JPH06300636A - Temperature measuring method for iron skin of hot gas furnace - Google Patents

Temperature measuring method for iron skin of hot gas furnace

Info

Publication number
JPH06300636A
JPH06300636A JP5108808A JP10880893A JPH06300636A JP H06300636 A JPH06300636 A JP H06300636A JP 5108808 A JP5108808 A JP 5108808A JP 10880893 A JP10880893 A JP 10880893A JP H06300636 A JPH06300636 A JP H06300636A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber cable
iron skin
hot
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5108808A
Other languages
Japanese (ja)
Other versions
JP3304499B2 (en
Inventor
Akihiro Tsuda
昭弘 津田
Sumio Yamashita
純夫 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10880893A priority Critical patent/JP3304499B2/en
Publication of JPH06300636A publication Critical patent/JPH06300636A/en
Application granted granted Critical
Publication of JP3304499B2 publication Critical patent/JP3304499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To allow highly accurate monitoring of the deterioration of thermal insulation cover by winding an optical fiber cable at an arbitrary interval while fitting tightly to the surface of an iron skin using a fixing frame and then connecting the optical fiber cable, at the opposite ends thereof, with a laser light source and a detector. CONSTITUTION:A temporary stop metal 7 is temporarily welded to the iron skin 2 of an external-combustion hot gas furnace. An optical fiber cable 1 is then laid while stapling with the metal 7. The cable 1 is wound at an interval of 1-3m such that the dome and the coupling pipe are wound densely but the straight drum part is wound coarsely. The fixing base of thermal insulation cover, i.e., an inside fixing frame 4, is then wound around the iron skin 2 thus pressing the cable 1 against the iron skin 2 by means of the metal frame 4. A stud bolt 11 is welded to the metal frame 4 and a thermal insulation member 5, a thermal insulation cover 3, and an outside fixing metal 6 are then fixed sequentially thereon and a nut 12 is tightened. When a laser pulse light is sent into the cable 1, it is scattered variously and the temperature at each light scattering point is determined based on the intensity of Raman backscattering light on the anti-Stokes side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱風炉鉄皮温度を安価
に精度良く測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately measuring the temperature of a hot blast stove iron shell at low cost and with high accuracy.

【0002】[0002]

【従来の技術】従来より、NOX による鉄皮応力腐食割
れを防ぐために保温された熱風炉鉄皮温度を測定し、そ
の値から保温カバーの劣化を監視することが行われてい
る。一般的には、図8の熱風炉鉄皮の一部分の断面図に
示すように熱電対20の先端を熱風炉鉄皮2表面に密着
させ、その指示値で監視している。図9は、熱風炉鉄皮
と熱電対と保温カバーの位置関係の斜視図である。すな
わち図8、図9において、熱風炉鉄皮2に内側の取付用
金枠4を設け、スタッドボルト11をこれに取りつけ、
保温材5、保温カバー3を重ねて当てがった後、外側の
取付用金枠6でこれを押さえ、前記スタッドボルト11
を用いてこれを止めている。熱電対20は保温カバーの
隙間か、これに穴を設けて挿入される。
2. Description of the Related Art Conventionally, it has been practiced to measure the temperature of a hot blast stove which has been kept warm in order to prevent the stress corrosion cracking of the skin caused by NO X , and monitor the deterioration of the heat insulating cover from the value. Generally, the tip of the thermocouple 20 is brought into close contact with the surface of the hot-blast stove 2 as shown in the sectional view of a part of the hot-blast stove in FIG. 8, and the value is monitored. FIG. 9 is a perspective view of the positional relationship among the hot-blast stove shell, the thermocouple, and the heat insulating cover. That is, in FIG. 8 and FIG. 9, an inner mounting metal frame 4 is provided on the hot-blast stove iron shell 2, and the stud bolt 11 is attached to this.
After the heat insulating material 5 and the heat insulating cover 3 are overlapped and applied, they are pressed by the outer mounting metal frame 6, and the stud bolt 11
To stop this. The thermocouple 20 is inserted in the gap of the heat insulating cover or by providing a hole in this.

【0003】ところで、保温範囲の面積は熱風炉1基あ
たりでは1000m2 を越え、1m2 に1本設置しても
1000点になり、全数設置には極めて多大の費用がか
かる。従って、不十分なことは承知の上で、保温カバー
設置時に熱風炉1基あたり50〜100点程度の熱電対
を設置しているのが実態である。
By the way, the area of the heat-retaining range exceeds 1000 m 2 per hot-blast stove, and even if one is installed per 1 m 2 , the number is 1000 points, and it is extremely expensive to install all of them. Therefore, it is the fact that, when the heat insulation cover is installed, about 50 to 100 thermocouples are installed per hot-air stove, knowing that it is insufficient.

【0004】また、円周方向で連続して温度を測定でき
る手段については、既に光ファイバーとレーザー光を使
うシステムが公知の技術として開示されている。この原
理は、光ファイバー中にレーザーパルス光を照射する
と、ファイバー中の分子の屈折率の揺らぎにより様々な
散乱が起こるが、そのうち反ストークス側のラマン散乱
は光ファイバーの温度に大きく依存するため、この後方
散乱光(入射端に戻ってきた光)の強度から、散乱光発
生各地点の温度を求めるものである。また、距離の求め
方は、レーザーパルス光を照射してから後方散乱光とし
て再び入射端に戻ってくるまでの遅延時間から求められ
る。
As means for continuously measuring the temperature in the circumferential direction, a system using an optical fiber and a laser beam has already been disclosed as a known technique. The principle is that when laser pulsed light is irradiated into an optical fiber, various scatterings occur due to fluctuations in the refractive index of molecules in the fiber. Among them, the Raman scattering on the anti-Stokes side largely depends on the temperature of the optical fiber, so The temperature at each point where scattered light is generated is obtained from the intensity of scattered light (light returning to the incident end). The distance can be obtained from the delay time from the irradiation of the laser pulse light to the return to the incident end as backscattered light.

【0005】図6はシステム構成の一例である。このシ
ステムにおいては、レーザーパルス光は温度測定用の光
ファイバーケーブルのいずれの端部からも照射すること
ができる。すなわち、第一の方法としては、レーザー光
源13から照射されたレーザーパルス光は、光スイッチ
16から光カプラー17を通って光ファイバーケーブル
1に入る。光ファイバー内に生じた後方散乱光は、逆に
光カプラー17から光スイッチ18を通って検出器14
に入る。第二の方法としては、レーザーパルス光は、光
スイッチ16から光カプラー19を通って光ファイバー
ケーブル1に入る。後方散乱光は、逆に光カプラー19
から光スイッチ18を通って検出器14に入る。いずれ
の場合でも、検出器14に入った微弱な後方散乱光は増
幅され、データ処理装置15で温度に換算される。
FIG. 6 shows an example of the system configuration. In this system, laser pulse light can be emitted from either end of the optical fiber cable for temperature measurement. That is, as the first method, the laser pulse light emitted from the laser light source 13 enters the optical fiber cable 1 from the optical switch 16 through the optical coupler 17. On the contrary, the backscattered light generated in the optical fiber passes from the optical coupler 17 through the optical switch 18 to the detector 14
to go into. As a second method, the laser pulse light enters the optical fiber cable 1 from the optical switch 16 through the optical coupler 19. On the contrary, the back scattered light is the optical coupler 19
Through the optical switch 18 into the detector 14. In any case, the weak backscattered light entering the detector 14 is amplified and converted into a temperature by the data processing device 15.

【0006】また本測定方法を高炉等の鉄皮温度測定へ
応用することについては、図7の熱風炉鉄皮の一部分の
断面図に示すように、光ファイバーケーブル1を鉄皮に
溶接された固定金具21を通して押さえつけボルト22
にて鉄皮23へ押さえつける方法がある。
Further, as to the application of the present measuring method to the temperature measurement of the iron shell of a blast furnace, the optical fiber cable 1 is fixed to the iron shell by welding, as shown in the sectional view of a part of the hot air oven iron shell of FIG. Pressing bolt 22 through metal fitting 21
There is a method of pressing on the iron skin 23.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記熱
電対による方法では、設置する熱電対の数が限られるこ
とから、局部的な保温カバーの劣化を見落とす恐れがあ
る。一方、従来の光ファイバーを使用する測定方法で
は、鉄皮に固定金具を強固に溶接する必要があるので溶
接入熱量が多いため、鉄皮内に残留応力が残り、応力腐
食割れを引き起こす恐れがある。本発明は、上記従来技
術の欠点に鑑み、熱風炉鉄皮温度測定に光ファイバーと
レーザー光を使うシステムを採用するにあたり、レーザ
ー光を透過させる光ファイバーケーブルの鉄皮への圧着
方法を改善することにより、保温カバーの劣化の監視が
安価に精度よく行える方法を提供することを目的とす
る。
However, since the number of thermocouples to be installed is limited in the method using the thermocouple, there is a possibility that the local deterioration of the heat insulating cover may be overlooked. On the other hand, in the conventional measuring method using an optical fiber, since the fixing metal fitting needs to be strongly welded to the iron shell, the welding heat input is large, so residual stress may remain in the iron shell and cause stress corrosion cracking. . In view of the above-mentioned drawbacks of the prior art, the present invention adopts a system that uses an optical fiber and laser light to measure the temperature of the hot-blast stove iron shell by improving the method of crimping the optical fiber cable that transmits the laser light to the iron shell. An object of the present invention is to provide a method capable of accurately monitoring the deterioration of the heat insulating cover at low cost and with high accuracy.

【0008】[0008]

【課題を解決するための手段】本発明は、熱風炉のドー
ム、連絡管および直胴部の鉄皮周面と保温カバーの間
に、光ファイバーケーブルを保温カバー取付用金枠にて
鉄皮表面に圧着させて任意の間隔で巻きつけ、前記光フ
ァイバーケーブルの両端をレーザー光源と検出器に接続
し、前記光ファイバーケーブルに沿った地点の温度を前
記光ファイバーケーブル両端を基準に所定の間隔で測定
することを特徴とする。
According to the present invention, an optical fiber cable is provided between a dome of a hot stove, a connecting pipe and a straight skin portion of a skin and a heat insulation cover by a heat insulation cover mounting metal frame. Crimping and winding at an arbitrary interval, connecting both ends of the optical fiber cable to a laser light source and a detector, and measuring the temperature at a point along the optical fiber cable at a predetermined interval based on both ends of the optical fiber cable. Is characterized by.

【0009】[0009]

【作用・実施例】以下、本発明の実施例を図面に基づき
作用と共に説明する。図1は、本発明での光ファイバー
ケーブル設置の熱風炉鉄皮の一部分の断面図である。図
2は、熱風炉鉄皮と光ファイバーケーブルと保温カバー
の位置関係の斜視図である。図3は、光ファイバーケー
ブルの鉄皮への圧着部の詳細断面図である。
Operation and Embodiments Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a portion of a hot-blast stove iron shell for installing an optical fiber cable according to the present invention. FIG. 2 is a perspective view of the positional relationship among the hot-blast stove iron shell, the optical fiber cable, and the heat insulating cover. FIG. 3 is a detailed cross-sectional view of the crimping portion of the optical fiber cable to the iron skin.

【0010】本発明で光ファイバーケーブルを設置する
場合の施工順序は、図3のように保温カバーを設置する
前に光ファイバーケーブルを熱風炉鉄皮に仮止めする。
仮止め方法は、仮止め金具7を鉄皮2に溶接で留める。
仮止め金具は普通鋼製で溶接性が良く、また位置決めだ
けで取付強度も要求されないから極く簡単なスポット溶
接で良い。この場合の溶接入熱量は高々5000J以下
であり、鉄皮に固定金具を強固に溶接する場合の入熱量
約50000Jに比べて1/10以下で遥に少なく、応
力腐食割れの心配はない。また、300℃以上の耐熱強
度を持つ無機ジルコニアを主成分とする接着剤で仮止め
金具を鉄皮に固定してもよい。
When the optical fiber cable is installed according to the present invention, the order of construction is to temporarily fix the optical fiber cable to the hot-air stove iron shell before installing the heat insulating cover as shown in FIG.
As a temporary fixing method, the temporary fixing metal fitting 7 is fixed to the iron skin 2 by welding.
The temporary metal fittings are made of ordinary steel and have good weldability. Moreover, since only the positioning is required and the mounting strength is not required, spot welding is extremely simple. The welding heat input in this case is 5000 J or less at most, which is far less than 1/10 of the heat input in the case of firmly welding the fixing metal to the steel shell, which is 1/10 or less, and there is no fear of stress corrosion cracking. Further, the temporary metal fitting may be fixed to the iron skin with an adhesive containing inorganic zirconia as a main component having a heat resistance strength of 300 ° C. or higher.

【0011】次に光ファイバーケーブル1を仮止め金具
7に挟み込む形で設置する。図4は、光ファイバーケー
ブル設置のルートの一例を示した熱風炉の全体図であ
る。光ファイバーケーブル1は、熱風炉のドーム8、連
絡管9および直胴部10を幾重にも巻き付ける。光ファ
イバーケーブル長手方向の測定間隔は、前記測定システ
ムの距離分解能が1mであることと、従来の熱電対を使
う方法の測定間隔が平均4mでありこれより短くしたい
ことから、1から3mが適当である。光ファイバーケー
ブルを巻きつける間隔は、光ファイバーケーブル長手方
向の測定間隔に合わせて1から3mが適当であるが、応
力腐食割れの発生しやすいドームと連絡管を密に、直胴
部を粗にする。但し、この値を多少外れても実用上問題
はない。
Next, the optical fiber cable 1 is installed so as to be sandwiched between the temporary fixing fittings 7. FIG. 4 is an overall view of a hot blast stove showing an example of a route for installing an optical fiber cable. The optical fiber cable 1 is formed by winding the dome 8, the connecting pipe 9 and the straight body portion 10 of the hot-air stove in multiple layers. The measurement interval in the longitudinal direction of the optical fiber cable is preferably 1 to 3 m because the distance resolution of the measurement system is 1 m and the measurement interval of the conventional thermocouple method is 4 m on average and it is desired to be shorter than this. is there. The suitable interval for winding the optical fiber cable is 1 to 3 m in accordance with the measurement interval in the longitudinal direction of the optical fiber cable, but the dome and the connecting pipe where stress corrosion cracking is likely to occur are densely packed, and the straight body part is roughened. However, there is no practical problem even if this value deviates somewhat.

【0012】光ファイバーケーブルの仮止めが終われ
ば、図1、図2のように保温カバー取付の基礎となる内
側の取付用金枠4を熱風炉鉄皮2に巻きつける。この
時、図1に示す様に、光ファイバーケーブル1は内側の
取付用金枠4により熱風炉鉄皮2に押しつけられる。内
側の取付用金枠4には、予めスタッドボルト11を溶接
しておくが、光ファイバーケーブルの通る位置は特に本
数を増やしておく。その上から、保温材5、保温カバー
3、外側の取付用金枠6を順に取付け、ナット12を締
めて固定する。なお、本発明は、保温材の無い空気層断
熱方式の保温カバーの場合にも適用できる。
When the temporary fixing of the optical fiber cable is completed, the inner mounting metal frame 4 which is the basis for mounting the heat insulation cover is wound around the hot-blast stove 2 as shown in FIGS. At this time, as shown in FIG. 1, the optical fiber cable 1 is pressed against the hot-blast stove iron shell 2 by the inner mounting metal frame 4. The stud bolts 11 are welded to the inner mounting metal frame 4 in advance, but the number of positions where the optical fiber cables pass is particularly increased. From above, the heat insulating material 5, the heat insulating cover 3, and the outer mounting metal frame 6 are attached in this order, and the nut 12 is tightened and fixed. The present invention can also be applied to the case of an air layer heat insulation type heat insulating cover without a heat insulating material.

【0013】次に、熱風炉鉄皮温度の具体的な測定手順
について説明する。本発明における光ファイバーとレー
ザー光を温度測定に使うシステム構成の例としては、図
6に示すシステムを利用する。この図において、光ファ
イバーケーブル1は複数あり、各々熱風炉の保温カバー
内に設置され、レーザー光源13や検出器14は熱風炉
保温カバー外に設置される。光ファイバー中にレーザー
パルス光を照射すると、ファイバー中の分子の屈折率の
揺らぎにより様々な散乱が起こるが、そのうち反ストー
クス側のラマン散乱は光ファイバーの温度に大きく依存
するため、この後方散乱光(入射端に戻ってきた光)の
強度から、散乱光発生各地点の温度を求められる。ま
た、距離は、レーザーパルス光を照射してから後方散乱
光として再び入射端に戻ってくるまでの遅延時間から求
められる。
Next, a specific measuring procedure of the hot-air stove iron shell temperature will be described. The system shown in FIG. 6 is used as an example of the system configuration in which the optical fiber and the laser beam are used for temperature measurement in the present invention. In this figure, there are a plurality of optical fiber cables 1, each of which is installed inside the heat insulation cover of the hot air stove, and the laser light source 13 and the detector 14 are installed outside the heat air stove insulation cover. When a laser pulsed light is irradiated into an optical fiber, various scatterings occur due to fluctuations in the refractive index of molecules in the fiber. Among them, Raman scattering on the anti-Stokes side largely depends on the temperature of the optical fiber. The temperature of each point where scattered light occurs can be calculated from the intensity of the light returning to the edge. The distance is obtained from the delay time from the irradiation of the laser pulse light to the return to the incident end as backscattered light.

【0014】レーザーパルス光は温度測定用の光ファイ
バーケーブルのいずれの端部からも照射することができ
る。すなわち、本発明の方法としては、レーザー光源1
3から照射されたレーザーパルス光は、光スイッチ16
から光カプラー17を通って光ファイバーケーブル1に
入る。光ファイバー内に生じた後方散乱光は、逆に光カ
プラー17から光スイッチ18を通って検出器14に入
る。本発明の他の方法としては、レーザーパルス光は、
光スイッチ16から光カプラー19を通って光ファイバ
ーケーブル1に入る。後方散乱光は、逆に光カプラー1
9から光スイッチ18を通って検出器14に入る。いず
れの場合でも、検出器14に入った微弱な後方散乱光は
増幅され、データ処理装置15で温度に換算される。
The laser pulsed light can be emitted from either end of the optical fiber cable for temperature measurement. That is, as the method of the present invention, the laser light source 1
The laser pulse light emitted from 3 is the optical switch 16
From the optical fiber cable 1 through the optical coupler 17. The backscattered light generated in the optical fiber, on the contrary, enters the detector 14 from the optical coupler 17 through the optical switch 18. As another method of the present invention, the laser pulsed light is
The optical switch 16 enters the optical fiber cable 1 through the optical coupler 19. On the contrary, the backscattered light is the optical coupler 1.
9 enters the detector 14 through the optical switch 18. In any case, the weak backscattered light entering the detector 14 is amplified and converted into a temperature by the data processing device 15.

【0015】図5は、光ファイバーケーブルによる熱風
炉鉄皮温度の連続的な測定例である。ここでは、極く一
部だけ表示している。光ファイバーケーブルの経路は施
設時に決められているから、基準点からの距離を与えれ
ば、それに相当する鉄皮温度が表示される。
FIG. 5 shows an example of continuous measurement of the hot-air stove iron shell temperature with an optical fiber cable. Here, only a very small part is displayed. Since the route of the optical fiber cable is decided at the facility, if the distance from the reference point is given, the iron skin temperature corresponding to that is displayed.

【0016】以上、本発明について連絡管を持つ外燃式
熱風炉を対象とした鉄皮温度監視方法を説明したが、本
発明の方法はこれに限らず、連絡管を持たない内燃式熱
風炉や、高温ガス発生炉等に適用できる。
The iron shell temperature monitoring method for the external combustion hot stove having the connecting pipe has been described above with respect to the present invention. However, the method of the present invention is not limited to this, and an internal combustion hot stove having no connecting pipe is used. It can also be applied to high temperature gas generation furnaces.

【0017】[0017]

【発明の効果】本発明の効果を列挙すると、以下のよう
になる。 (a)熱風炉鉄皮温度測定に光ファイバーケーブルとレ
ーザー光を使うシステムを採用するにあたり、光ファイ
バーケーブルを保温カバーの内部で鉄皮表面に圧着させ
て巻きつけることにより、熱電対を鉄皮表面に設置する
従来の方法と比較し、遥に簡単に管理ポイントを増やせ
る。 (b)光ファイバーケーブルを鉄皮に圧着させるにあた
り、保温カバー取付用金枠を活用することにより、鉄皮
への固定金具の強固な溶接を不要とし、鉄皮への悪影響
を与えない。
The effects of the present invention are listed below. (A) When using a system that uses an optical fiber cable and laser light to measure the temperature of the hot-blast stove iron shell, the thermocouple is wrapped around the iron-sheath surface by crimping and winding the optical fiber cable inside the heat insulation cover. Compared to the conventional method of installation, it is much easier to add control points. (B) When the optical fiber cable is crimped to the iron skin, the metal frame for attaching the heat insulation cover is utilized, so that strong welding of the fixing metal fitting to the iron skin is not necessary and the iron skin is not adversely affected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明での光ファイバーケーブル設置の熱風炉
鉄皮の一部分の断面図
FIG. 1 is a cross-sectional view of a part of a hot-blast stove iron shell with an optical fiber cable according to the present invention.

【図2】熱風炉鉄皮と光ファイバーケーブルと保温カバ
ーの位置関係の斜視図
FIG. 2 is a perspective view of the positional relationship among the hot-blast stove iron shell, the optical fiber cable, and the heat insulating cover.

【図3】光ファイバーケーブルの鉄皮への圧着部の詳細
断面図
FIG. 3 is a detailed cross-sectional view of the crimping part of the optical fiber cable to the iron skin.

【図4】光ファイバーケーブル設置のルートの一例を示
した熱風炉の全体図
[Fig. 4] Overall view of a hot-blast stove showing an example of a route for installing an optical fiber cable

【図5】本発明による熱風炉鉄皮温度の測定例FIG. 5: Measurement example of hot-air stove iron skin temperature according to the present invention

【図6】光ファイバーのシステム構成の一例を表したブ
ロック図
FIG. 6 is a block diagram showing an example of a system configuration of an optical fiber.

【図7】従来の高炉等の鉄皮温度測定用の光ファイバー
ケーブル設置の側面断面図
[Fig. 7] Side sectional view of installation of a conventional optical fiber cable for measuring the temperature of the iron shell of a blast furnace or the like

【図8】従来技術である熱風炉鉄皮への熱電対設置の側
面断面図
FIG. 8 is a side sectional view of a thermocouple installation on a hot-blast stove iron shell, which is a conventional technique.

【図9】従来技術である熱風炉鉄皮と熱電対と保温カバ
ー位置関係の斜視図
FIG. 9 is a perspective view showing a positional relationship between a hot-air stove iron shell, a thermocouple, and a heat insulating cover, which is a conventional technique.

【符号の説明】 1 光ファイバーケーブル 2 熱風炉鉄皮 3 保温カバー 4 内側の取付用金枠 5 保温材 6 外側の取付用金枠 7 仮止め金具 8 ドーム 9 連絡管 10 直胴部 11 スタッドボルト 12 ナット 13 レーザー光源 14 検出器 15 データー処理装置 16 光スイッチ 17 光カプラー 18 光スイッチ 19 光カプラー 20 熱電対 21 固定金具 22 押さえつけボルト 23 鉄皮[Explanation of symbols] 1 optical fiber cable 2 hot-air stove iron skin 3 heat insulating cover 4 inner mounting metal frame 5 heat insulating material 6 outer mounting metal frame 7 temporary fixing metal fittings 8 dome 9 connecting pipe 10 straight body part 11 stud bolt 12 Nut 13 Laser light source 14 Detector 15 Data processing device 16 Optical switch 17 Optical coupler 18 Optical switch 19 Optical coupler 20 Thermocouple 21 Fixing bracket 22 Holding bolt 23 Iron shell

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月10日[Submission date] September 10, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】従来より、NOによる鉄皮応力腐食割
れを防ぐために保温された熱風炉鉄皮温度を測定し、そ
の値から保温カバーの劣化を監視することが行われてい
る。一般的には、図8の熱風炉鉄皮の一部分の断面図に
示すように熱電対20の先端を熱風炉鉄皮2表面に密着
させ、その指示値で監視している。図9は、熱風炉鉄皮
と熱電対と保温カバーの位置関係の斜視図である。すな
わち図8、図9において、熱風炉鉄皮2に内側の取付用
金枠4を設け、スタッドボルト11をこれに取りつけ、
保温材5、保温カバー3を重ねて当てがった後、外側の
取付用金枠6でこれを押さえ、前記スタットボルト11
を用いてこれを止めている。熱電対20は保温カバー
取り付ける前に、あらかじめ所定の位置に設置してお
く。
2. Description of the Related Art Conventionally, it has been practiced to measure the temperature of a hot-blast stove iron shell which is kept warm in order to prevent the stress-corrosion cracking of the shell caused by NO x , and monitor the deterioration of the heat-insulating cover from the value. Generally, the tip of the thermocouple 20 is brought into close contact with the surface of the hot-blast stove 2 as shown in the sectional view of a part of the hot-blast stove in FIG. 8, and the value is monitored. FIG. 9 is a perspective view of the positional relationship among the hot-blast stove shell, the thermocouple, and the heat insulating cover. That is, in FIG. 8 and FIG. 9, an inner mounting metal frame 4 is provided on the hot-blast stove iron shell 2, and the stud bolt 11 is attached to this.
After the heat insulating material 5 and the heat insulating cover 3 are overlapped and applied, they are pressed by the outer mounting metal frame 6, and the stat bolt 11 is pressed.
To stop this. Thermocouple 20 is a heat insulating cover
Before installing, install it in the specified position in advance.
Ku.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱風炉のドーム、連絡管および直胴部の
鉄皮周面と保温カバーの間に、光ファイバーケーブルを
保温カバー取付用金枠にて鉄皮表面に圧着させて任意の
間隔で巻きつけ、前記光ファイバーケーブルの両端をレ
ーザー光源と検出器に接続し、前記光ファイバーケーブ
ルに沿った地点の温度を前記光ファイバーケーブル両端
を基準に所定の間隔で測定することを特徴とする熱風炉
鉄皮温度測定方法。
1. An optical fiber cable is pressure-bonded to the surface of the iron skin with a metal frame for attaching the heat insulation cover between the dome of the hot-air stove, the connecting pipe, and the steel skin peripheral surface of the straight body and the heat insulation cover at arbitrary intervals. Winding, connecting both ends of the optical fiber cable to a laser light source and a detector, and measuring the temperature at points along the optical fiber cable at predetermined intervals with reference to both ends of the optical fiber cable. How to measure temperature.
JP10880893A 1993-04-13 1993-04-13 Hot stove iron shell temperature measurement method Expired - Fee Related JP3304499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10880893A JP3304499B2 (en) 1993-04-13 1993-04-13 Hot stove iron shell temperature measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10880893A JP3304499B2 (en) 1993-04-13 1993-04-13 Hot stove iron shell temperature measurement method

Publications (2)

Publication Number Publication Date
JPH06300636A true JPH06300636A (en) 1994-10-28
JP3304499B2 JP3304499B2 (en) 2002-07-22

Family

ID=14494018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10880893A Expired - Fee Related JP3304499B2 (en) 1993-04-13 1993-04-13 Hot stove iron shell temperature measurement method

Country Status (1)

Country Link
JP (1) JP3304499B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330171A (en) * 2014-10-31 2015-02-04 山东泰景电力科技有限公司 Furnace box temperature measuring method
JP2015125081A (en) * 2013-12-27 2015-07-06 川崎重工業株式会社 Structure for mounting optical fiber
CN104964761A (en) * 2015-01-14 2015-10-07 四川安普光控科技有限公司 Super-dense sampling high-precision fiber temperature measurement system
EP3385962A1 (en) * 2017-04-05 2018-10-10 ABB Schweiz AG Static electric induction apparatus comprising a winding and a sensor system for monitoring the temperature in the winding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015125081A (en) * 2013-12-27 2015-07-06 川崎重工業株式会社 Structure for mounting optical fiber
CN104330171A (en) * 2014-10-31 2015-02-04 山东泰景电力科技有限公司 Furnace box temperature measuring method
CN104964761A (en) * 2015-01-14 2015-10-07 四川安普光控科技有限公司 Super-dense sampling high-precision fiber temperature measurement system
EP3385962A1 (en) * 2017-04-05 2018-10-10 ABB Schweiz AG Static electric induction apparatus comprising a winding and a sensor system for monitoring the temperature in the winding
WO2018184850A1 (en) * 2017-04-05 2018-10-11 Abb Schweiz Ag Static electric induction apparatus comprising a winding and a sensor system for monitoring the temperature in the winding
CN110520947A (en) * 2017-04-05 2019-11-29 Abb瑞士股份有限公司 Static Electro sensing device including winding and for monitoring the sensing system of temperature in winding
US11024457B2 (en) 2017-04-05 2021-06-01 Abb Power Grids Switzerland Ag Static electric induction apparatus comprising a winding and a sensor system for monitoring the temperature in the winding

Also Published As

Publication number Publication date
JP3304499B2 (en) 2002-07-22

Similar Documents

Publication Publication Date Title
CN101968385B (en) Method for follow-up testing of temperature of steel billet in furnace
US5172979A (en) Heater tube skin thermocouple
US3874239A (en) Surface thermocouple
US3898431A (en) Tubular electric heater with a thermocouple assembly
US4477687A (en) Thermocouple and method of making the thermocouple and of mounting the thermocouple on a heat exchanger tube
ATE284539T1 (en) THERMOGRAPHIC CABLE TESTING
JP2007024830A (en) Attaching structure of surface thermometer
JP2795182B2 (en) Connection method of metal tube coated optical fiber cable
JPH06300636A (en) Temperature measuring method for iron skin of hot gas furnace
Nicoletta et al. Experimental thermal performance of unloaded spiral strand and locked coil cables subject to pool fires
JPH02144810A (en) Power cable and its temperature distribution measurement
JPH0242179B2 (en)
US4338479A (en) Surface thermocouple assembly and method of making same
JPH01145537A (en) Thermocouple for measuring temperature
JPH0317157B2 (en)
JPH06221928A (en) Cable core temperature measuring method for pipe type cable
GB2128743A (en) Thermocouple
JPH07296646A (en) Power cable built in with optical fiber wire temperature sensor and conductor temperature measuring method for power cable
Bauer et al. Thermal management of close coupled catalysts
JPS6191532A (en) Fluid temperature measuring apparatus
KR102241782B1 (en) The Plate-thermometer with improved spatial resolution
JP3390963B2 (en) Spot sensor for thermometer and optical fiber thermometer
JP6374658B2 (en) Optical fiber mounting structure
JPH0138505Y2 (en)
JP2832968B2 (en) Heat detection device at the junction of electrical conductors

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020416

LAPS Cancellation because of no payment of annual fees