JPH06300968A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH06300968A
JPH06300968A JP8596593A JP8596593A JPH06300968A JP H06300968 A JPH06300968 A JP H06300968A JP 8596593 A JP8596593 A JP 8596593A JP 8596593 A JP8596593 A JP 8596593A JP H06300968 A JPH06300968 A JP H06300968A
Authority
JP
Japan
Prior art keywords
lens
group
positive
negative
positive lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8596593A
Other languages
Japanese (ja)
Inventor
Yasuhisa Kitaoka
泰久 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8596593A priority Critical patent/JPH06300968A/en
Publication of JPH06300968A publication Critical patent/JPH06300968A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a zoom lens which has excellent optical performance from a wide-angle end to a telephoto end and is low in cost and compact as to a large-aperture zoom lens which is used for a video camera and has about X10-12 power and F/1.4-1.6. CONSTITUTION:The zoom lens consists of a 1st group which has positive refracting power, a 2nd group which functions to vary the power and has negative refracting power, a 3rd group which has positive refracting power, and a 4th group which functions to correct image plane variation due to power variation or variation in object distance and has positive refracting power. Then this lens is constituted as a telephoto type which features the arrangement of an aperture stop on the object side of the positive lens in the 3rd group, the increased air gap between the positive lens and negative lens of the 3rd group, and the presence of the front principal point and rear principal point of the 3rd group in the positive lens in the 3rd group or in the object-side space.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオカメラに使用さ
れる高変倍で大口径のズームレンズに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens having a high zoom ratio and a large aperture used in a video camera.

【0002】[0002]

【従来の技術】現在ビデオカメラ用のレンズは、8〜1
0倍以上の高変倍を備えたズームレンズが主流になりつ
つあり、小型軽量化が強く要望されている。1/3イン
チサイズの撮像素子が主として利用されているが、更に
素子の小型化も進みつつある。それに伴い1画素自体の
大きさも非常に小さくなるので、レンズ系には大口径で
高性能の光学性能を備えることが要求される。さらに、
コスト低減の要望も強く、特にレンズ部品のコストが大
きな要因を占めるズームレンズにおいては、大口径及び
高変倍の機能拡大に伴って、構成枚数が増大しないズー
ムレンズの実現が強く求められている。
2. Description of the Related Art Currently, lenses for video cameras are 8 to 1
Zoom lenses having a high zoom ratio of 0 or more are becoming mainstream, and there is a strong demand for reduction in size and weight. Although the 1/3 inch size image pickup device is mainly used, the size of the device is being further reduced. As a result, the size of one pixel itself becomes very small, so that the lens system is required to have a large aperture and high-performance optical performance. further,
There is a strong demand for cost reduction, and in particular for zoom lenses, where the cost of lens parts is a major factor, there is a strong demand for the realization of a zoom lens that does not increase in the number of components due to the expansion of functions with a large aperture and high zoom ratio. .

【0003】従来、ビデオカメラ用のズームレンズにお
いては、特開平2−55308号公報にみられるよう
に、物体側より順に、正の屈折力を持ち固定の第1群、
負の屈折力を持ち変倍のために可動である第2群、正の
屈折力を持ち固定の第3群、そして正の屈折力を持ち変
倍による像面変動を補正するとともに合焦のために可動
である第4群とから構成された4群構成のズームレンズ
が良く知られている。上記公報では、変倍比が8倍,F
/1.4で12枚の球面レンズから構成されているもの
が紹介されている。
Conventionally, in a zoom lens for a video camera, as seen in Japanese Patent Laid-Open No. 2-55308, a first lens unit having a positive refracting power and being fixed in order from the object side,
The second lens group having a negative refractive power and movable for zooming, the third lens group having a positive refractive power and fixed, and the positive lens group having a positive refractive power and correcting the image plane variation due to zooming and focusing. For this reason, a zoom lens having a four-group configuration including a movable fourth group is well known. In the above publication, the variable power ratio is 8 times, F
/1.4 is introduced that consists of 12 spherical lenses.

【0004】特開平4−310910号公報では、更に
1枚少ない11枚の球面レンズのみで、変倍比が8〜1
0倍、F/1.4の明るい高倍率ズームレンズが提案さ
れている。これは第1群が3枚、第2群が3枚、第3群
が2枚、そして第4群が3枚で構成されている。コンパ
クト性を保ちながら更に10倍以上の高変倍化を達成し
ようとすると、第2群の屈折力を強くしてズームストロ
ークを短くする必要がある。このため上記公報のような
2枚構成の第3群では補正不足の球面収差が発生し、球
面レンズのみでは高性能レンズを得ることができない。
In Japanese Laid-Open Patent Publication No. 4-310910, only 11 spherical lenses, which is one less, is used, and the zoom ratio is 8 to 1.
A bright, high-power zoom lens with 0x and F / 1.4 has been proposed. This is composed of a first group of three, a second group of three, a third group of two, and a fourth group of three. In order to achieve a high zoom ratio of 10 times or more while maintaining compactness, it is necessary to increase the refracting power of the second lens unit and shorten the zoom stroke. For this reason, spherical aberration that is undercorrected occurs in the third lens group having a two-lens structure as in the above publication, and a high-performance lens cannot be obtained using only a spherical lens.

【0005】そこで第3群に非球面レンズを採用するこ
とが常套手段になりつつある。例えば特開平4−361
214号公報では、10倍程度の変倍比で、第3群に非
球面レンズ1枚を用いた11枚のレンズ構成でコンパク
トなズームレンズが提案されているが、最大口径比はF
/1.8程度にとどまっている。
Therefore, it is becoming common practice to employ an aspherical lens in the third lens group. For example, JP-A-4-361
Japanese Patent Publication No. 214-214 proposes a compact zoom lens having an 11-lens configuration in which one aspherical lens is used in the third lens group with a zoom ratio of about 10 times, but the maximum aperture ratio is F.
It remains at about 1.8.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記特開平
4−310910号公報で示されるズームレンズの大口
径を保ちつつ、さらに高変倍化及びコンパクト化を実現
するものであり、第3群に非球面1面を含む独特のレン
ズタイプを採用し、変倍比が10倍でF/1.4、12
倍でF/1.6の大口径を備え、11枚の構成枚数から
成り、広角端から望遠端までの全変倍範囲において良好
な光学性能を備えた、低コストでコンパクトなズームレ
ンズを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is to realize a high zoom ratio and a compact size while maintaining the large aperture of the zoom lens disclosed in Japanese Patent Laid-Open No. 4-310910. Adopted a unique lens type that includes one aspherical surface in the group, and a zoom ratio of 10 times F / 1.4, 12
Provides a low-cost and compact zoom lens with a large aperture of F / 1.6 at double magnification, consisting of 11 elements, and having good optical performance over the entire zoom range from the wide-angle end to the telephoto end. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】本発明のズームレンズ
は、物体側から順に、接合正レンズとメニスカス正レン
ズとの3枚で構成された正の屈折力の第1群と、メニス
カス負レンズと接合負レンズとの3枚で構成された倍率
を変倍する機能を備えた負の屈折力の第2群と、両凸の
物体側に非球面を施した正レンズと像側凸のメニスカス
負レンズとの2枚で構成された正の屈折力の第3群と、
そして接合正レンズと正レンズとの3枚で構成された変
倍または物体距離の変化に伴う像面変動を補正する機能
を備えた正の屈折力の第4群とから構成され、開口絞り
を前記第3群の正レンズの物体側に配置し、前記第3群
の正レンズと負レンズとの空気間隔をd13、前記第3
群の焦点距離をf3、前記第3群負レンズのd線におけ
る屈折率をn3n、アッベ数をν3nとするとき、(数
1),(数2)を満足することで上記の目的を達成しよ
うとするものである。
A zoom lens system according to the present invention comprises, in order from the object side, a first lens unit having a positive refractive power composed of a cemented positive lens and a positive meniscus lens, and a negative meniscus lens. A second lens unit having a negative refracting power, which is composed of three lenses including a cemented negative lens and has a function of varying the magnification, a positive lens having an aspherical surface on the biconvex object side and a meniscus negative lens having a convex image side. A third group of positive refracting power composed of two lenses and
Then, it is composed of a cemented positive lens and a positive lens, and is composed of a fourth lens unit having a positive refracting power and having a function of correcting an image plane variation due to zooming or a change in object distance. It is arranged on the object side of the positive lens of the third group, and the air gap between the positive lens and the negative lens of the third group is d13,
When the focal length of the group is f3, the refractive index of the third group negative lens at the d-line is n3n, and the Abbe number is ν3n, the above objects can be achieved by satisfying (Equation 1) and (Equation 2). It is what

【0008】[0008]

【作用】上記構成では、第3群に独特の2群2枚のテレ
フォトタイプを構成し、第3群主点位置を物体側に配置
することによりコンパクト化を計っている。また、第3
群正レンズに非球面を導入すると共に、第3群負レンズ
の硝材を工夫することにより、大口径を保ちながら11
枚構成で高性能を実現している。
In the above construction, a telephoto type of two lenses in the second lens group, which is unique to the third lens group, is formed, and the principal point position of the third lens group is arranged on the object side to achieve compactness. Also, the third
By introducing an aspherical surface into the positive lens of the group and devising the glass material of the negative lens of the third group, 11
High performance is achieved with a single-piece configuration.

【0009】[0009]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。図3は、本発明のズームレンズの第
1の実施例の構成図を示すものである。正の屈折力の第
1群、変倍を行う負の屈折力の第2群、開口絞りS、正
の屈折力の第3群、そして変倍による像面変動を補正す
るとともに合焦を行う正の屈折力の第4群、及び等価硝
子Tから構成されるズームレンズにおいて、コンパクト
化および高変倍化を実現するには、このズームレンズを
構成する各レンズ群の空気間隔を小さくするか、または
各レンズ群の屈折力を強くすることが必要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a block diagram of the first embodiment of the zoom lens according to the present invention. The first lens group having a positive refractive power, the second lens group having a negative refractive power for performing zooming, the aperture stop S, the third lens group having a positive refractive power, and an image plane variation due to zooming are corrected and focusing is performed. In order to realize compactness and high zoom ratio in the zoom lens composed of the fourth lens unit having a positive refractive power and the equivalent glass T, is it necessary to reduce the air space between the lens units constituting this zoom lens? , Or it is necessary to increase the refractive power of each lens group.

【0010】前者の場合、変倍のための第2群の移動領
域および第3群と第4群との空気間隔の短縮が肝要であ
る。ところで、第3群前方に絞りSを配置した場合、第
3群と第4群との空気間隔は、テレセントリック系の条
件を決定づけるためのものであり、この間隔を短くして
射出瞳が像面位置に近づきすぎると、第4群を射出する
主光線の角度が大きくなり、色再現性が悪くなる等の好
ましくない現象が起こってしまう。
In the former case, it is important to shorten the moving area of the second lens unit for zooming and the air gap between the third lens unit and the fourth lens unit. By the way, when the aperture stop S is arranged in front of the third lens unit, the air distance between the third lens unit and the fourth lens unit is for determining the condition of the telecentric system. If it is too close to the position, the angle of the chief ray that exits the fourth lens unit becomes large, and an undesirable phenomenon such as poor color reproducibility occurs.

【0011】そこで、この問題を解決するために、第3
群の正レンズと負レンズとの間の空気間隔を、
Therefore, in order to solve this problem, the third
The air gap between the positive and negative lenses of the group,

【0012】[0012]

【数7】 [Equation 7]

【0013】の範囲内、すなわち、図1に示すように、
第3群の正レンズXと負レンズYとの空気間隔を大きく
して、第3群の前側主点H及び後側主点H’を第3群正
レンズの内部または物体側空間に位置することの特徴を
備えたテレフォトタイプにする。
Within the range of, that is, as shown in FIG.
The air distance between the positive lens X and the negative lens Y of the third group is increased so that the front principal point H and the rear principal point H ′ of the third group are located inside the third group positive lens or in the object side space. It is a telephoto type that has the characteristics of this.

【0014】これにより第3群と第4群との空気間隔が
小さくなり、第3群から像面までの寸法の増大を防ぐこ
とができる。そして、絞りSを配置する空間を設けつつ
望遠端側での第2群と第3群との主点間隔eを小さくす
ることができるので、変倍のための第2群の移動領域の
長大化を防ぐことができる。
As a result, the air gap between the third lens unit and the fourth lens unit becomes small, and it is possible to prevent an increase in the size from the third lens unit to the image plane. Since the principal point interval e between the second lens unit and the third lens unit on the telephoto end side can be reduced while providing a space for arranging the aperture stop S, the movement area of the second lens unit for zooming is large. Can be prevented.

【0015】なお(数1)の下限を越えると、第3群の
主点位置が第3群の前方に位置せず、レンズ系の小型化
に寄与しない。上限を越えると、第3群の正レンズの屈
折力が弱く負レンズの屈折力が強くなるので、ペッツバ
ール和がマイナス側で大きくなり、良好な像面特性を得
ることができない。
If the lower limit of (Equation 1) is exceeded, the principal point position of the third lens unit will not be located in front of the third lens unit, and it will not contribute to downsizing of the lens system. If the upper limit is exceeded, the refractive power of the positive lens in the third group will be weak and the refractive power of the negative lens will be strong, so that the Petzval sum will be large on the negative side, and good image surface characteristics cannot be obtained.

【0016】後者の場合、ペッツバール和がマイナス側
で大きくなり、良好な像面特性が得られない。これを解
決するために第1群,第3群及び第4群の正レンズに低
屈折率の硝材を、第2群の負レンズに高屈折率の硝材を
用いることが望ましい。
In the latter case, the Petzval sum becomes large on the minus side, and good image plane characteristics cannot be obtained. In order to solve this, it is desirable to use a glass material having a low refractive index for the positive lenses of the first, third and fourth groups, and a glass material having a high refractive index for the negative lenses of the second group.

【0017】第1群はメニスカス負レンズと両凸正レン
ズの接合正レンズと、物体側に凸面を向けたメニスカス
正レンズから成り、両凸正レンズ及びメニスカス正レン
ズに低屈折率の硝材を用いている。接合正レンズでは軸
上色収差の発生を小さくし、メニスカス正レンズは第1
群のパワーを強め、球面収差及びコマ収差の変動を小さ
く抑えている。また、メニスカス正レンズは広角端側で
発生する大きな負の歪曲収差を補正する役割も果たす。
The first group is composed of a cemented positive lens composed of a negative meniscus lens and a biconvex positive lens, and a meniscus positive lens having a convex surface facing the object side. A glass material having a low refractive index is used for the biconvex positive lens and the meniscus positive lens. ing. The cemented positive lens reduces the occurrence of axial chromatic aberration, and the positive meniscus lens is the first
The power of the group is strengthened and the fluctuation of spherical aberration and coma is suppressed to a small level. In addition, the positive meniscus lens also plays a role of correcting a large negative distortion aberration generated on the wide-angle end side.

【0018】第2群はメニスカス負レンズと、両凹負レ
ンズとメニスカス正レンズの接合負レンズから成り、メ
ニスカス負レンズに高屈折率の硝材を用いている。接合
負レンズでは変倍による色収差の変動を小さく抑え、倍
率色収差を良好に補正している。
The second lens group is composed of a meniscus negative lens and a cemented negative lens of a biconcave negative lens and a meniscus positive lens, and a glass material having a high refractive index is used for the meniscus negative lens. With the cemented negative lens, the variation of chromatic aberration due to zooming is suppressed to a small extent, and chromatic aberration of magnification is corrected well.

【0019】第3群は両凸正レンズと像側に凸面を向け
たメニスカス負レンズから成り、両凸正レンズに低屈折
率の硝材を用いている。第2群による発散光束をアフォ
ーカルにし、球面収差を小さく補正している。
The third lens group is composed of a biconvex positive lens and a meniscus negative lens having a convex surface facing the image side. The biconvex positive lens uses a glass material having a low refractive index. The divergent light flux from the second group is made afocal to correct the spherical aberration small.

【0020】そして、第4群はメニスカス負レンズと両
凸正レンズの接合正レンズと、物体側に強い凸面を向け
た正レンズから成り、両凸正レンズ及び正レンズに低屈
折率の硝材を用いている。接合正レンズでは軸上色収差
を小さく補正し、正レンズで第4群のパワーを強め、変
倍による像面変動の補正または合焦のための移動による
球面収差の変動を小さく抑えている。
The fourth group consists of a cemented positive lens having a meniscus negative lens and a biconvex positive lens, and a positive lens having a strong convex surface facing the object side. The biconvex positive lens and the positive lens are made of a glass material having a low refractive index. I am using. The cemented positive lens corrects a small amount of axial chromatic aberration, the positive lens strengthens the power of the fourth lens group, and corrects the image plane variation due to zooming or suppresses the spherical aberration variation due to movement for focusing.

【0021】ところが、正レンズ群正レンズに低屈折率
の硝材を用いると、少ない構成枚数では面の曲率が強く
なり、高次コマ収差が発生し好ましくない。特開平4−
361214号公報では、最大口径比がF/1.8程度
にとどまっており、更に大口径を得ようとすると、上記
の理由で高性能が実現できない。
However, when a glass material having a low refractive index is used for the positive lens group positive lens, the curvature of the surface becomes strong and a high-order coma aberration occurs with a small number of constituents, which is not preferable. Japanese Patent Laid-Open No. 4-
In Japanese Patent No. 361214, the maximum aperture ratio remains at about F / 1.8, and if an even larger aperture is attempted, high performance cannot be realized for the above reason.

【0022】[0022]

【数8】 [Equation 8]

【0023】は第3群が正レンズと負レンズとの2枚構
成で、大口径を達成するためのものであり、第3群負レ
ンズには低屈折率硝材を用いる必要がある。上述したよ
うに第3群正レンズには低屈折率の硝材を用いるが、低
屈折率のためにレンズ面の曲率が強くなり、第3群に入
射する軸上光線の入射角がコンパクト化により大きくな
るために、第3群では大きな負の球面収差が発生する。
よって第3群の収差補正の負担が大きくなり、第3群に
多くのレンズ枚数が必要になる。
The third lens group is composed of two lenses, a positive lens element and a negative lens element, for achieving a large aperture. It is necessary to use a low refractive index glass material for the third lens group negative lens. As described above, a glass material having a low refractive index is used for the third lens group positive lens, but the curvature of the lens surface becomes strong due to the low refractive index, and the incident angle of the axial ray incident on the third lens group becomes compact. Because of the large size, large negative spherical aberration occurs in the third lens group.
Therefore, the burden of aberration correction on the third group becomes large, and a large number of lenses is required for the third group.

【0024】第3群を2群2枚で構成するために、第3
群正レンズ物体側に非球面を導入した。この場合の非球
面形状は光軸上からレンズ外径に向かうにつれて曲率が
弱くなり、球面による大きな負の球面収差を良好に補正
できる。特開平4−310910号公報では、第3群正
レンズには高屈折率硝材を用いることが適切であると述
べているが、第3群が2群2枚の球面レンズ系のみの構
成の場合、第3群正レンズに高屈折率硝材を用いること
により、面の曲率を弱くして球面収差の発生を小さく抑
えることができるので、全系での球面収差を良好に補正
している。
In order to compose the third lens group with two lens groups, two lenses are provided.
An aspherical surface is introduced on the object side of the group positive lens. In this case, the aspherical shape has a curvature that becomes weaker from the optical axis toward the lens outer diameter, and a large negative spherical aberration due to the spherical surface can be favorably corrected. Japanese Unexamined Patent Publication No. 4-310910 describes that it is appropriate to use a high refractive index glass material for the third lens group positive lens. However, in the case where the third lens group is composed of only two lens groups and two spherical lens systems. By using a high refractive index glass material for the third lens group positive lens, it is possible to weaken the curvature of the surface and suppress the occurrence of spherical aberration, so that spherical aberration in the entire system is well corrected.

【0025】また、非球面レンズはコスト面で満足でき
ないと述べているが、その後低コストの硝子モールドレ
ンズが実用化されつつあり、次のような加工上の制限条
件を満たすことで合理的な設計を実現できる。
Although it is stated that the aspherical lens is not satisfactory in terms of cost, low-cost glass mold lenses are being put to practical use thereafter, and it is rational by satisfying the following processing restriction conditions. Design can be realized.

【0026】(1)比較的低屈折率の硝材に限る。
(2)レンズ単体及び組立偏芯精度上都合の良い形状に
する。(3)非球面形状を変曲点の無い形状にする。
(4)周辺厚に対する中心厚の比率が大きくしない。
(5)非球面量を小さく押さえる。
(1) Limited to a glass material having a relatively low refractive index.
(2) The shape of the lens itself and the assembling eccentricity are made into a convenient shape. (3) The aspherical shape is made to have no inflection point.
(4) The ratio of the central thickness to the peripheral thickness is not large.
(5) Keep the amount of aspherical surface small.

【0027】このとき非球面の基準球面の曲率半径をr
12、第3群での短焦点側Fナンバー光線高において、
前記r12を参照球面としたとき、参照球面に対する非
球面の光軸方向の非球面量を△、短焦点側での像側開口
数をNAとすると、
At this time, the radius of curvature of the aspherical reference spherical surface is r
12, in the F number ray height on the short focus side in the third group,
When r12 is a reference spherical surface, Δ is the aspherical amount of the aspherical surface with respect to the reference spherical surface in the optical axis direction, and NA is the image-side numerical aperture on the short focus side.

【0028】[0028]

【数9】 [Equation 9]

【0029】なる条件を満足することが望ましい。(数
9)の下限を越えると、偏芯精度及び製造誤差が悪化し
好ましくない。上限を越えると、補正不足の球面収差の
残留量が大きすぎる。(1)はペッツバール和の改善と
合致しており、(2)を満足するために非球面レンズは
片面非球面が望ましい。
It is desirable to satisfy the following condition. If the lower limit of (Equation 9) is exceeded, the eccentricity accuracy and manufacturing error deteriorate, which is not preferable. If the upper limit is exceeded, the residual amount of undercorrected spherical aberration is too large. (1) coincides with the improvement of Petzval sum, and in order to satisfy (2), it is desirable that the aspherical lens has a single-sided aspherical surface.

【0030】この際、第3群負レンズの形状は像側凸の
メニスカスレンズが望ましい。本実施例の4群構成ズー
ムレンズにおいて、大口径を達成しようとすれば、図2
の光路図で示すように、短焦点側近傍での開放時におけ
る、主光線Lより下側の光束によるコマフレアの発生が
問題になり、画質低下を招く要因となる。第3群負レン
ズ凹面では、高次の補正過剰の球面収差を発生させ、第
3群正レンズ非球面量による球面収差の補正量は、軸上
収差曲線と軸外収差曲線とを良好にバランスさせるもの
で、このコマフレアも小さく抑えており、(5)の条件
を満足させる役割も果たしている。
At this time, it is desirable that the negative lens of the third lens group be a meniscus lens convex on the image side. In order to achieve a large aperture in the four-group zoom lens of the present embodiment, FIG.
As shown in the optical path diagram of (3), coma flare due to a light beam below the principal ray L becomes a problem when opening near the short focal point side, which causes deterioration of image quality. In the concave surface of the third lens group negative lens, high-order overcorrected spherical aberration is generated, and the correction amount of the spherical aberration due to the aspherical amount of the third lens group positive lens is well balanced between the on-axis aberration curve and the off-axis aberration curve. This coma flare is also kept small, and it also fulfills the role of satisfying the condition (5).

【0031】第3群負レンズに屈折率が1.65を越え
た高屈折率の範囲の硝材を用いた場合、第3群正レンズ
の屈折率が低いために正レンズ面の曲率が強くなりす
ぎ、高次コマ収差が大きく発生するので、残留収差の補
正が難しくなってくる。また、補正不足の球面収差が大
きく発生し、形状的に(3)及び(4)の条件にも反す
るため好ましくない。第3群負レンズのアッベ数が50
を越えた低分散硝子では、正レンズと負レンズとの分散
の差が小さくなるので、第3群での軸上色収差の残留成
分が大きくなり、全系の軸上色収差の補正が困難とな
る。
When a glass material having a high refractive index exceeding 1.65 is used for the third lens group negative lens, the positive lens surface has a large curvature because the third lens group positive lens has a low refractive index. As a result, too much high-order coma aberration occurs, which makes it difficult to correct the residual aberration. In addition, a large amount of uncorrected spherical aberration is generated, and the shape also violates the conditions (3) and (4), which is not preferable. Abbe number of the third group negative lens is 50
With a low-dispersion glass exceeding the above range, the difference in dispersion between the positive lens and the negative lens becomes small, so that the residual component of the axial chromatic aberration in the third lens group becomes large, and it becomes difficult to correct the axial chromatic aberration of the entire system. .

【0032】このように、第3群負レンズに低屈折率硝
子を用いることにより、諸収差を良好に補正することが
できるので、大口径レンズを実現する。さらに、第3群
の物体側に開口絞りを配置することにより、第1群での
軸外光束の高さが低くなり、第1群のレンズ径の小型化
に寄与し、テレセントリック系の条件に近づけることが
できる。以上(数7)、(数8)はコンパクト且つ大口
径ズームレンズを実現する為の条件である。
As described above, by using the low refractive index glass for the third group negative lens, it is possible to excellently correct various aberrations, so that a large aperture lens is realized. Further, by disposing the aperture stop on the object side of the third lens unit, the height of the off-axis light beam in the first lens unit becomes low, which contributes to the reduction of the lens diameter of the first lens unit and the telecentric system condition. You can get closer. The above (Equation 7) and (Equation 8) are conditions for realizing a compact and large-diameter zoom lens.

【0033】[0033]

【数10】 [Equation 10]

【0034】と、And

【0035】[0035]

【数11】 [Equation 11]

【0036】は、図1に示す第3群の前側主点位置H及
び後側主点位置H’を規定したものであり、f31は第
3群正レンズXの焦点距離を、f32は負レンズYの焦
点距離を、eは正レンズと負レンズの主点間隔eを示し
ている。(数10)及び(数11)の下限を越えるとい
うことは、第3群正レンズXと負レンズYの空気間隔が
大きくなることであり、負レンズYに入射する軸上光線
ヘの高さが低くなるため凹面の作用が弱くなり、短焦点
側近傍で図2に示す主光線Lより下側の光束によるコマ
フレアが大きく発生する。また、第3群正レンズの屈折
力が弱く負レンズの屈折力が強くなるので、ペッツバー
ル和がマイナス側で大きくなり好ましくない。上限を越
えると、第3群の主点位置が第3群の前方に位置しない
ので、レンズ系の小型化に寄与しない。
Is for defining the front principal point position H and the rear principal point position H'of the third group shown in FIG. 1, f31 is the focal length of the third group positive lens X, and f32 is the negative lens. The focal length of Y is shown, and e is the principal point distance e between the positive lens and the negative lens. Exceeding the lower limits of (Equation 10) and (Equation 11) means that the air gap between the third lens group positive lens X and the negative lens Y becomes large, and the height of the axial ray incident on the negative lens Y is high. The effect of the concave surface is weakened due to the decrease of the light intensity, and a coma flare due to a light beam below the principal ray L shown in FIG. Further, since the third lens group positive lens has a weak refractive power and the negative lens element has a strong refractive power, the Petzval sum becomes large on the negative side, which is not preferable. When the upper limit is exceeded, the principal point position of the third lens unit is not located in front of the third lens unit, which does not contribute to downsizing of the lens system.

【0037】[0037]

【数12】 [Equation 12]

【0038】は第3群と第4群間の空気間隔に関する条
件式であり、Lwは無限遠物点のときの広角端での第3
群と第4群の空気間隔であり、f4は第4群の焦点距離
を示している。下限を越えると、合焦のための第4群の
移動空間が不足するので、撮影至近距離の短縮およびテ
レセントリック系の条件に反し、第4群に入射する軸外
光線高が低くなるので、倍率色収差の補正も不利であ
る。上限を越えると、第4群に入射する軸外光線が高く
なり、光量確保のために第4群レンズ外径を大きくする
ことになるので、コンパクト化に反する。
Is a conditional expression relating to the air gap between the third group and the fourth group, and Lw is the third group at the wide-angle end when the object point is at infinity.
The air distance between the fourth lens unit and the fourth lens unit, and f4 represents the focal length of the fourth lens unit. When the value goes below the lower limit, the moving space of the fourth lens unit for focusing becomes insufficient, so that the off-axis ray height incident on the fourth lens unit becomes low against the shortened close-up distance of the photographing and the conditions of the telecentric system. Correction of chromatic aberration is also disadvantageous. If the upper limit is exceeded, the off-axis rays entering the fourth lens group will become high, and the outer diameter of the fourth lens group will be increased in order to secure the amount of light, which is against compactness.

【0039】[0039]

【数13】 [Equation 13]

【0040】は、望遠端における第2群の微小移動量に
対する像面での位置感度を表すものであり、β2,β3
及びβ4は、望遠端における無限遠物点のときの第2
群,第3群及び第4群の横倍率をそれぞれ示している。
変倍または物体距離の変化に伴う像面変動を第4群で補
正する方式では、変倍機能を備えた第2群の移動ととも
に、第4群が物体側に凸状の軌跡をなして移動するの
で、オートフォーカスに際して、モーター等による制御
が困難にならないように、第4群の移動曲線を定めるこ
とが必要である。
Represents the position sensitivity on the image plane with respect to the minute movement amount of the second lens unit at the telephoto end, and β2 and β3
And β4 are the second values at infinity at the telephoto end.
The lateral magnifications of the group, the third group, and the fourth group are shown, respectively.
In the method of correcting the image plane variation due to the magnification change or the change of the object distance by the fourth lens group, the fourth lens group moves along a convex locus toward the object side together with the movement of the second lens group having the variable magnification function. Therefore, it is necessary to determine the movement curve of the fourth group so that control by a motor or the like does not become difficult during autofocus.

【0041】下限を越えると、第2群の移動量が大きく
なりコンパクト化に反する。上限値を越えると、第2群
の位置感度や偏芯感度が厳しくなって、レンズ系の組立
に支障をきたし、無限遠物点における望遠端付近での第
2群に対する第4群の移動量の変化も激しくなって、モ
ーター等によるオートフォーカスの制御が困難となる。
特開平4−310910号公報では、この範囲が1.2
〜1.6である。高変倍化およびコンパクト化のために
(数13)の範囲がフォーカス制御が難しくなる方向に
シフトした。しかし、機構的に改善して、制御技術を向
上させることができる。例えば、第2群の位置を制御す
るズームエンコーダーの分解能を上げることにより、第
4群の移動量が少なくなり、オートフォーカスの制御が
可能となる。よって、この範囲も実用的である。
When the value goes below the lower limit, the movement amount of the second lens unit becomes large, which is against the compactness. If the upper limit is exceeded, the positional sensitivity and eccentricity sensitivity of the second group will become severe, which will interfere with the assembly of the lens system and the amount of movement of the fourth group with respect to the second group near the telephoto end at infinity. The change in the value becomes severe, and it becomes difficult to control the autofocus by the motor or the like.
In JP-A-4-310910, this range is 1.2.
~ 1.6. Due to the high zoom ratio and compactness, the range of (Equation 13) is shifted in the direction in which focus control becomes difficult. However, mechanical improvements can be made to improve control technology. For example, by increasing the resolution of the zoom encoder that controls the position of the second lens unit, the amount of movement of the fourth lens unit is reduced, and autofocus control becomes possible. Therefore, this range is also practical.

【0042】これらの条件を満たす実施例1〜4を以下
の表に示す。表中r1,r2,・ ・ ・ は物体側から順に数え
たレンズ各面の曲率半径、d1,d2,・ ・ ・ は各レンズの
肉厚及び空気間隔、n1,n2,・ ・ ・ は各レンズのd線に
おける屈折率、ν1,ν2,・ ・・ はd線を基準にするアッ
ベ数である。r21とr22とは水晶フィルタや撮像素子の
硝子板等に相当する等価平行平面硝子の屈折面を示す。
また、各実施例の収差性能図は、広角端、中間及び望遠
端におけるものを図4から図15に順に示し、全系の焦
点距離をf、FナンバーをF/、そして画角を2ωとし
て示している。非球面係数A,B,C,Dは次式
Examples 1 to 4 satisfying these conditions are shown in the following table. In the table, r1, r2, ··· are the radii of curvature of each lens surface counted from the object side, d1, d2, · · · are the wall thickness and air gap of each lens, and n1, n2, · · · are each lens , D1, and ν1, ν2, ··· are Abbe numbers based on the d line. r21 and r22 are refracting surfaces of an equivalent parallel plane glass corresponding to a crystal filter or a glass plate of an image pickup device.
Further, the aberration performance diagrams of the respective examples are shown in order from FIG. 4 to FIG. 15 at the wide-angle end, the middle and the telephoto end, and the focal length of the entire system is f, the F number is F /, and the angle of view is 2ω. Shows. The aspherical coefficients A, B, C, D are calculated by

【0043】[0043]

【数14】 [Equation 14]

【0044】で与えるものとする。但し、光軸方向をx
軸、光軸からの距離をh、rを基準球面の曲率半径とす
る。
Shall be given in. However, the optical axis direction is x
The distance from the axis and the optical axis is h, and r is the radius of curvature of the reference spherical surface.

【0045】(実施例1)(Example 1)

【0046】[0046]

【表1】 [Table 1]

【0047】(実施例2)(Example 2)

【0048】[0048]

【表2】 [Table 2]

【0049】(実施例3)(Example 3)

【0050】[0050]

【表3】 [Table 3]

【0051】(実施例4)(Example 4)

【0052】[0052]

【表4】 [Table 4]

【0053】[0053]

【発明の効果】以上の説明から明らかなように、本発明
のレンズ構成と条件のもとで、Fナンバーが1.4〜1.
6、変倍比が10〜12倍程度のコンパクトで高性能な
ビデオカメラ用ズームレンズを非球面1面を含む11枚
の構成枚数で実現することができる。
As is apparent from the above description, under the lens structure and conditions of the present invention, the F number is 1.4 to 1.
6. It is possible to realize a compact and high-performance zoom lens for a video camera having a zoom ratio of about 10 to 12 with 11 constituent elements including one aspherical surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】第3レンズ群の主点位置を示す図FIG. 1 is a diagram showing a principal point position of a third lens group.

【図2】本発明における軸上と軸外の光路図FIG. 2 is an on-axis and off-axis optical path diagram in the present invention.

【図3】本発明の実施例における構成図FIG. 3 is a configuration diagram of an embodiment of the present invention.

【図4】実施例1における広角端での収差性能を示す図FIG. 4 is a diagram showing aberration performance at the wide-angle end in Embodiment 1.

【図5】実施例1における中間位置での収差性能を示す
FIG. 5 is a diagram showing aberration performance at an intermediate position in Example 1.

【図6】実施例1における望遠端での収差性能を示す図6 is a diagram showing aberration performance at the telephoto end in Embodiment 1. FIG.

【図7】実施例2における広角端での収差性能を示す図7 is a diagram showing aberration performance at the wide-angle end in Embodiment 2. FIG.

【図8】実施例2における中間位置での収差性能を示す
FIG. 8 is a diagram showing aberration performance at an intermediate position in Example 2.

【図9】実施例2における望遠端での収差性能を示す図9 is a diagram showing aberration performance at the telephoto end in Embodiment 2. FIG.

【図10】実施例3における広角端での収差性能を示す
FIG. 10 is a diagram showing aberration performance at the wide-angle end in Embodiment 3.

【図11】実施例3における中間位置での収差性能を示
す図
FIG. 11 is a diagram showing aberration performance at an intermediate position in Example 3;

【図12】実施例3における望遠端での収差性能を示す
FIG. 12 is a diagram showing aberration performance at the telephoto end in Embodiment 3.

【図13】実施例4における広角端での収差性能を示す
FIG. 13 is a diagram showing aberration performance at the wide-angle end in Embodiment 4.

【図14】実施例4における中間位置での収差性能を示
す図
FIG. 14 is a diagram showing aberration performance at an intermediate position in Example 4.

【図15】実施例4における望遠端での収差性能を示す
FIG. 15 is a diagram showing aberration performance at the telephoto end in Embodiment 4.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、接合正レンズとメニス
カス正レンズとの3枚で構成された正の屈折力の第1群
と、メニスカス負レンズと接合負レンズとの3枚で構成
された倍率を変倍する機能を備えた負の屈折力の第2群
と、両凸の物体側に非球面を施した正レンズと像側凸の
メニスカス負レンズとの2枚で構成された正の屈折力の
第3群と、そして接合正レンズと正レンズとの3枚で構
成された変倍または物体距離の変化に伴う像面変動を補
正する機能を備えた正の屈折力の第4群とから構成さ
れ、開口絞りを前記第3群の正レンズの物体側に配置
し、前記第3群の正レンズと負レンズとの空気間隔をd
13、前記第3群の焦点距離をf3、前記第3群負レン
ズのd線における屈折率をn3n、アッベ数をν3nと
するとき、 【数1】 【数2】 を満足することを特徴とするズームレンズ。
1. A first lens unit having a positive refracting power composed of a cemented positive lens and a meniscus positive lens in order from the object side, and a meniscus negative lens and a cemented negative lens. A second lens unit having a negative refracting power, which has a function of changing the magnification, a positive lens having a biconvex positive lens having an aspherical surface on the object side and a negative meniscus lens having an image side convex surface. A third lens unit having a refractive power, and a fourth lens unit having a positive refractive power having a function of correcting an image plane variation due to zooming or a change in object distance, which is composed of three cemented positive lenses and a positive lens. And an aperture stop is arranged on the object side of the positive lens of the third group, and the air gap between the positive lens and the negative lens of the third group is d.
13, the focal length of the third lens unit is f3, the refractive index of the third lens unit negative lens at the d-line is n3n, and the Abbe number is ν3n. [Equation 2] A zoom lens characterized by satisfying.
【請求項2】 第3群正レンズの焦点距離をf31、第
3群負レンズの焦点距離をf32、正レンズと負レンズ
の主点間隔をe、広角端での無限遠物点のときの第3群
と第4群との空気間隔をLw、第4群の焦点距離をf
4、そして望遠端における無限遠物点のときの第2群,
第3群及び第4群の横倍率をそれぞれβ2,β3及びβ
4としたとき、 【数3】 【数4】 【数5】 【数6】 を満足することを特徴とする請求項1記載のズームレン
ズ。
2. A focal length of the third lens group positive lens is f31, a focal length of the third lens group negative lens is f32, a principal point distance between the positive lens and the negative lens is e, and an object point at infinity at the wide angle end is used. The air distance between the third group and the fourth group is Lw, and the focal length of the fourth group is f
4 and the second group at infinity at the telephoto end,
The lateral magnifications of the third group and the fourth group are β2, β3, and β, respectively.
When set to 4, [Equation 4] [Equation 5] [Equation 6] The zoom lens according to claim 1, wherein
JP8596593A 1993-04-13 1993-04-13 Zoom lens Pending JPH06300968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8596593A JPH06300968A (en) 1993-04-13 1993-04-13 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8596593A JPH06300968A (en) 1993-04-13 1993-04-13 Zoom lens

Publications (1)

Publication Number Publication Date
JPH06300968A true JPH06300968A (en) 1994-10-28

Family

ID=13873456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8596593A Pending JPH06300968A (en) 1993-04-13 1993-04-13 Zoom lens

Country Status (1)

Country Link
JP (1) JPH06300968A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124984A (en) * 1996-12-13 2000-09-26 Nikon Corporation Variable magnification optical zoom lens system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124984A (en) * 1996-12-13 2000-09-26 Nikon Corporation Variable magnification optical zoom lens system

Similar Documents

Publication Publication Date Title
US6545819B1 (en) Zoom lens and optical apparatus having the same
JP4612823B2 (en) Zoom lens and imaging apparatus having the same
JP5495800B2 (en) Optical system and imaging apparatus having the same
JP5455572B2 (en) Zoom lens and imaging apparatus having the same
JP4773807B2 (en) Zoom lens and imaging apparatus having the same
JPH1039210A (en) Zoom lens
JPH09325274A (en) Zoom lens
JP3200925B2 (en) Zoom lens with wide angle of view
JP2005234460A (en) Zoom lens and imaging apparatus provided with the same
JPH05188294A (en) Inverse telephoto type large-aperture wide-angle lens
JP4593971B2 (en) Zoom lens and imaging apparatus having the same
JP2000338397A (en) Zoom lens
JPH11305124A (en) Zoom lens and optical instrument using the zoom lens
JPH07199070A (en) Zoom lens
JP3160846B2 (en) Telephoto zoom lens
JP3184581B2 (en) Zoom lens
JP3029148B2 (en) Rear focus zoom lens
JPH07225339A (en) Zoom lens
JPH0727976A (en) Small-sized two-group zoom lens system
JP4817551B2 (en) Zoom lens
JP4838899B2 (en) Zoom lens and optical apparatus using the same
JPH08146297A (en) Zoom lens of large aperture diameter
JPH11211982A (en) Zoom lens
JP2001033700A (en) Zoom lens
JPH0627376A (en) Zoom lens of rear focusing type