JPH06300645A - Temperature measuring equipment - Google Patents

Temperature measuring equipment

Info

Publication number
JPH06300645A
JPH06300645A JP8824393A JP8824393A JPH06300645A JP H06300645 A JPH06300645 A JP H06300645A JP 8824393 A JP8824393 A JP 8824393A JP 8824393 A JP8824393 A JP 8824393A JP H06300645 A JPH06300645 A JP H06300645A
Authority
JP
Japan
Prior art keywords
laser light
substrate
change
temperature
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8824393A
Other languages
Japanese (ja)
Inventor
Fumio Murakami
文夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP8824393A priority Critical patent/JPH06300645A/en
Publication of JPH06300645A publication Critical patent/JPH06300645A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To provide a temperature measuring equipment in which the measurement of the temperature variation of a substrate is linearized while allowing decision of the incremental/decremental direction of temperature. CONSTITUTION:The temperature measuring equipment comprises a laser light source 1, and a photoelectric converter 5 for receiving the lights 4 reflected on the parallel surface 3a and the rear 3b of a substrate 3 when laser light 2 from a laser light source 1 impinges on the substrate 3 at an angle theta thus detecting the fringe intensity (Ir/Ii). Temperature variation of the substrate 3 is detected based on the variation of fringe intensity. A fringe intensity signal 6 outputted from the photoelectric converter 5 is proportional to the fringe intensity. An oscillation wavelength control circuit 7 receives the fringe intensity signal 6 from the converter 5 and delivers a wavelength control signal 8 for compensating the variation of the intensity signal 6 to the laser light source 1 thus varying the oscillation wavelength of the laser light 2. A temperature variation calculating circuit 9 receives the wavelength control signal 8 and calculates the temperature variation of the substrate 3 based on the variation of oscillation wavelength which is varied by the wavelength controller 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、平行な表面および裏面
を有する基板の温度をこの基板に接触しないで測定する
温度測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature measuring device for measuring the temperature of a substrate having parallel front and back surfaces without contacting the substrate.

【0002】[0002]

【従来の技術】従来より、温度測定装置として、レーザ
光源と、このレーザ光源からのレーザ光を透過するもの
であって表面と裏面とが平行である基板と、前記レーザ
光源からのレーザ光を前記基板に対し所定の角度で入射
させた場合における前記基板の表面と裏面からの反射光
を受けてこれらの反射光の干渉縞強度を検出する光電変
換手段とを具備し、前記干渉縞強度の変化から前記基板
の温度変化を検出するものが知られている。
2. Description of the Related Art Conventionally, as a temperature measuring device, a laser light source, a substrate which transmits the laser light from the laser light source and whose front surface and back surface are parallel to each other, and a laser light from the laser light source are used. A photoelectric conversion unit that receives reflected light from the front surface and the back surface of the substrate when the light is incident on the substrate at a predetermined angle and detects the interference fringe intensity of the reflected light. It is known to detect the temperature change of the substrate from the change.

【0003】この従来の温度測定装置は、対象物である
基板自体の温度をこの基板に接触しないで測定すること
ができるから、測定を擾乱する要素が無く正確な測定が
可能であり、かつ、レーザ光が透過する窓ガラスなどが
あれば真空槽の内部などの特殊な環境下での温度の測定
にも適用することができるので産業上きわめて有用であ
る。
This conventional temperature measuring device can measure the temperature of the substrate itself, which is an object, without touching the substrate, and therefore there is no element that disturbs the measurement, and accurate measurement is possible. If there is a window glass or the like that allows laser light to pass through, it can be applied to temperature measurement in a special environment such as inside a vacuum chamber, and is extremely useful in industry.

【0004】次に従来の温度測定装置の原理を図2に基
いて詳細に説明する。
Next, the principle of the conventional temperature measuring device will be described in detail with reference to FIG.

【0005】図2に示すように、表面21aと裏面21
bとが平行である基板21に対し、所定の入射角θでレ
ーザ光(入射光)22を入射させた場合に基板21の表
面21aと裏面21bとからの反射光23が干渉しあ
う。前記基板3に対する入射光22の強度をIiとし、
かつ、前記反射光23の強度をIrとすると、反射光2
3の干渉縞強度(Ir/Ii)は次の数1で表される。
As shown in FIG. 2, the front surface 21a and the back surface 21
When laser light (incident light) 22 is incident on the substrate 21 parallel to b with a predetermined incident angle θ, the reflected light 23 from the front surface 21a and the back surface 21b of the substrate 21 interfere with each other. Let Ii be the intensity of the incident light 22 on the substrate 3,
Moreover, when the intensity of the reflected light 23 is Ir, the reflected light 2
The interference fringe intensity (Ir / Ii) of 3 is expressed by the following equation 1.

【0006】[0006]

【数1】 [Equation 1]

【0007】また、前記位相差δは次の数2で表され
る。
The phase difference δ is expressed by the following equation 2.

【0008】[0008]

【数2】 [Equation 2]

【0009】前記基板の温度変化ΔTにより生じる位相
差δの変化ΔδT は次の数3で表される。
The change Δδ T of the phase difference δ caused by the temperature change ΔT of the substrate is expressed by the following equation 3.

【0010】[0010]

【数3】 [Equation 3]

【0011】したがって、干渉縞強度(Ir/Ii)の
変化から位相差δの変化ΔδT を算出し、これから温度
変化を逆算することができる。
Therefore, the change Δδ T in the phase difference δ can be calculated from the change in the interference fringe intensity (Ir / Ii), and the temperature change can be calculated backward from this change.

【0012】この従来の温度測定装置は、周囲の空気の
温度変化および基板の位置ずれ等による誤差が発生せず
精度の高い測定ができる。
This conventional temperature measuring device can perform highly accurate measurement without causing an error due to a temperature change of the surrounding air and a position shift of the substrate.

【0013】[0013]

【発明が解決しようとする課題】しかし、従来の温度測
定装置においては、数1において示すように位相差δが
正弦関数の引き数であるから、干渉縞強度(Ir/I
i)の変化と位相差δの変化ΔδT (したがって基板の
温度変化ΔT)との関係が非線形であり、かつ、変化の
増減の変化の方向を判断できないという問題がある。
However, in the conventional temperature measuring device, since the phase difference δ is an argument of a sine function as shown in equation 1, the interference fringe intensity (Ir / I
There is a problem that the relationship between the change i) and the change Δδ T of the phase difference δ (hence the substrate temperature change ΔT) is non-linear, and the direction of increase / decrease of change cannot be determined.

【0014】本発明の課題は、基板の温度変化を測定を
線形化し、この変化の増減の方向を判断することができ
る温度測定装置を提供することにある。
An object of the present invention is to provide a temperature measuring device capable of linearizing measurement of a temperature change of a substrate and determining the direction of increase or decrease of this change.

【0015】[0015]

【課題を解決するための手段】本発明によれば、レーザ
光源と、このレーザ光源からのレーザ光を透過するもの
であって表面と裏面とが平行である基板と、前記レーザ
光源からのレーザ光を前記基板に対し所定の角度で入射
させた場合における前記基板の表面と裏面からの反射光
を受けてこれらの反射光の干渉縞強度を検出する光電変
換手段とを具備し、前記干渉縞強度の変化から前記基板
の温度変化を検出する温度測定装置において、前記光電
変換手段からの干渉縞強度信号を受けてこの干渉縞強度
信号の変化を補償するように前記レーザ光源のレーザ光
の発振波長を変化させる発振波長制御手段と、この発振
波長制御手段により変化させた発振波長の変化分より前
記基板の温度変化を算出する温度変化計算手段とを有す
ることを特徴とする温度測定装置が得られる。
According to the present invention, there is provided a laser light source, a substrate for transmitting laser light from the laser light source, the front surface and the back surface of which are parallel to each other, and the laser from the laser light source. Photoelectric conversion means for receiving the reflected light from the front surface and the back surface of the substrate when the light is incident on the substrate at a predetermined angle, and detecting the interference fringe intensity of these reflected light; In a temperature measuring device that detects a temperature change of the substrate from a change in intensity, an oscillation of the laser light of the laser light source is received so as to receive the interference fringe intensity signal from the photoelectric conversion means and compensate the change in the interference fringe intensity signal. It has an oscillation wavelength control means for changing the wavelength and a temperature change calculation means for calculating the temperature change of the substrate from the change amount of the oscillation wavelength changed by the oscillation wavelength control means. Temperature measuring device is obtained.

【0016】[0016]

【実施例】次に、本発明の実施例を図面に基いて詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0017】図1は、本発明の1実施例を示すブロック
図である。図1において、本発明の温度測定装置は、レ
ーザ光源1と、このレーザ光源1からのレーザ光2を透
過するものであって表面と裏面とが平行である基板3
と、前記レーザ光源1からのレーザ光(入射光)2を前
記基板3に対し所定の角度θで入射させた場合における
前記基板3の表面3aと裏面3bからの反射光4を受け
てこれらの反射光4の干渉縞強度(Ir/Ii)を検出
する光電変換器5とを具備し、前記干渉縞強度(Ir/
Ii)の変化から前記基板3の温度変化を検出する。前
記光電変換器5から出力される干渉縞強度信号6は、前
記数1に示す干渉縞強度(Ir/Ii)に比例してい
る。
FIG. 1 is a block diagram showing an embodiment of the present invention. In FIG. 1, the temperature measuring device of the present invention includes a laser light source 1 and a substrate 3 which transmits a laser beam 2 from the laser light source 1 and whose front surface and back surface are parallel to each other.
And receiving reflected light 4 from the front surface 3a and the back surface 3b of the substrate 3 when the laser light (incident light) 2 from the laser light source 1 is incident on the substrate 3 at a predetermined angle θ. A photoelectric converter 5 for detecting the interference fringe intensity (Ir / Ii) of the reflected light 4;
The temperature change of the substrate 3 is detected from the change of Ii). The interference fringe intensity signal 6 output from the photoelectric converter 5 is proportional to the interference fringe intensity (Ir / Ii) shown in the equation (1).

【0018】発振波長制御回路7は、前記光電変換器5
からの干渉縞強度信号6を受けてこの干渉縞強度信号6
の変化を補償するように波長制御信号8を前記レーザ光
源1に与えて前記レーザ光源1のレーザ光2の発振波長
を変化させる。温度変化計算回路9は、前記波長制御信
号8を受けて前記発振波長制御器7により変化させた発
振波長の変化分より前記基板3の温度変化を算出する。
The oscillation wavelength control circuit 7 includes the photoelectric converter 5
The interference fringe intensity signal 6 from the
The wavelength control signal 8 is applied to the laser light source 1 so as to compensate the change of the laser light source 1 to change the oscillation wavelength of the laser light 2 of the laser light source 1. The temperature change calculation circuit 9 receives the wavelength control signal 8 and calculates the temperature change of the substrate 3 from the change amount of the oscillation wavelength changed by the oscillation wavelength controller 7.

【0019】前記温度変化計算回路9は、次のような数
式に基いて前記基板3の温度変化を算出する。
The temperature change calculation circuit 9 calculates the temperature change of the substrate 3 based on the following equation.

【0020】前記基板3の温度変化ΔTにより生じる位
相差δの変化ΔδT と、前記レーザ光源1が発振するレ
ーザ光の波長λの変化Δλによって生じる位相変化Δδ
w との間には、次の数4で示す関係が成り立っている。
A phase change Δδ T caused by the temperature change ΔT of the substrate 3 and a phase change Δδ caused by the change Δλ of the wavelength λ of the laser light oscillated by the laser light source 1.
The relationship expressed by the following equation 4 is established between w and w .

【0021】[0021]

【数4】 [Equation 4]

【0022】前記レーザ光の波長λの変化Δλによって
生じる位相変化Δδw は、次の数5により表すことがで
きる。
The phase change Δδ w caused by the change Δλ in the wavelength λ of the laser light can be expressed by the following equation 5.

【0023】[0023]

【数5】 [Equation 5]

【0024】したがって、前記数3、数4および数5に
より、温度変化ΔTは次の数6で表すことができる。
Therefore, the temperature change ΔT can be expressed by the following equation 6 by the equations 3, 4, and 5.

【0025】[0025]

【数6】 [Equation 6]

【0026】この数6から明らかなように、温度変化Δ
Tと波長変化Δλとは比例関係にあるので、波長変化Δ
λを測定することができれば、温度変化ΔTを線形化さ
れた形で測定することができ、温度の増減の判別も可能
である。
As is clear from the equation 6, the temperature change Δ
Since T is proportional to the wavelength change Δλ, the wavelength change Δ
If λ can be measured, the temperature change ΔT can be measured in a linearized form, and the increase / decrease in temperature can be determined.

【0027】前記干渉縞強度信号8の変化とレーザ光2
の波長変化Δλとの関係が既知であれば、前記干渉縞強
度信号8に基いて波長変化Δλを算出することができ
る。このような関係に基いて前記温度変化計算回路9
は、前記発振波長制御器7により変化させた発振波長の
変化分より前記基板3の温度変化を算出する。
Change in the interference fringe intensity signal 8 and laser light 2
If the relationship with the wavelength change Δλ of is known, the wavelength change Δλ can be calculated based on the interference fringe intensity signal 8. Based on such a relationship, the temperature change calculation circuit 9
Calculates the temperature change of the substrate 3 from the change amount of the oscillation wavelength changed by the oscillation wavelength controller 7.

【0028】なお、前記レーザ光源1と基板3との間に
ビームスプリッタ10を配置して、このビームスプリッ
タ10で前記レーザ光源1からのレーザ光2の一部を取
り出して波長計11で波長測定値を得ることもできる。
A beam splitter 10 is arranged between the laser light source 1 and the substrate 3, a part of the laser light 2 from the laser light source 1 is taken out by the beam splitter 10, and a wavelength is measured by a wavelength meter 11. You can also get the value.

【0029】[0029]

【発明の効果】本発明の温度測定装置は、基板の温度変
化を測定を線形化し、この変化の増減の方向を判断する
ことができる。
The temperature measuring device of the present invention can linearize the measurement of the temperature change of the substrate and determine the direction of increase or decrease of this change.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】従来の温度測定装置を原理を説明するための図
である。
FIG. 2 is a diagram for explaining the principle of a conventional temperature measuring device.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 レーザ光 3 基板 4 反射光 5 光電変換器 6 干渉縞強度信号 7 発振波長制御回路 8 波長制御信号 9 温度変化計算回路 1 laser light source 2 laser light 3 substrate 4 reflected light 5 photoelectric converter 6 interference fringe intensity signal 7 oscillation wavelength control circuit 8 wavelength control signal 9 temperature change calculation circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源と、このレーザ光源からのレ
ーザ光を透過するものであって表面と裏面とが平行であ
る基板と、前記レーザ光源からのレーザ光を前記基板に
対し所定の角度で入射させた場合における前記基板の表
面と裏面からの反射光を受けてこれらの反射光の干渉縞
強度を検出する光電変換手段とを具備し、前記干渉縞強
度の変化から前記基板の温度変化を検出する温度測定装
置において、前記光電変換手段からの干渉縞強度信号を
受けてこの干渉縞強度信号の変化を補償するように前記
レーザ光源のレーザ光の発振波長を変化させる発振波長
制御手段と、この発振波長制御手段により変化させた発
振波長の変化分より前記基板の温度変化を算出する温度
変化計算手段とを有することを特徴とする温度測定装
置。
1. A laser light source, a substrate that transmits laser light from the laser light source, and has front and back surfaces parallel to each other, and laser light from the laser light source at a predetermined angle with respect to the substrate. A photoelectric conversion unit that receives reflected light from the front surface and the back surface of the substrate when incident and detects the interference fringe intensity of the reflected light is provided, and changes in the temperature of the substrate due to the change in the interference fringe intensity. In the temperature measuring device for detecting, an oscillation wavelength control means for receiving the interference fringe intensity signal from the photoelectric conversion means and changing the oscillation wavelength of the laser light of the laser light source so as to compensate for the change in the interference fringe intensity signal, And a temperature change calculation means for calculating the temperature change of the substrate from the change of the oscillation wavelength changed by the oscillation wavelength control means.
JP8824393A 1993-04-15 1993-04-15 Temperature measuring equipment Withdrawn JPH06300645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8824393A JPH06300645A (en) 1993-04-15 1993-04-15 Temperature measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8824393A JPH06300645A (en) 1993-04-15 1993-04-15 Temperature measuring equipment

Publications (1)

Publication Number Publication Date
JPH06300645A true JPH06300645A (en) 1994-10-28

Family

ID=13937423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8824393A Withdrawn JPH06300645A (en) 1993-04-15 1993-04-15 Temperature measuring equipment

Country Status (1)

Country Link
JP (1) JPH06300645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL424096A1 (en) * 2018-01-03 2019-07-15 Genomtec Spółka Akcyjna A set for touchless temperature monitoring, method for generation of electromagnetic radiation wave fronts and application of the set for generation of the temperature field profiles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL424096A1 (en) * 2018-01-03 2019-07-15 Genomtec Spółka Akcyjna A set for touchless temperature monitoring, method for generation of electromagnetic radiation wave fronts and application of the set for generation of the temperature field profiles

Similar Documents

Publication Publication Date Title
EP0646767B1 (en) Interferometric distance measuring apparatus
US5002388A (en) Optical distance measuring apparatus having a measurement error compensating function
JPH07117371B2 (en) measuring device
JP5354707B2 (en) Laser equipment
JPH0634318A (en) Interference measuring apparatus
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
JP2000035315A (en) Method and apparatus for measurement of thickness of transparent material
JP4680600B2 (en) Temperature compensation improvement in radar equipment
JPH06300645A (en) Temperature measuring equipment
JP2725434B2 (en) Absolute length measuring method and absolute length measuring device using FM heterodyne method
KR20080097627A (en) Interferometer for measuring thermal expansion coefficient
JPS63122906A (en) Apparatus for measuring thickness of film
JPH07248374A (en) Distance measuring device
JPH08285767A (en) Moisture meter
EP0851210B1 (en) Non-contact strain meter
JPH09178425A (en) Measuring instrument
JPH0342401B2 (en)
JPH10221020A (en) Length measuring system
GB2259139A (en) Interferometric vibration measurement system
JP3323963B2 (en) Measuring device
JPS5840123B2 (en) Object position measuring device
JP2022163283A (en) Electronic distance meter and optical comb distance meter
JPH0454407A (en) Optical displacement gauge
SU777414A1 (en) Angular displacement sensor
JP3115163B2 (en) Temperature distribution detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704