave station first enters the interrogation waiting time TS1 for synchronization. However, when the noise 21 is received during the pause determination time TW, a new pause determination time TW after disappearance of the noise 21 is passed and then the interrogation waiting time TS2 is entered.

【発明が解決しようとする問題点】[Problems to be Solved by the Invention]

しかしながら電波を使った非同期式データ通信におい
て、周囲ノイズ環境の悪い場所では種々のノイズを受信
することになり、例えば第5図の場合、さらに新たなノ
イズ21Aを受信した場合には、次の親局の呼掛信号11の
出力時点までに必要な休止判定時間TWを検出できなく
なり、受信局(この場合子局)は、常に無信号時間検出
モードから抜け出せなくなって、前記の呼掛待ち時間T
S1(TS2)におけるような同期合わせ用の先頭デー
タの読出しモードとなることができず、交信が全くでき
なくなる惧れがある。 この発明の目的は、電波を使用した非同期のデータ通信
方式において、前記の休止判定時間TWを検出する方式
を廃し、単位交信文の先頭部に所定の同期合わせ用信号
としての予告信号を付加することにより周囲にノイズが
ある環境下においても親,子局間の同期および通信が確
保できる方法を提供することを目的とする。
However, in asynchronous data communication using radio waves, various noises are received in a place where the ambient noise environment is poor. For example, in the case of FIG. 5, when new noise 21A is received, the next parent noise is received. The pause determination time TW required by the time when the interrogation signal 11 of the station is output cannot be detected, and the receiving station (in this case, the slave station) cannot always get out of the no-signal time detection mode.
There is a possibility that the read mode of the leading data for synchronization as in S1 (TS2) cannot be set and communication cannot be performed at all. An object of the present invention is to discontinue the method of detecting the pause determination time TW in an asynchronous data communication method using radio waves and add a notice signal as a predetermined synchronization signal to the head of a unit communication text. Therefore, it is an object of the present invention to provide a method capable of ensuring synchronization and communication between a parent station and a slave station even in an environment with noisy surroundings.

【問題点を解決するための手段】[Means for solving problems]

前記問題点を解決するために本発明の方法は、親局およ
び子局間で、それぞれ所定長のスタートビット(10aな
ど),データビット(10bなど),ストップビット等か
らなるキャラクタ(1など)を所定の時間間隔で所定個
数連ねて単位交信文(10など)とし、この単位交信文の
デジタル信号を用いて所定の変調を行った電波信号(以
下単位交信文電波信号という)を不定の時間間隔で授受
する非同期データ通信における前記単位交信文電波信号
の開始時点を検出する同期化方法において、 前記スタートビットの論理値に対応する変調電波を少な
くとも前記のキャラクタ長以上の時間(THなど)、持
続してなる第1の予告電波信号(予告H信号301の変調
電波など)と、 前記スタートビットの論理値の逆の論理値に対応する変
調電波を前記第1の予告電波信号と異なる所定間隔(T
Lなど)、持続してなり、かつ前記第1の予告電波信号
に続く第2の予告電波信号(予告L信号の変調電波な
ど)と、を前記単位交信文電波信号の先頭部に付加し、
親局および子局において一定時間間隔のサンプリング信
号により第1の予告電波信号と第2の予告電波信号とを
サンプリングして第1の予告電波信号に続いて第2の予
告電波信号がそれぞれ或る定められた回数連続している
場合にスタートビットを検知することを特徴とする。
In order to solve the above-mentioned problems, the method of the present invention uses a character (1 or the like) consisting of a start bit (10a or the like), a data bit (10b or the like), a stop bit or the like of a predetermined length between the master station and the slave station. Is defined as a unit communication text (10, etc.) by connecting a predetermined number of times at a predetermined time interval, and a radio signal (hereinafter referred to as a unit communication text radio signal) that has been subjected to predetermined modulation using the digital signal of this unit communication text is an undefined time. In a synchronization method for detecting a start time point of the unit communication text radio signal in asynchronous data communication transmitted and received at intervals, a modulated radio wave corresponding to a logical value of the start bit is at least a time longer than the character length (such as TH), A continuous first notice radio wave signal (such as a notice radio wave of the notice H signal 301) and a modulated radio wave corresponding to a logical value opposite to the logical value of the start bit are transmitted to the first notice radio signal. Predetermined interval (T
L, etc.) and a second notice radio wave signal (such as a notice radio wave of the notice L signal) that is continuous and follows the first notice radio wave signal is added to the head of the unit communication text radio signal,
In the master station and the slave station, the first notice radio signal and the second notice radio signal are sampled by sampling signals at fixed time intervals, and there is a second notice radio signal subsequent to the first notice radio signal. It is characterized in that the start bit is detected when the start bit is continuous a predetermined number of times.

【作用】[Action]

この発明は親,子局間の通信のため親局はデータ(単位
交信文)の先頭に同期用の信号としての所定の構成の予
告信号を付加して送信することにより、子局に対して呼
掛けを行う。子局は外部より受信する信号を常時監視
し、その中から前記の予告信号を見付け出すことにより
通信を行うものである。外来ノイズが周期的に発生して
いる状況であってもこの予告信号を先頭部に持つ前記の
呼掛の信号を受信すると、この呼掛信号の強度レベルを
予め交信が可能なS/N比が得られるように選んで置く
かぎり、マスキング現象により呼掛信号の受信が優先さ
れノイズは気にならない状態になり、従って単位交信文
のスタートビットの判別が容易になり、通信が確保され
る。
Since the present invention communicates between a parent station and a child station, the parent station adds a notice signal having a predetermined structure as a signal for synchronization to the head of data (unit communication text) and transmits the data to the child station. Make a call. The slave station constantly monitors a signal received from the outside, and communicates by finding the above-mentioned notice signal from among the signals. Even if the external noise is generated periodically, when the interrogation signal having the warning signal at the head is received, the strength level of the interrogation signal can be communicated in advance with the S / N ratio. As long as it is selected so as to obtain, the interrogation signal is prioritized due to the masking phenomenon, and the noise becomes unnoticeable. Therefore, the start bit of the unit communication text can be easily discriminated and communication can be secured.

【実施例】【Example】

次に第1図と第2図を用いて本発明の実施例を説明す
る。 第2図は本発明における子局の受信復調信号(同図
(1))と同期検出動作(同図(2))のタイミングを、従来
の子局の同期検知動作(同図(3))のタイミングと対比
して示したものである。同図(1)における外部よりの信
号(ノイズ21)を受信した状態で同図(2)のように子局
はこのノイズ21のデータ判定24を行い、同期用信号とし
ての予告信号30(後述)で無いことが判った時点で、予
告信号待ち状態に戻る。この場合予告信号検知時間、
(つまり前記データ判定24の時間)TDが短いことが本
発明の方式の性能を高くする方法である。何となればノ
イズの周期が短くなって予告信号検知時間TD以下にな
ると、信号を受信して予告信号30がどうかの判断をして
いる途中に次の信号が入力される状態が発生するため、
予告信号30の検知に時間遅れが発生して、予告信号30を
検知できなくなることが発生するからである。 さて前記の予告信号待ち状態で子局が呼掛信号11を受信
すると、同図(2)の25のようにその子局のCPUは呼掛
信号11の先頭部の予告信号30を検知して受信処理へ進
む。ここで呼掛信号11は前記の単位交信文信号10の先頭
部に後述のような予告信号30が付加された構成となって
いる。 なお一般に受信器の特性として、2種以上の信号を受信
している時にこの受信々号中、残りの信号に比べて一定
割合以上大きな受信信号があれば、その信号のレベル以
下の信号は受信しなくなるマスキングの現象があり、こ
の場合ノイズ21よりも勢力の大きな呼掛信号11を受信す
ることによりノイズ21をマスクした受信出力が得られ
る。 またこれとは別に受信増幅器の出力信号を一定とするた
めのAGC(自動利得制御)回路を用いた場合でも増幅
器の利得をノイズよりも大きい呼掛信号のピークに合わ
せることにより、ノイズ信号を抑制することができる。
但しこれらは、呼掛け受信々号のレベルが、ノイズレベ
ルよりも大きい時に有効である。 第5図で述べたように従来の一定時間無信号状態を検知
する方法(つまり前記休止判定時間TWを検出する方
法)では、他の子局からの応答信号12が終了した時点よ
りタイマが起動して、ノイズ21が無ければ休止判定時間
TWの後に受信(呼掛け待ち)モードになるが、ノイズ
21,21Aを受信すると、そのつどタイマを起動して、その
ノイズ消滅後の休止判定時間TW後に受信モードに移行
しょうとする。しかし第5図(1)や第2図(1)のようにノ
イズ21,21A等を短い周期で繰返し受信した場合には、第
2図(3)のように子局は受信モードに移行できなくな
る。ここで第2図(3)は子局が休止判定時間TWの検出
モードを継続したままにあることを示している。 第1図(1)は本発明における子局の受信復調信号中のノ
イズ21と呼掛信号11を拡大した図であり、同図(2)はこ
のときの子局のCPUのサンプリングのタイミングを示
す。呼掛信号11内の予告信号30は前記単位交信文信号10
の先頭部に付加されている。この予告信号30は単位交信
文信号10中のキャラクタのスタートビット10a(但しこ
の例では信号10の先頭部のもののみを示している。)の
論理値(この場合“H”とする)と同じ論理(“H”)
で、少なくともキャラクタ長よりも長い時間長THの予
告H信号301と、この信号30に続き該論値を反転した
論理値(“L”)で、かつ所定時間長TLの予告L信号
302とからなる。子局内のCPUは第1図(2)のような受
信信号入力のサンプリングにより、ノイズ21を受信した
時点から数10μs以後に再度受信入力信号をチェックし
て、予告信号30を検知する。予告H信号301の部分で一
定のサンプリング回数(例えば10〜20回)以上連続して
“H”を検知して、その後予告L信号302の部分で一定
の回数(5回以上〜10回以下の)“L”を検知した時点
で、単位交信文信号10の先頭部のスタートビット10aを
検知する方法で同期合わせを図っている。 なお以上の実施例では親局の呼掛信号11についての構成
を主体に説明したが、本発明では子局の応答信号12につ
いてもその先頭部に予告信号30が設けられていることは
いうまでもない。
Next, an embodiment of the present invention will be described with reference to FIGS. FIG. 2 shows a received demodulated signal of a slave station according to the present invention (see FIG.
The timings of (1)) and the synchronization detection operation ((2) in the same figure) are shown in comparison with the timing of the synchronization detection operation ((3) in the same figure) of the conventional slave station. In the state where the signal (noise 21) from the outside in the same figure (1) is received, the slave station makes a data determination 24 of this noise 21 as shown in the same figure (2), and a warning signal 30 (described later) as a synchronization signal. ), It returns to the warning signal waiting state. In this case, the warning signal detection time,
(That is, the time of the data determination 24) A short TD is a method for improving the performance of the system of the present invention. If the cycle of noise becomes shorter and the warning signal detection time TD or less is reached, the next signal may be input while the signal is being received and the warning signal 30 is being determined.
This is because there is a time lag in the detection of the warning signal 30 and it becomes impossible to detect the warning signal 30. When the slave station receives the interrogation signal 11 while waiting for the advance notice signal, the CPU of the slave station detects and receives the advance notice signal 30 at the beginning of the interrogation signal 11 as indicated by 25 in FIG. Go to processing. Here, the interrogation signal 11 has a structure in which a notice signal 30 as described later is added to the head portion of the unit communication message signal 10 described above. Generally, as a characteristic of a receiver, when two or more types of signals are being received, if there is a received signal that is larger than the rest of the received signals by a certain percentage or more, signals below the level of that signal will be received. There is a phenomenon of masking that does not happen. In this case, by receiving the interrogation signal 11 having a larger power than the noise 21, a reception output with the noise 21 masked can be obtained. Separately from this, even when an AGC (automatic gain control) circuit for keeping the output signal of the receiving amplifier constant, the noise signal is suppressed by adjusting the gain of the amplifier to the peak of the interrogation signal larger than the noise. can do.
However, these are effective when the level of the interrogation reception signal is larger than the noise level. As described with reference to FIG. 5, in the conventional method for detecting a non-signal state for a certain period of time (that is, the method for detecting the pause determination time TW), the timer is started from the time when the response signal 12 from another slave station ends. Then, if there is no noise 21, the reception (call waiting) mode is set after the pause determination time TW.
When it receives 21,21A, it starts the timer each time and tries to shift to the reception mode after the pause determination time TW after the noise disappears. However, when noise 21,21A, etc. are repeatedly received in a short cycle as shown in Fig. 5 (1) and Fig. 2 (1), the slave station can shift to the reception mode as shown in Fig. 2 (3). Disappear. Here, FIG. 2 (3) shows that the slave station is still in the detection mode of the pause determination time TW. FIG. 1 (1) is an enlarged view of the noise 21 and the interrogation signal 11 in the reception demodulated signal of the slave station according to the present invention, and FIG. 1 (2) shows the sampling timing of the CPU of the slave station at this time. Show. The advance notice signal 30 in the interrogation signal 11 is the unit communication message signal 10 described above.
Is added to the beginning of the. The advance notice signal 30 is the same as the logical value (in this case, "H") of the start bit 10a of the character in the unit communication message signal 10 (however, only the first part of the signal 10 is shown in this example). Logic (“H”)
Then, the notice H signal 301 having a time length TH that is at least longer than the character length, and the notice L signal having a logical value (“L”) obtained by inverting the logical value following this signal 30 and having a predetermined time length TL.
It consists of 302. The CPU in the slave station checks the received input signal again several tens of microseconds after the noise 21 is received by sampling the received signal input as shown in FIG. "H" is continuously detected at a certain number of sampling times (for example, 10 to 20 times) at the notice H signal 301 portion, and then at a certain number of times (at least 5 to 10 times or less) at the notice L signal 302 portion. ) When "L" is detected, synchronization is achieved by a method of detecting the start bit 10a at the head of the unit communication message signal 10. In the above embodiments, the configuration of the interrogation signal 11 of the master station has been mainly described, but it goes without saying that the notice signal 30 is provided at the head of the response signal 12 of the slave station in the present invention. Nor.

【発明の効果】【The invention's effect】

本発明においては、親局および子局間で、それぞれ所定
長のスタートビット、ストップビット等からなるキャラ
クタを所定の時間間隔で所定個数連ねて単位交信文と
し、この単位交信文のデジタル信号を用いて所定の変調
を行った電波信号(以下単位交信文電波信号という)を
不定の時間間隔で授受する非同期データ通信における前
記単位交信文電波信号の開始時点を検出する同期化方法
において、前記スタートビットの論理値に対応する変調
電波を少なくとも前記のキャラクタ長以上の時間持続し
てなる第1の予告電波信号と、前記スタートビットの論
理値の逆の論理値に対応する変調電波を前記第1の予告
電波信号と異なる所定時間持続してなり、かつ前記第1
の予告電波信号に続く第2の予告電波信号と、を前記単
位交信文電波信号の先頭部に付加し、親局および子局に
おいて一定時間間隔のサンプリング信号により第1の予
告電波信号と第2の予告電波信号とをサンプリングして
第1の予告電波信号に続いて第2の予告電波信号がそれ
ぞれ或る定められた回数連続している場合にスタートビ
ットを検知するようにしたことにより、仮にサンプリン
グ信号の一つとノイズが重なった場合にも、そのサンプ
リング信号以降に連続してノイズが重ならなければノイ
ズと予告信号とを区別することができ、ノイズの多い環
境下においても、容易に確実に送,受信局間の同期合わ
せを行うことができる。
In the present invention, between a master station and a slave station, a predetermined number of characters each consisting of a start bit, a stop bit, etc. are connected at a predetermined time interval to form a unit communication text, and a digital signal of this unit communication text is used. The start bit in the synchronization method for detecting the start time of the unit communication text radio signal in asynchronous data communication in which a radio signal that has been subjected to predetermined modulation (hereinafter referred to as unit communication text radio signal) is transmitted and received at indefinite time intervals. Of the first radio wave signal corresponding to the logical value of the start bit and the first radio wave signal corresponding to the logical value opposite to the logical value of the start bit. The signal has been maintained for a predetermined time different from the advance notice radio signal, and the first
And a second notice radio signal following the notice radio signal are added to the beginning of the unit communication sentence radio signal, and the first notice radio signal and the second notice radio signal are sampled at fixed time intervals in the master station and the slave station. And the start bit is detected when the second advance notice radio signal and the second advance notice radio signal are consecutive for a predetermined number of times. Even if one of the sampling signals overlaps with the noise, if the noise does not overlap continuously after the sampling signal, it is possible to distinguish between the noise and the warning signal, making it easy and reliable even in a noisy environment. It is possible to synchronize the sending and receiving stations.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例としての交信々号の要部構成
を示すタイムチャート、第2図は子局の受信々号とその
動作を本発明と従来とで比較したタイムチャート、第3
図ないし第5図は従来の非同期交信を説明するためのタ
イムチャートである。 1:キャラクタ、10:単位交信文信号、10a:スタート
ビット、10b:データビット、11:呼掛信号、12:応答
信号、30:予告信号、301:予告H信号、302:予告L信
号、TH,TL:時間長。
FIG. 1 is a time chart showing an essential configuration of a communication station as an embodiment of the present invention, and FIG. 2 is a time chart comparing the reception station of a slave station and its operation between the present invention and a conventional one. Three
FIG. 5 to FIG. 5 are time charts for explaining the conventional asynchronous communication. 1: character, 10: unit communication message signal, 10a: start bit, 10b: data bit, 11: interrogation signal, 12: response signal, 30: notice signal, 301: notice H signal, 302: notice L signal, TH , TL: time length.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】親局および子局間で、それぞれ所定長のス
タートビット,ストップビット等からなるキャラクタを
所定の時間間隔で所定個数連ねて単位交信文とし、この
単位交信文のデジタル信号を用いて所定の変調を行った
電波信号(以下単位交信文電波信号という)を不定の時
間間隔で授受する非同期データ通信における前記単位交
信文電波信号の開始時点を検出する同期化方法におい
て、前記スタートビットの論理値に対応する変調電波を
少なくとも前記のキャラクタ長以上の時間持続してなる
第1の予告電波信号と、前記スタートビットの論理値の
逆の論理値に対応する変調電波を前記第1の予告電波信
号と異なる所定時間持続してなり、かつ前記第1の予告
電波信号に続く第2の予告電波信号と、を前記単位交信
文電波信号の先頭部に付加し、親局および子局において
一定時間間隔のサンプリング信号により第1の予告電波
信号と第2の予告電波信号とをサンプリングして第1の
予告電波信号に続いて第2の予告電波信号がそれぞれ或
る定められた回数連続している場合にスタートビットを
検知することを特徴とする非同期データ通信の同期化方
法。
1. A unit communication text comprising a predetermined number of characters each having a start bit, a stop bit, etc., each having a predetermined length between a master station and a slave station at predetermined time intervals to form a unit communication text, and a digital signal of the unit communication text is used. The start bit in the synchronization method for detecting the start time of the unit communication text radio signal in asynchronous data communication in which a radio signal that has been subjected to predetermined modulation (hereinafter referred to as unit communication text radio signal) is transmitted and received at indefinite time intervals. Of the first radio wave signal corresponding to the logical value of the start bit and the first radio wave signal corresponding to the logical value opposite to the logical value of the start bit. A second notice radio signal that continues for a predetermined time different from the notice radio signal and that follows the first notice radio signal, and the head part of the unit communication text radio signal. In addition, the first notice radio signal and the second notice radio signal are sampled by sampling signals at fixed time intervals in the master station and the slave station, and the second notice radio signal follows the first notice radio signal. A method for synchronizing asynchronous data communication, characterized in that a start bit is detected when each of them continues for a certain number of times.
JP62085573A 1987-04-07 1987-04-07 Asynchronous data communication synchronization method Expired - Lifetime JPH0630493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62085573A JPH0630493B2 (en) 1987-04-07 1987-04-07 Asynchronous data communication synchronization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62085573A JPH0630493B2 (en) 1987-04-07 1987-04-07 Asynchronous data communication synchronization method

Publications (2)

Publication Number Publication Date
JPS63250938A JPS63250938A (en) 1988-10-18
JPH0630493B2 true JPH0630493B2 (en) 1994-04-20

Family

ID=13862556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62085573A Expired - Lifetime JPH0630493B2 (en) 1987-04-07 1987-04-07 Asynchronous data communication synchronization method

Country Status (1)

Country Link
JP (1) JPH0630493B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963320A (en) * 1972-10-19 1974-06-19
JPS58165454A (en) * 1982-03-26 1983-09-30 Sony Corp Transmitting system of digital data
JPS607241A (en) * 1983-06-27 1985-01-16 Nec Corp Data transmission equipment
JPS61260734A (en) * 1985-05-14 1986-11-18 Komatsu Ltd Detection of bit synchronization

Also Published As

Publication number Publication date
JPS63250938A (en) 1988-10-18

Similar Documents

Publication Publication Date Title
US4839639A (en) Paging receiver having battery saving circuit
US4271523A (en) Contention interference detection in data communication receiver
WO2014088961A2 (en) Multi-tone wakeup mechanism for a wireless network
US7916677B2 (en) Power control techniques for wireless devices
US5966409A (en) Data transmission unit
JP2812665B2 (en) Data collision detection circuit and detection method for communication network
JPH0630493B2 (en) Asynchronous data communication synchronization method
KR930010365B1 (en) Power conservation method and apparatus
US5525974A (en) Radio selective calling receiver for receiving a call signal intermittently under an asynchronous system
JPH098671A (en) Bus transmission system
JP2679185B2 (en) Radio selective calling signal receiver
JP2848229B2 (en) Receiver circuit
JPS6363241A (en) Data serial transmission system
JPH08279803A (en) Burst signal detection circuit
JP2969868B2 (en) Fixed interval short fixed length data transmission method
JP3394787B2 (en) Synchronization determination method for FM receiver
JP2558119B2 (en) Transceiver circuit
JPS60182231A (en) Selective call communication system
JPS6326429B2 (en)
JP3488378B2 (en) Serial data communication device and error checking method for serial data communication device
JPS62261245A (en) Frame synchronization detecting method
JPH06284065A (en) Device for adjusting data reception timing
JP2876886B2 (en) Radio selective calling signal receiver
JPS648505B2 (en)
JPH0443457B2 (en)