JPH06300806A - Device for monitoring ground fault of electric installation - Google Patents

Device for monitoring ground fault of electric installation

Info

Publication number
JPH06300806A
JPH06300806A JP5066379A JP6637993A JPH06300806A JP H06300806 A JPH06300806 A JP H06300806A JP 5066379 A JP5066379 A JP 5066379A JP 6637993 A JP6637993 A JP 6637993A JP H06300806 A JPH06300806 A JP H06300806A
Authority
JP
Japan
Prior art keywords
zero
circuit
ground fault
phase current
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5066379A
Other languages
Japanese (ja)
Other versions
JP2609793B2 (en
Inventor
Matsutaro Tsukuda
松太郎 佃
Yoshikazu Inoue
善和 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI DENKI HOAN KYOKAI
Original Assignee
KANSAI DENKI HOAN KYOKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI DENKI HOAN KYOKAI filed Critical KANSAI DENKI HOAN KYOKAI
Priority to JP5066379A priority Critical patent/JP2609793B2/en
Publication of JPH06300806A publication Critical patent/JPH06300806A/en
Application granted granted Critical
Publication of JP2609793B2 publication Critical patent/JP2609793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly carry out precautions of a ground fault, by detecting an omen of the ground by an omen detecting circuit to generate an alarm, and simultaneously by storing and outputting the zero phase voltage and zero phase current in a fixed period before and after the omen detection necessary to investigate the cause thereof by a waveform storage circuit. CONSTITUTION:The zero phase voltage V0 and zero phase current I0 of customer's power receiving facilities, etc., are monitored by an omen detecting circuit A, and the omen of the ground is detected. In the magnitudes and phases of the voltage V0 and current I0 obtained by Fourier transforms 6, 7 through A/D converters 4, 5, when three conditions that both the voltage V0 and current I0 are over a set value, the phase difference of the voltage V0 and current I0 is in a fixed angle range, and the magnitude of the high frequency component of the voltage V0 is over a set value are simultaneously brought into existence and continued during a fixed time, the omen is detected by a judging circuit 8, and the alarm is given by an alarm output 9. Next, in a waveform storage circuit B, the waveforms of the voltage V0 and current I0 during a fixed period before and after the omen detection are stored in a memory 11 and read through an output part 12 in cause analyzing time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電気設備の零相電圧
0と零相電流I0により、地絡事故の予兆を検出して警
報すると共に、その前後の零相電圧V0と零相電流I0
記憶して、地絡事故の未然防止および、事故点探索の容
易化による迅速な保守作業を可能とする電気設備の地絡
監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects a warning sign of a ground fault accident by a zero-phase voltage V 0 and a zero-phase current I 0 of an electric equipment and gives an alarm, and a zero-phase voltage V 0 and zero before and after the warning. The present invention relates to a ground fault monitoring device for electric equipment, which stores a phase current I 0 , prevents a ground fault from occurring, and enables quick maintenance work by facilitating search for a fault point.

【0002】[0002]

【従来の技術】配電系統等において絶縁劣化等の原因
で、地絡事故が発生することがある。この対策として従
来は、地絡保護継電器を設け、地絡事故発生時に事故設
備を系統から切離している。
2. Description of the Related Art A ground fault may occur in a power distribution system or the like due to insulation deterioration or the like. As a countermeasure against this, conventionally, a ground fault protection relay has been installed to disconnect the accident equipment from the system when a ground fault occurs.

【0003】この地絡保護継電器は、保護対象設備の零
相電圧V0と零相電流I0を検出し、その大きさが双方共
に基準レベルを上回り、かつ零相電圧V0と零相電流I0
の位相差が所定範囲内にあって地絡が自設備側で発生し
ていることを示している状態が、一定期間続いたとき地
絡事故と判定し、トリップ動作を行う。
This ground fault protection relay detects the zero-phase voltage V 0 and the zero-phase current I 0 of the equipment to be protected, both magnitudes of which exceed the reference level, and the zero-phase voltage V 0 and the zero-phase current. I 0
When the phase difference of is within a predetermined range and a ground fault is occurring on the self-equipment side continues for a certain period of time, it is determined to be a ground fault accident and a trip operation is performed.

【0004】[0004]

【発明が解決しようとする課題】上記地絡保護継電器
は、地絡事故の発生後に、事故設備をトリップさせる事
後対応の装置で、事前の予報はしない。また、地絡時の
零相電流等を記録として残すものでもないので事故原因
及び事故点探索には役立たない。
The above-mentioned ground fault protection relay is an after-action device that trips accident equipment after a ground fault occurs, and does not make advance forecasts. Moreover, since it does not record the zero-phase current at the time of a ground fault as a record, it is not useful for searching the cause and accident point.

【0005】電気設備を保安管理をする立場からは、事
前の対策が要求される。すなわち事前に地絡事故の起り
そうな箇所を発見し、その部分を補修して未然に地絡事
故を防止する必要がある。
From the standpoint of security management of electrical equipment, advance measures are required. In other words, it is necessary to find a place where a ground fault accident is likely to occur in advance and repair the portion to prevent the ground fault accident.

【0006】ところで、地絡事故は一般に絶縁劣化の進
行の結果として起こるものである。この見地から、本発
明者は、地絡が起りそうな箇所には、その予兆として零
相電圧V0と零相電流I0に、地絡の種類によって特徴付
けられる変化(地絡保護継電器では検出されない小さな
レベル)が現れるのではないかと考えた。
By the way, a ground fault accident generally occurs as a result of progress of insulation deterioration. From this point of view, the present inventor has found that, in a place where a ground fault is likely to occur, the zero-phase voltage V 0 and the zero-phase current I 0 change as a sign of the change, which is characterized by the type of ground fault (in the ground fault protection relay, I thought that a small level that could not be detected would appear.

【0007】そこで、保安管理をしようとする設備に、
零相電圧V0と零相電流I0の測定器を設置し、その波形
を観測することを試みた。この方法によれば、地絡事故
の事前予報が得られ、その波形によって識別される地絡
の種類から事故予想箇所を絞り込むことができ、これに
よって、地絡事故の未然防止という目的が達成できるこ
とがわかった。
[0007] Therefore, in equipment for security management,
An attempt was made to install a measuring instrument for zero-phase voltage V 0 and zero-phase current I 0 and observe the waveforms. According to this method, it is possible to obtain a preliminary forecast of a ground fault and narrow down the expected location of the fault based on the type of ground fault identified by the waveform, thereby achieving the purpose of preventing a ground fault. I understood.

【0008】しかし、上記予兆は地絡事故の起る直前の
短期間にのみ発生するものであり、保安管理のためこれ
を常時監視するのは、現実的には不可能である。
However, the above sign occurs only in a short period immediately before the occurrence of the ground fault, and it is practically impossible to constantly monitor it for security management.

【0009】この予兆を地絡事故の予防対策として利用
するためには、この予兆を的確に検出して警報するとと
もに、この期間の零相電圧V0と零相電流I0を記録する
必要がある。
In order to utilize this sign as a preventive measure for a ground fault, it is necessary to detect this sign accurately and issue an alarm, and record the zero-phase voltage V 0 and the zero-phase current I 0 during this period. is there.

【0010】この予兆検出を、前記地絡保護継電器の検
出回路を利用し、その感度を向上させて行うことも考え
られる。しかし、これは、動作原理上不適当である。
It is also conceivable that the sign detection is performed by using the detection circuit of the ground fault protection relay to improve its sensitivity. However, this is unsuitable in operation principle.

【0011】すなわち、地絡保護継電器の検出回路はア
ナログ回路で構成され、検出対象とする零相電圧V0
零相電流I0の商用周波数成分を取出すのに、フィルタ
を採用している。このため、一般にフィルタにおいて位
相遅れと波形歪みが発生する。したがって、地絡事故の
際に生じる変化より、かなり小さな変化である予兆を検
出しようとすると誘導等によって生じるノイズと区別す
ることが困難で、的確な警報を出せない。
That is, the detection circuit of the ground fault protection relay is composed of an analog circuit, and a filter is adopted to extract the commercial frequency components of the zero-phase voltage V 0 and the zero-phase current I 0 to be detected. Therefore, in general, phase delay and waveform distortion occur in the filter. Therefore, if it is attempted to detect a sign that is a change that is considerably smaller than the change that occurs in the case of a ground fault, it is difficult to distinguish it from noise caused by guidance, etc., and an accurate warning cannot be issued.

【0012】また、予兆が検出できたとしても、検出後
に記録を開始したのでは、不良原因の解明および不良箇
所の特定には不十分である。地絡の原因を特徴づける変
化は、予兆であると判断した変化開始時の波形そのもの
に、最もよく表れるからである。
Even if the sign can be detected, if the recording is started after the sign is detected, it is not sufficient to elucidate the cause of the defect and specify the defective portion. This is because the change that characterizes the cause of the ground fault most often appears in the waveform itself at the start of the change that is determined to be a precursor.

【0013】そこで、この発明は地絡の原因となりそう
な変化をノイズと区別して精度高く検出し、警報出力す
ると同時に、原因究明に必要かつ十分な期間の零相電圧
0と零相電流I0を、検出の前後に亘って記憶する装置
を提案することにより、電気設備の保護管理における地
絡事故の予防措置を迅速に行うことを目的とする。
[0013] Therefore, the present invention detects high accuracy to distinguish it likely changes cause ground fault and noise, and at the same time alarm output, necessary and sufficient zero-phase voltage V 0 and zero-phase current I of the period cause investigation By proposing a device that stores 0 before and after detection, it is an object to promptly take preventive measures against a ground fault in protection management of electric equipment.

【0014】[0014]

【課題を解決するための手段】この発明が提供する地絡
監視装置1の基本構成(請求項1に対応)は、予兆検
出回路Aで、電気設備の地絡の予兆を検出して警報を発
生し、同時に、波形記憶回路Bで、その原因を検討する
ために必要な予兆検出前後所定期間の零相電圧V0と零
相電流I0を記憶し、管理者に呼び出されたとき、この
記憶内容を出力するものである。
The basic configuration (corresponding to claim 1) of the ground fault monitoring apparatus 1 provided by the present invention is a sign detection circuit A, which detects a sign of a ground fault of an electric equipment and issues an alarm. At the same time, the waveform memory circuit B stores the zero-phase voltage V 0 and the zero-phase current I 0 for a predetermined period before and after the sign detection in order to examine the cause, and when called by the administrator, this The stored contents are output.

【0015】この予兆検出回路Aと波形記憶回路Bは、
以下の要素から構成される。
The sign detection circuit A and the waveform storage circuit B are
It consists of the following elements.

【0016】すなわち、予兆検出回路Aは、監視対象と
する電気設備に設置される零相電圧センサ2及び零相電
流センサ3と、両センサ2,3の出力をデジタル化する
A/Dコンバータ4,5と、デジタル変換された零相電
圧V0と零相電流I0をフーリエ変換し、商用周波数成分
の大きさ及び位相を算出するフーリエ変換回路6,7
と、フーリエ変換回路6,7の出力する商用周波数の零
相電圧V0と零相電流I0の大きさが、共に、地絡の予兆
を検出すべく設定された値を越え、かつ、この商用周波
数の零相電圧V0と零相電流I0の位相差が設定範囲内に
あって、地絡原因が監視対象設備側にあることを示す状
態が所定時間継続したとき、地絡と判定してトリガ信号
を出力する判定回路8と、このトリガ信号を警報信号と
して外部に出力する警報出力部9とから構成される。
That is, the sign detection circuit A includes a zero-phase voltage sensor 2 and a zero-phase current sensor 3 installed in an electric equipment to be monitored, and an A / D converter 4 for digitizing outputs of both sensors 2 and 3. , 5 and the digitally converted zero-phase voltage V 0 and zero-phase current I 0 are Fourier-transformed to calculate the magnitude and phase of the commercial frequency component.
And the magnitudes of the commercial phase zero-phase voltage V 0 and zero-phase current I 0 output from the Fourier transform circuits 6 and 7 both exceed the values set to detect the sign of the ground fault, and When the phase difference between the zero-phase voltage V 0 and the zero-phase current I 0 at the commercial frequency is within the set range, and the state indicating that the ground fault cause is on the monitored equipment side continues for a predetermined time, it is determined as a ground fault. And a warning output section 9 for outputting the trigger signal as an alarm signal to the outside.

【0017】また波形記憶回路Bは、A/Dコンバータ
4,5の出力する上記零相電圧V0と零相電流I0を、過
去に一定時間遡って常時保持するバッファ回路10と、
上記トリガ信号が発生したとき、上記バッファ回路10
の保持データを取出すことにより、不良原因検討に必要
となるトリガ信号発生前後所定期間の零相電圧V0と零
相電流I0を記憶する波形記憶メモリ11と、この波形
記憶メモリ11に記録された零相電圧V0と零相電流I0
を出力する記憶データ出力部12とから構成される。
Further, the waveform storage circuit B includes a buffer circuit 10 for constantly holding the zero-phase voltage V 0 and the zero-phase current I 0 output from the A / D converters 4 and 5 for a certain period of time in the past.
When the trigger signal is generated, the buffer circuit 10
By taking out the held data of, the waveform storage memory 11 for storing the zero-phase voltage V 0 and the zero-phase current I 0 for a predetermined period before and after the generation of the trigger signal, which is necessary for examining the cause of the defect, and the waveform storage memory 11 are recorded. Zero phase voltage V 0 and zero phase current I 0
And a stored data output unit 12 for outputting

【0018】さらに上記基本構成に、検出精度及び信頼
性を向上するために付加される回路として、次の回路
(夫々請求項2,3,4に対応)を提供する。
Further, the following circuit (corresponding to claims 2, 3 and 4 respectively) is provided as a circuit added to the above basic configuration to improve detection accuracy and reliability.

【0019】 PLL回路13……電源同期信号を作
成し、これを逓倍したクロック信号で A/Dコンバー
タ4,5のサンプリングタイミングを決定するととも
に、この電源同期信号でフーリエ変換回路6,7の各演
算周期を決定する。
PLL circuit 13 ... Generates a power supply synchronization signal, determines the sampling timing of the A / D converters 4 and 5 by a clock signal obtained by multiplying the power supply synchronization signal, and uses the power supply synchronization signal to determine the Fourier transform circuits 6 and 7. Determine the calculation cycle.

【0020】 パルスカウント回路14……零相電流
センサ3の出力する零相電流I0を監視し、一定レベル
を越える過大パルスが所定期間内に所定個数発生したと
き、地絡事故と判定して強制的に、警報信号となり記憶
の開始信号となる上記トリガ信号を発生する。
Pulse count circuit 14 ... Monitors the zero-phase current I 0 output by the zero-phase current sensor 3, and when a predetermined number of excessive pulses exceeding a certain level occur within a predetermined period, it is determined that a ground fault has occurred. The trigger signal is compulsorily generated as an alarm signal and a storage start signal.

【0021】 雷ノイズ除去回路15……フーリエ変
換回路6,7に、雷ノイズの到来によっては発生しない
所定次数の高調波を算出させ、これが一定レベルを越え
ないとき、予兆検出回路Aのトリガ信号の発生を禁止す
る。この回路15は判定回路8の内部に組込まれる。
Lightning noise removal circuit 15: causes the Fourier transform circuits 6 and 7 to calculate a harmonic of a predetermined order that does not occur due to the arrival of lightning noise, and when this does not exceed a certain level, the trigger signal of the sign detection circuit A Is prohibited. This circuit 15 is incorporated in the determination circuit 8.

【0022】[0022]

【作用】上記基本構成 は、判定回路8が地絡の前兆
となる現象を検出したとき、その原因を検討するために
必要な検出前後所定期間の零相電圧V0と零相電流I0
波形をデジタル化して記憶する。
In the basic configuration described above, when the determination circuit 8 detects a phenomenon that is a precursor of a ground fault, the zero-phase voltage V 0 and the zero-phase current I 0 for a predetermined period before and after detection, which are necessary for examining the cause, are determined. The waveform is digitized and stored.

【0023】判定回路8における予兆検出は、フーリエ
変換して得た、零相電圧V0と零相電流I0の商用周波数
成分の大きさが、ともに地絡事故の予兆を示す所定値を
越え、かつその電流と電圧の位相差が監視対象とする設
備側のものであることを示す角度範囲内であるという条
件が、所定時間続いたという条件によって行われる。
In the sign detection in the judgment circuit 8, the magnitudes of the commercial frequency components of the zero-phase voltage V 0 and the zero-phase current I 0 obtained by Fourier transform both exceed a predetermined value indicating the sign of the ground fault. The condition that the phase difference between the current and the voltage is within the angle range indicating that it is on the equipment side to be monitored is performed under the condition that the predetermined time has continued.

【0024】この判断は、フーリエ変換して得たデータ
に対して行うので精度が高く、判定レベル(大きさ、位
相、継続時間)のマージン(裕度)を小さくしても、誘
導ノイズの影響を受けにくい。したがって誤検出を少な
くして、高感度且つ高速に予兆を検出できる。
Since this judgment is performed on the data obtained by the Fourier transform, the accuracy is high, and even if the margin (margin) of the judgment level (size, phase, duration) is reduced, the influence of induced noise It is hard to receive. Therefore, erroneous detection can be reduced, and a sign can be detected with high sensitivity and high speed.

【0025】また、予兆検出前後の波形記憶は、バッフ
ァ回路10が常に直前のデータを一時記憶し、前記予兆
検出でトリガ信号が発生したとき、バッファ回路10に
保持されていた一定期間前のデータと、これに続く所定
期間のデータを波形記憶メモリ11に記録する。これに
よって、不良原因の追求に必要なデータのみが記録さ
れ、記憶回路の構成を簡素化できると同時に、波形解析
が容易になる。
In the waveform storage before and after the sign detection, the buffer circuit 10 always temporarily stores the immediately preceding data, and when a trigger signal is generated by the sign detection, the data held in the buffer circuit 10 for a certain period before. Then, the data for a predetermined period following this is recorded in the waveform storage memory 11. As a result, only the data necessary for pursuing the cause of the defect are recorded, the structure of the memory circuit can be simplified, and at the same time, the waveform analysis becomes easy.

【0026】上記 のPLL回路13を付加したもの
は、A/Dコンバータ4,5のサンプリングタイミング
及びフーリエ変換回路6,7の演算周期を、系統電圧に
同期させる。これによって、予兆検出の精度と記憶され
る零相電圧V0と零相電流I0の精度を高める。
With the addition of the PLL circuit 13 described above, the sampling timing of the A / D converters 4 and 5 and the operation cycle of the Fourier transform circuits 6 and 7 are synchronized with the system voltage. This improves the accuracy of the sign detection and the accuracy of the stored zero-phase voltage V 0 and zero-phase current I 0 .

【0027】上記 のパルスカウント回路14を付加
したものは、突発的な原因で地絡事故が発生した場合
に、高速に検出を行ない(例えば商用周波の1サイク
ル)、原因の究明と事故点探索に最も必要な地絡前後の
波形の記憶を可能とする。
In the case where the above pulse count circuit 14 is added, when a ground fault accident occurs due to a sudden cause, it is detected at high speed (for example, one cycle of commercial frequency), the cause is investigated and the accident point is searched. It enables the storage of the waveforms before and after the ground fault that is most necessary for.

【0028】上記 の雷ノイズ除去回路15を付加し
たものは、雷ノイズ発生によって、上述した商用周波数
の零相電圧V0と零相電流I0に関する大きさと位相の所
定条件が成立しても、これによっては予兆検出回路Aに
トリガ信号を発生させないようにし、管理者に必要な警
報と記憶データのみが報告されるようにする。
With the lightning noise removing circuit 15 added, even if the predetermined conditions of magnitude and phase for the zero-phase voltage V 0 and the zero-phase current I 0 at the commercial frequency are satisfied due to the occurrence of lightning noise, As a result, the trigger signal is not generated in the sign detection circuit A, and only the necessary alarm and stored data are reported to the administrator.

【0029】[0029]

【実施例】図1に示す構成は、上述した基本構成
に、付加回路 の全てを組み込んだものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration shown in FIG. 1 is the basic configuration described above.
It incorporates all the additional circuits.

【0030】Aは予兆検出回路で、需要家受電設備等の
零相電圧V0と零相電流I0を監視し、地絡の予兆を検出
する。この回路の構成要素を次に説明する。
A sign detection circuit A detects a sign of a ground fault by monitoring the zero-phase voltage V 0 and the zero-phase current I 0 of the customer power receiving equipment or the like. The components of this circuit are described next.

【0031】2は零相電圧センサ、3は零相電流センサ
で、夫々監視対象とする受電系統に図2に示すように設
置される。なお、図2において、16は配電用ケーブ
ル、17は受電トランス、18は受電設備側配線(構内
配線等)、19は需要家の地絡保護継電器、20は負荷
設備である。
Reference numeral 2 is a zero-phase voltage sensor, and reference numeral 3 is a zero-phase current sensor, which are respectively installed in the power receiving system to be monitored as shown in FIG. In FIG. 2, 16 is a power distribution cable, 17 is a power receiving transformer, 18 is power receiving equipment side wiring (inside wiring, etc.), 19 is a customer's ground fault protection relay, and 20 is load equipment.

【0032】4,5はA/Dコンバータで、上記センサ
2,3の出力を所定のサンプリングタイミングでデジタ
ル化する。なお、このA/D変換のスケールは、波形記
憶回路Bのメモリ容量を有効に利用するため、予兆検出
の対象として用いられる零相電圧V0と零相電流I0の振
幅に対応させてある。すなわち、雷ノイズ等による過大
パルスに対してはオーバーフローし、記憶可能な一定の
最大値を出力する。
Reference numerals 4 and 5 are A / D converters, which digitize the outputs of the sensors 2 and 3 at a predetermined sampling timing. The A / D conversion scale is made to correspond to the amplitudes of the zero-phase voltage V 0 and the zero-phase current I 0 used as targets of the sign detection, in order to effectively use the memory capacity of the waveform storage circuit B. . That is, it overflows with respect to an excessive pulse due to lightning noise or the like and outputs a constant maximum value that can be stored.

【0033】6,7はフーリエ変換回路で、デジタル化
された零相電圧V0と零相電流I0をフーリエ変換し、必
要な周波数の実効値(大きさ)と位相を算出する。この
フーリエ変換は、例えば商用周波数の1サイクル期間を
1演算周期とし、商用周波数と特定次数の高調波成分に
ついて、DFT演算を行う。
Fourier transform circuits 6 and 7 Fourier transform the digitized zero-phase voltage V 0 and zero-phase current I 0 to calculate the effective value (magnitude) and phase of the required frequency. In this Fourier transform, for example, one cycle period of the commercial frequency is set as one calculation cycle, and the DFT calculation is performed on the commercial frequency and the harmonic component of the specific order.

【0034】8は判定回路で、地絡の予兆を検出する。
この予兆検出は、フーリエ変換によって得られた零相電
圧V0と零相電流I0の大きさと位相について、次の条件
(イ)(ロ) (ハ) が同時に成立し、かつ、この状態が所定時
間継続したことによって地絡の予兆と判定する。
Reference numeral 8 is a judging circuit, which detects a sign of a ground fault.
This sign detection has the following conditions regarding the magnitude and phase of the zero-phase voltage V 0 and the zero-phase current I 0 obtained by the Fourier transform.
(A) (b) (c) are established at the same time, and if this state continues for a predetermined time, it is judged as a sign of a ground fault.

【0035】(イ) 商用周波数の零相電圧V0と零相電流
0の大きさ(例えば、実効値)が、共に設定値を越え
ていること。この設定値は、予兆検出を目的とするた
め、地絡保護継電器の動作レベルに比べ、かなり低い値
に設定される。
(A) The magnitudes (for example, effective values) of the zero-phase voltage V 0 and the zero-phase current I 0 at the commercial frequency both exceed the set values. This set value is set to a value considerably lower than the operation level of the ground fault protection relay for the purpose of sign detection.

【0036】(ロ) 商用周波数の零相電圧V0と零相電流
0の位相差が、自設備側の地絡であることを示す所定
の角度範囲にあること。この範囲は、地絡保護継電器で
決める範囲と同様のものであるが、フーリエ変換によっ
て得た精度の高いデータで判断するため、より厳密な値
に設定できる。
(B) The phase difference between the zero-phase voltage V 0 and the zero-phase current I 0 at the commercial frequency is within a predetermined angle range showing that there is a ground fault on the side of the own equipment. This range is the same as the range determined by the ground fault protection relay, but it can be set to a more strict value because it is determined by highly accurate data obtained by Fourier transform.

【0037】(ハ) 零相電圧の所定次数(例えば第32次
あるいは第64次)の高調波成分の大きさが、設定値を
越えていること(前記雷ノイズ除去回路15の機能とし
て与えられる)。この条件は、雷ノイズに対して検出動
作をさせないため設けられるもので、設定値を、この目
的に適合する値とする。これは、雷ノイズが系統電源と
無関係に発生するため、上記高調波成分が含まれないこ
とを利用している。
(C) The magnitude of the harmonic component of a predetermined order (for example, the 32nd order or the 64th order) of the zero-phase voltage exceeds a set value (provided as a function of the lightning noise removing circuit 15). ). This condition is provided to prevent the detection operation against lightning noise, and the set value is a value that meets this purpose. This utilizes the fact that the above harmonic components are not included because lightning noise occurs regardless of the system power supply.

【0038】上記継続の時間は、予兆検出の信頼性を高
めるために設定される。
The above continuation time is set in order to increase the reliability of the sign detection.

【0039】すなわち、判定回路8の判定動作は、フー
リエ変換が商用周波数の1サイクル毎に行なわれるた
め、これと同じ回数行なわれ、継続時間は、この判定に
おいて、前記条件が何回継続したかという条件設定であ
る。この回数を少なくし過ぎると、地絡の予兆ではない
ノイズを検出して誤報をする確率が高くなり、この回数
を大きくすると検出速度が遅くなり、地絡原因解明に最
も必要な異常の始まりを記録し難くする。そこで、この
条件は、3サイクルの異常状態では動作してはならない
という地絡保護継電器の規格にも対応させ、例えば、2
乃至3サイクルと設定される。
That is, the determination operation of the determination circuit 8 is performed the same number of times because the Fourier transform is performed for each cycle of the commercial frequency, and the duration is the number of times the above condition continues in this determination. That is the condition setting. If the number of times is too small, the probability of false alarm by detecting noise that is not a sign of ground fault increases, and if the number of times is increased, the detection speed slows down, and the beginning of the abnormality that is most necessary for clarifying the cause of the ground fault occurs. Make it hard to record. Therefore, this condition also corresponds to the standard of the ground fault protection relay that it should not operate in an abnormal state of 3 cycles, for example, 2
It is set to 3 cycles.

【0040】以上の判定条件を、回路的に表すと、図3
のようになる。すなわち、(イ) 商用周波数の零相電圧V
0と零相電流I0の大きさ(例えば、実効値)が共に設定
値を越えていることを検出するレベル判定回路21、
(ロ) 零相電圧V0と零相電流I0の位相差が所定の角度範
囲にあることを検出する位相差判定回路22、(ハ) 特定
次数の高調波レベルが設定値を超えていないとき出力す
る雷ノイズ除去回路15を設け、各出力の論理積をAN
Dゲート23で得る。そして、ANDゲート23の出力
を継続時間判定回路24に入力し、上記判定条件が2乃
至3サイクル継続したとき、トリガ信号を発生させる。
FIG. 3 is a circuit diagram showing the above judgment conditions.
become that way. That is, (a) commercial-frequency zero-phase voltage V
A level determination circuit 21, which detects that both the magnitude of 0 and the zero-phase current I 0 (for example, the effective value) exceed a set value,
(B) A phase difference determination circuit 22 that detects that the phase difference between the zero-phase voltage V 0 and the zero-phase current I 0 is within a predetermined angle range, and (c) the harmonic level of the specific order does not exceed the set value. A lightning noise removing circuit 15 for outputting when
Obtained at D-gate 23. Then, the output of the AND gate 23 is input to the duration determination circuit 24, and a trigger signal is generated when the determination condition continues for 2 to 3 cycles.

【0041】9は警報出力部で、このトリガ信号をOR
ゲート25を通して受け、警報信号として外部に出力す
る。具体的には、本監視装置1の付近に設置された表示
灯及び発音器で警報すると同時に、電話回線等によって
つながれた保安管理センターに通報する。
Reference numeral 9 is an alarm output section which ORs this trigger signal.
The signal is received through the gate 25 and output as an alarm signal to the outside. Specifically, an alarm is given by a display lamp and a sounder installed near the monitoring device 1, and at the same time, a security management center connected by a telephone line or the like is notified.

【0042】次に波形記憶回路Bについて説明する。こ
の回路Bは、予兆検出前後の所定期間の零相電圧V0
零相電流I0の波形をデジタル量で記憶し、異常原因の
分析時に出力する。この回路Bの構成要素は以下の通り
である。
Next, the waveform storage circuit B will be described. This circuit B stores the waveforms of the zero-phase voltage V 0 and the zero-phase current I 0 for a predetermined period before and after the sign detection in digital amounts and outputs them when analyzing the cause of abnormality. The components of this circuit B are as follows.

【0043】10はバッファ回路で、A/Dコンバータ
4,5の出力する上記零相電圧V0と零相電流I0を、過
去に一定時間遡って常時保持する。この記憶方式は最も
古いデータを捨てつつ、現在データを取り込むもので、
記憶容量は、少なくとも、前記判定回路8の継続時間中
(2乃至3サイクル)のデータを保持できる大きさを確
保する。この容量があれば、異常の始まり以後のデータ
を保存できることになる。
Reference numeral 10 denotes a buffer circuit, which always holds the zero-phase voltage V 0 and the zero-phase current I 0 output from the A / D converters 4 and 5 by going back a certain period in the past. This storage method takes in the current data while discarding the oldest data,
The storage capacity should be at least large enough to hold data for the duration of the determination circuit 8 (2 to 3 cycles). With this capacity, it is possible to store data after the beginning of the abnormality.

【0044】11は波形記憶メモリで、不良原因検討に
必要となるトリガ信号発生前後の所定期間の零相電圧V
0と零相電流I0の波形をデジタル量で記憶する。このメ
モリ11は、上記トリガ信号が発生したとき、上記バッ
ファ回路10の保持データを取り込み、さらに、これ以
後の所定期間のA/Dコンバータ4,5出力を続けて記
憶する。この記憶期間の一例を挙げると、例えば商用周
波数で表して、予兆検出の前2〜3サイクルから予兆検
出の後32サイクル(0.5秒)とする。前側の期間
は、前に述べたように異常開始直後のデータを確保する
ためであり、後側の期間は動作時間を最も長く整定され
る変電所の地絡保護継電器に対応させてある。これ以降
は意味のあるデータが得られないからである。なお、メ
モリ11の記憶容量は、上記予兆検出前後の記憶の1ブ
ロックを複数回分記憶できるものとする。
Reference numeral 11 denotes a waveform storage memory, which is a zero-phase voltage V for a predetermined period before and after the trigger signal is generated, which is necessary for examining the cause of the defect.
The waveforms of 0 and zero-phase current I 0 are stored in digital quantities. The memory 11 takes in the data held in the buffer circuit 10 when the trigger signal is generated, and further stores the outputs of the A / D converters 4 and 5 for a predetermined period thereafter. To give an example of this storage period, for example, it is represented by a commercial frequency, and is set to 2 to 3 cycles before the sign detection and 32 cycles (0.5 seconds) after the sign detection. The front side period is to secure the data immediately after the start of the abnormality as described above, and the rear side period corresponds to the ground fault protection relay of the substation whose operating time is set to the longest. This is because meaningful data cannot be obtained after this. The storage capacity of the memory 11 is such that one block of storage before and after the sign detection can be stored a plurality of times.

【0045】12は記憶データ出力部で、上記波形記憶
メモリ11に記録された零相電圧V 0と零相電流I0の波
形データを、外部からの要求に応じ、RS−232Cと
いったインターフェース回路を通して出力する。
Reference numeral 12 is a storage data output unit, which stores the above waveforms.
Zero-phase voltage V recorded in the memory 11 0And zero-phase current I0Wave of
Shape data to RS-232C according to the request from the outside.
It outputs through the interface circuit.

【0046】13は電源同期信号を作成するPLL回路
で、電源回路26に接続されている。このPLL回路1
3は、この電源同期信号を逓倍(例えば1サイクル期間
を256分割する)したクロック信号を発生し、A/D
コンバータ4,5にサンプリング信号として出力する。
これによって、零相電圧V0と零相電流I0の波形を精度
高くデジタル化することができる。また、この電源同期
信号は、フーリエ変換回路6,7に1回の演算周期を決
定する信号としても与えられる。これにより、フーリエ
変換を商用周波の1サイクル期間毎に正確に行なわせ、
演算精度を確保する。
Reference numeral 13 is a PLL circuit for producing a power supply synchronizing signal, which is connected to the power supply circuit 26. This PLL circuit 1
3 generates a clock signal obtained by multiplying this power supply synchronizing signal (for example, dividing one cycle period into 256), and A / D
It outputs to converters 4 and 5 as a sampling signal.
As a result, the waveforms of the zero-phase voltage V 0 and the zero-phase current I 0 can be digitized with high accuracy. The power supply synchronizing signal is also given to the Fourier transform circuits 6 and 7 as a signal for determining one operation cycle. This allows the Fourier transform to be accurately performed for each cycle period of the commercial frequency,
Secure the calculation accuracy.

【0047】14は地絡事故を高速に検出するパルスカ
ウント回路で、突発的な地絡事故が発生した場合でも、
その原因の検討をするために零相電圧V0と零相電流I0
を記憶するために設けられる。このパルスカウント回路
14は、零相電圧センサ3の出力する零相電流を監視し
一定レベルを越える過大パルスが、所定期間(例えば商
用周波の1サイクル期間)内に所定個数発生したとき、
地絡事故と判定してトリガ信号を発生する。このトリガ
信号は、前記ORゲート25に入力され、警報信号とな
り波形記憶メモリ11に記憶動作を開始させる
Reference numeral 14 is a pulse counting circuit for detecting a ground fault accident at high speed. Even if a sudden ground fault accident occurs,
In order to examine the cause, zero-phase voltage V 0 and zero-phase current I 0
Is provided to store the. The pulse counting circuit 14 monitors the zero-phase current output from the zero-phase voltage sensor 3 and when a predetermined number of excessive pulses exceeding a certain level occur within a predetermined period (for example, one cycle period of commercial frequency),
A trigger signal is generated when it is determined to be a ground fault. This trigger signal is input to the OR gate 25, becomes an alarm signal, and causes the waveform storage memory 11 to start the storage operation.

【0048】上記トリガ信号は、停電時及び自設備の地
絡保護継電器9が動作したときにも発生させている。こ
れは、本監視装置1の記憶機能を有効に利用しようとす
るものである。このために、電源回路27に接続された
停電検出回路27と、自設備の地絡保護継電器19に接
続されたGR動作信号検出器28を設け、各出力を、前
記ORゲート25に入力している。
The trigger signal is also generated during a power failure and when the ground fault protection relay 9 of the own equipment operates. This intends to effectively utilize the storage function of the monitoring device 1. For this purpose, a power failure detection circuit 27 connected to the power supply circuit 27 and a GR operation signal detector 28 connected to the ground fault protection relay 19 of the equipment are provided, and each output is input to the OR gate 25. There is.

【0049】上記地絡監視装置1は、監視対象とする電
気設備に設置されて、次のように使用される。
The ground fault monitoring device 1 is installed in the electrical equipment to be monitored and used as follows.

【0050】上述したように、地絡が検出されトリガ信
号が発生すると、警報出力部9が警報を発生する。警報
を受けて駆けつけた保安要員は、波形記憶回路Bの波形
記憶メモリ11に記憶された、予兆検出前後の零相電圧
0と零相電流I0の波形を、記憶データ出力部12を通
して読み出し、波形解析から地絡原因と不良箇所を推定
する。
As described above, when the ground fault is detected and the trigger signal is generated, the alarm output unit 9 issues an alarm. The security personnel who rushed in response to the alarm read the waveforms of the zero-phase voltage V 0 and the zero-phase current I 0 before and after detection of the sign, which were stored in the waveform storage memory 11 of the waveform storage circuit B, through the storage data output unit 12. , The cause of the ground fault and the defective part are estimated from the waveform analysis.

【0051】この読みだし及び波形解析は、保安要員が
携帯する図4に示すようなラップトップパソコン29を
接続して行なう。このパソコン29には、読み出した零
相電圧V0と零相電流I0のデジタルデータを、スケール
を任意に変化させて、図6,図7,図8に示すようにグ
ラフィック表示させるプログラムがインストールされて
いる。
The reading and the waveform analysis are carried out by connecting a laptop personal computer 29 as shown in FIG. 4 carried by the security personnel. A program for graphically displaying the read digital data of the zero-phase voltage V 0 and the zero-phase current I 0 as shown in FIGS. 6, 7, and 8 is installed in the personal computer 29. Has been done.

【0052】波形解析は、予め実験によって用意された
地絡形態毎のモデル波形と、比較して行う。地絡の形態
には、完全地絡、抵抗地絡、アーク地絡、表面漏洩、ギ
ャップ放電、ケーブルの間欠地絡等といった種類があ
り、夫々が特有の波形を示す。読みだされてグラフィッ
ク表示されるデータは、異常の始まりから定常状態に達
するまでの解析に必要な全期間の波形である。そこで、
全体波形(図6)から特徴部分の波形(図7,図8)へ
とスケールを変えながら表示させ、地絡の種類を判定す
る。
The waveform analysis is performed by comparing with a model waveform for each ground fault form prepared in advance by an experiment. There are various types of ground faults, such as a complete ground fault, a resistance ground fault, an arc ground fault, a surface leak, a gap discharge, and an intermittent ground fault of a cable, each of which exhibits a unique waveform. The data read out and displayed graphically is the waveform of the entire period required for the analysis from the start of the abnormality to the steady state. Therefore,
The overall waveform (FIG. 6) is displayed while changing the scale from the waveform of the characteristic portion (FIGS. 7 and 8) to determine the type of ground fault.

【0053】例えば、図6のデータは、電柱が倒れて地
絡事故を発生した場合の記録データであり、同図中の四
角枠で囲まれた部分の前側を拡大して表示させた図7の
aの時点でアーク地絡が起こり、次に後側の部分を拡大
して表示させた図8の波形から完全地絡の状態となった
ことがわかる。
For example, the data shown in FIG. 6 is recorded data when a utility pole falls down to cause a ground fault, and the front side of the portion surrounded by a square frame in FIG. 6 is enlarged and displayed. It can be seen from the waveform of FIG. 8 that an arc ground fault occurs at the time point a, and the rear side portion is enlarged and displayed next.

【0054】なお、このパソコン29には、読み取った
デジタルデータから零相電圧V0と零相電流I0の実効値
と位相差を演算し、表示する機能(図6,図7,図8の
右側部分の表示)をも持つ。
The personal computer 29 has a function of calculating and displaying the effective value and the phase difference between the zero-phase voltage V 0 and the zero-phase current I 0 from the read digital data (see FIGS. 6, 7 and 8). It also has a display on the right side).

【0055】地絡の種類がわかると、監視対象のどの設
備で不良が発生したのかを推定できる。これによって該
当箇所を調べれば、不良箇所の迅速な補修が可能とな
る。
By knowing the type of ground fault, it is possible to estimate in which equipment to be monitored the defect has occurred. This makes it possible to quickly repair a defective part by checking the corresponding part.

【0056】この読みだしによる波形解析は、図5に示
すように自動遠隔通報装置30を併設して、電話回線を
通じてつながれた保安管理センターのコンピュータによ
って行うことも可能である。
The waveform analysis by this reading can also be carried out by a computer of a security management center connected through a telephone line with an automatic remote notification device 30 as shown in FIG.

【0057】[0057]

【発明の効果】この発明によれば、フーリエ変換によっ
て零相電圧V0と零相電流I0の所定周波数成分を高精度
に取り出し、これによって地絡の予兆検出を行うので、
その判定レベルを厳密に定めることができ、誤検出が少
ない状態で高速検出を可能とする。
According to the present invention, the predetermined frequency components of the zero-phase voltage V 0 and the zero-phase current I 0 are extracted with high accuracy by Fourier transform, and the sign of the ground fault is detected by this.
The determination level can be set precisely, and high-speed detection is possible with few false detections.

【0058】また、零相電圧V0と零相電流I0のA/D
変換を、PLL回路が作成する電源に同期したクロック
信号をサンプリングタイミングとして行うので、波形記
憶回路に記憶されるデータの精度を高くし、波形解析の
信頼性を向上できる。
A / D of zero-phase voltage V 0 and zero-phase current I 0
Since the conversion is performed by using the clock signal synchronized with the power supply created by the PLL circuit as the sampling timing, the accuracy of the data stored in the waveform storage circuit can be increased and the reliability of the waveform analysis can be improved.

【0059】波形記憶回路は、バッファ回路に一定期間
前のデータを常時保持させることにより、地絡の予兆検
出がされてトリガ信号が発生したとき、その前後の所定
期間の零相電圧V0と零相電流I0のデジタル化データを
記憶する。この記憶方式によって、異常発生直後からの
記憶が可能となる。また、この記憶方式は波形解析に必
要なデータのみが残されるという点で、必要な記憶容量
の削減によるコストダウンと、波形解析作業の容易化を
達成できる。これは、監視期間全てのデータを記録する
場合を想像してみれば、よくわかることである。
The waveform storage circuit causes the buffer circuit to always hold the data of a certain period before, so that when the sign of the ground fault is detected and the trigger signal is generated, the zero-phase voltage V 0 in the predetermined period before and after the detection is generated. The digitized data of the zero-phase current I 0 is stored. With this storage method, it is possible to store immediately after the occurrence of the abnormality. Further, in this storage method, only the data necessary for the waveform analysis is left, so that it is possible to reduce the cost by reducing the required storage capacity and facilitate the waveform analysis work. This is clear if one imagines recording all the data during the monitoring period.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の地絡監視装置の一実施例を示すブ
ロック図
FIG. 1 is a block diagram showing an embodiment of a ground fault monitoring device of the present invention.

【図2】 この発明の地絡監視装置を電気設備に取付け
た,通常の監視状態を示す図
FIG. 2 is a diagram showing a normal monitoring state in which the ground fault monitoring device of the present invention is attached to electric equipment.

【図3】 図1の判定回路の機能を表した回路図FIG. 3 is a circuit diagram showing the function of the determination circuit of FIG.

【図4】 地絡の予兆検出後に、パソコンによって、波
形解析を行う状態を示す図
FIG. 4 is a diagram showing a state where waveform analysis is performed by a personal computer after detection of a ground fault sign.

【図5】 保安管理センターへの自動遠隔通報機能を持
たせた実施例を示す図
FIG. 5 is a diagram showing an embodiment having an automatic remote notification function to a security management center.

【図6】 地絡の予兆検出時に記憶された零相電圧V0
と零相電流I0を、パソコンに表示させた全体波形図
FIG. 6 is a zero-phase voltage V 0 stored at the time of detecting a sign of ground fault.
Waveform diagram of the PC and zero-phase current I 0

【図7】 図6の四角枠の前側部分を拡大表示した波形
FIG. 7 is a waveform diagram in which the front portion of the square frame in FIG. 6 is enlarged and displayed.

【図8】 図6の四角枠の後側部分を拡大表示した波形
FIG. 8 is a waveform diagram in which the rear portion of the rectangular frame in FIG. 6 is enlarged and displayed.

【符号の説明】[Explanation of symbols]

A 予兆検出回路 B 波形記憶回路 1 地絡監視装置 2 零相電圧センサ 3 零相電流センサ 4,5 A/Dコンバータ 6,7 フーリエ変換回路 8 判定回路 9 警報出力部 10 バッファ回路 11 波形記憶メモリ 12 記憶データ出力部 13 PLL回路 14 パルスカウント回路 15 雷ノイズ除去回路 29 パソコン A Sign detection circuit B Waveform memory circuit 1 Ground fault monitoring device 2 Zero-phase voltage sensor 3 Zero-phase current sensor 4,5 A / D converter 6,7 Fourier transform circuit 8 Judgment circuit 9 Alarm output unit 10 Buffer circuit 11 Waveform memory memory 12 memory data output unit 13 PLL circuit 14 pulse count circuit 15 lightning noise removal circuit 29 personal computer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気設備の地絡の予兆を検出する予兆検
出回路と、予兆検出時にその原因を検討するために必要
な予兆検出前後所定期間の零相電圧V0と零相電流I0
記憶する波形記憶回路を備えた地絡監視装置であって、 前記予兆検出回路を、 監視対象とする電気設備に設置される零相電圧センサ及
び零相電流センサと、 両センサの出力をデジタル化するA/Dコンバータと、 デジタル変換された零相電圧V0と零相電流I0をフーリ
エ変換し、商用周波数成分の大きさ及び位相を算出する
フーリエ変換回路と、 フーリエ変換回路の出力する商用周波数の零相電圧V0
と零相電流I0の大きさが、共に地絡の予兆を検出すべ
く設定された値を越えた状態と、この商用周波数の零相
電圧V0と零相電流I0の位相差が設定範囲内にあって、
地絡原因が監視対象設備側にあることを示す状態が、同
時に所定時間継続したとき、地絡発生と判定して、警報
信号及び記憶開始の信号となるトリガ信号を出力する判
定回路とから構成し、 前記波形記憶回路を、 A/Dコンバータの出力する上記零相電圧V0と零相電
流I0を、過去に一定時間遡って常時保持するバッファ
回路と、 上記トリガ信号が発生したとき、上記バッファ回路の保
持データを取出すことにより、不良原因検討に必要とな
るトリガ信号発生前後所定期間の零相電圧V0と零相電
流I0を記憶する波形記憶メモリと、 この波形記憶メモリに記録された零相電圧V0と零相電
流I0を出力する記憶データ出力部とから構成した;こ
とを特徴とする電気設備の地絡監視装置。
1. A sign detection circuit for detecting a sign of a ground fault of an electric equipment, and a zero-phase voltage V 0 and a zero-phase current I 0 for a predetermined period before and after sign detection necessary for examining the cause of the sign detection. A ground fault monitoring device having a waveform storage circuit for storing, wherein the sign detection circuit is a zero-phase voltage sensor and a zero-phase current sensor installed in an electric facility to be monitored, and outputs of both sensors are digitized. A / D converter, a Fourier transform circuit for Fourier transforming the digitally converted zero-phase voltage V 0 and zero-phase current I 0 to calculate the magnitude and phase of the commercial frequency component, and a commercial output of the Fourier transform circuit Frequency zero-phase voltage V 0
When the magnitudes of the zero-phase current I 0 and the zero-phase current I 0 both exceed values set to detect the sign of the ground fault, the phase difference between the zero-phase voltage V 0 and the zero-phase current I 0 at the commercial frequency is set. Within range,
When a state indicating that the ground fault is on the monitored equipment side continues for a predetermined time at the same time, it is determined that a ground fault has occurred, and a determination circuit that outputs a warning signal and a trigger signal that is a signal to start storage is configured. Then, the waveform storage circuit, a buffer circuit for always holding the zero-phase voltage V 0 and the zero-phase current I 0 output from the A / D converter by going back a certain time in the past, and when the trigger signal is generated, By taking out the data held in the buffer circuit, a waveform storage memory for storing the zero-phase voltage V 0 and the zero-phase current I 0 in a predetermined period before and after the trigger signal is generated, which is necessary for examining the cause of the defect, and the waveform storage memory are recorded. And a stored data output section for outputting the zero-phase voltage V 0 and the zero-phase current I 0 .
【請求項2】 PLL回路により取出した電源同期信号
を逓倍したクロック信号でA/Dコンバータのサンプリ
ングタイミングを決定し、この電源同期信号でフーリエ
変換回路の演算周期を決定することを特徴とする請求項
1記載の電気設備の地絡監視装置。
2. A clock signal obtained by multiplying a power supply synchronizing signal extracted by a PLL circuit determines a sampling timing of an A / D converter, and the power supply synchronizing signal determines a calculation cycle of a Fourier transform circuit. Item 1. A ground fault monitoring device for electric equipment according to Item 1.
【請求項3】 零相電流を監視し一定レベルを越える過
大パルスが、所定期間内に所定個数発生したとき、地絡
事故と判定して強制的に、警報信号となり記憶開始の信
号となるトリガ信号を発生するパルスカウント回路を併
設したことを特徴とする請求項1記載の電気設備の地絡
監視装置。
3. A trigger that monitors a zero-phase current and, when a predetermined number of excessive pulses exceeding a certain level occur within a predetermined period, determines a ground fault and forcibly outputs an alarm signal and a signal to start storage. The ground fault monitoring device for electric equipment according to claim 1, further comprising a pulse counting circuit for generating a signal.
【請求項4】 フーリエ変換回路に、雷ノイズの到来に
よっては発生しない所定次数の高調波を算出させ、これ
が一定レベルを越えないとき、予兆検出回路のトリガ信
号の発生を禁止する雷ノイズ除去回路を具備したことを
特徴とする請求項1記載の電気設備の地絡監視装置。
4. A lightning noise removal circuit for causing a Fourier transform circuit to calculate a harmonic of a predetermined order that does not occur due to the arrival of lightning noise, and prohibiting the generation of a trigger signal of the sign detection circuit when this does not exceed a certain level. The ground fault monitoring device for electrical equipment according to claim 1, further comprising:
JP5066379A 1993-03-25 1993-03-25 Ground fault monitoring equipment for electrical equipment Expired - Lifetime JP2609793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5066379A JP2609793B2 (en) 1993-03-25 1993-03-25 Ground fault monitoring equipment for electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5066379A JP2609793B2 (en) 1993-03-25 1993-03-25 Ground fault monitoring equipment for electrical equipment

Publications (2)

Publication Number Publication Date
JPH06300806A true JPH06300806A (en) 1994-10-28
JP2609793B2 JP2609793B2 (en) 1997-05-14

Family

ID=13314142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5066379A Expired - Lifetime JP2609793B2 (en) 1993-03-25 1993-03-25 Ground fault monitoring equipment for electrical equipment

Country Status (1)

Country Link
JP (1) JP2609793B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233881A (en) * 1995-02-27 1996-09-13 Tokin Corp System for detecting surge waveform
JP2003529306A (en) * 2000-03-16 2003-09-30 マイケル サピール Device for detecting and early warning of electric arc faults
JP2006047121A (en) * 2004-08-05 2006-02-16 Hioki Ee Corp Earth fault detector
JP2009186266A (en) * 2008-02-05 2009-08-20 Jfe Steel Corp Fine ground fault detector
JP2020054164A (en) * 2018-09-28 2020-04-02 株式会社東芝 Power system accident cause estimation device, power system accident cause estimation system, power system accident cause estimation computer program and power system accident cause estimation method
JP2021151089A (en) * 2020-03-19 2021-09-27 株式会社日立製作所 Power system monitoring device, power system monitoring method, and power system monitoring program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198888B (en) * 2014-09-02 2017-03-22 科大智能电气技术有限公司 One-phase grounding fault judgment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233881A (en) * 1995-02-27 1996-09-13 Tokin Corp System for detecting surge waveform
JP2003529306A (en) * 2000-03-16 2003-09-30 マイケル サピール Device for detecting and early warning of electric arc faults
JP2006047121A (en) * 2004-08-05 2006-02-16 Hioki Ee Corp Earth fault detector
JP2009186266A (en) * 2008-02-05 2009-08-20 Jfe Steel Corp Fine ground fault detector
JP2020054164A (en) * 2018-09-28 2020-04-02 株式会社東芝 Power system accident cause estimation device, power system accident cause estimation system, power system accident cause estimation computer program and power system accident cause estimation method
JP2021151089A (en) * 2020-03-19 2021-09-27 株式会社日立製作所 Power system monitoring device, power system monitoring method, and power system monitoring program

Also Published As

Publication number Publication date
JP2609793B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US8024157B2 (en) Device for detecting voltage disturbance
JP4137535B2 (en) Arrester operation monitoring device
EP2713170B1 (en) Rare anomaly triggering in a test and measurement instrument
JP2609793B2 (en) Ground fault monitoring equipment for electrical equipment
CN110389846A (en) The electronic device and its method of record event
JP3345793B2 (en) Uninterruptible power supply abnormality detection device
JP4025495B2 (en) Ground fault detection system by waveform transmission
JP2742849B2 (en) Power monitoring recorder
CN110988454B (en) Method for monitoring small current by apparent power and real-time disposal
KR100304546B1 (en) Electronic signal measuring device for acquisition and display of short-lived analog signal events
JP3002650B2 (en) Power system lightning fault judgment
JP2741131B2 (en) Power monitoring recorder
JP2741130B2 (en) Power monitoring recorder
JP3172626B2 (en) Partial discharge detection method for high voltage equipment
JP2002281658A (en) Cause discriminating device for power transmission line failure equipment
JP3137684B2 (en) Ground fault prediction method for high voltage cables
JP2005102351A (en) Insulation deterioration diagnostic equipment
JP2004206367A (en) Detection method and device for shut-off of power supply
JP2741132B2 (en) Power monitoring recorder
JP2774443B2 (en) Ground fault monitoring method and device for electrical equipment
JP2601799B2 (en) Bearing failure prediction method
JP3422873B2 (en) Vibration monitoring device
JP2889255B2 (en) Reactor noise monitoring device
JPH05264637A (en) Device for detecting disconnection of strand of overhead earth-wire
JPS61149873A (en) Method and device for monitoring axis voltage of rotating machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961210

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350