JPH06300564A - Angle measurement method - Google Patents

Angle measurement method

Info

Publication number
JPH06300564A
JPH06300564A JP12645493A JP12645493A JPH06300564A JP H06300564 A JPH06300564 A JP H06300564A JP 12645493 A JP12645493 A JP 12645493A JP 12645493 A JP12645493 A JP 12645493A JP H06300564 A JPH06300564 A JP H06300564A
Authority
JP
Japan
Prior art keywords
angle
measurement
points
swirling
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12645493A
Other languages
Japanese (ja)
Inventor
Seiji Akeki
精治 明木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12645493A priority Critical patent/JPH06300564A/en
Publication of JPH06300564A publication Critical patent/JPH06300564A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop, apply and expand a precision measurement method for an angle as a basis of a survey, etc. CONSTITUTION:The passage time of a turning electromagnetic wave beam is measured at two measurement points, and an angle theta between the two measurement points with an apex taken at the center of the beam is obtained from a ratio of the passage time (t) and the cycle T of the beam, using an equation theta=2pit/T (rad). Also, this angle measurement method is applied for expansion to a trigonometrical survey, a range finder, an automatic survey or a navigation system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は、土木,建築,地理な
どに用いる測量に関する。詳しくは、測量の基本である
角度の高精密測定(以下、単に測角と略す)に関係し、
その測角の確度および精度を高める新規な方法を提供す
る。なお測量の他に、船舶,航空機,車などの位置の特
定・指示(以下ナビゲートシステムと略す),地核変位
測定など多くの分野に展開できる角度の高精密測定方法
に関係するものである。
TECHNICAL FIELD The present invention relates to surveying used for civil engineering, construction, geography, and the like. Specifically, it relates to high-precision angle measurement (hereinafter simply referred to as angle measurement), which is the basis of surveying,
A novel method for increasing the accuracy and precision of the angle measurement is provided. In addition to surveying, it relates to a high-precision angle measuring method that can be applied to many fields such as specifying / instructing the position of ships, aircraft, vehicles (hereinafter abbreviated as a navigation system), measuring the displacement of the earth's core, etc. .

【0002】[0002]

【従来の技術】 角度測定機器は、測量などの基本的な
機器として古くから用いられ、コンパス,クリノメー
タ,六分儀,トランシットおよびセオドライトなどが用
いられている。特にセオドライトは、近年、電気的手法
により角度を読みとるものが開発され、電子式セオドラ
イトとして普及している。しかし、いずれも望遠鏡で目
標の標尺や反射板をとらえ、その望遠鏡の光軸の角度
を、角度スケールやパターン目盛により光学的や電気的
に読みとるに過ぎなく、その測角の確度および精度に限
界がある。望遠鏡による人間の目視誤差を除いても、そ
の最小読み取り値は角度で約1〜10秒(1〜10/
(360×60×60)≒10−5〜10−6)であ
り、測定の有効ケタ数は5〜6ケタ程度で、確度は更に
これより悪い値である。
2. Description of the Related Art Angle measuring instruments have long been used as basic instruments for surveying and the like, and compasses, clinometers, sextants, transits, theodolites, etc. have been used. In particular, the theodolite, which has been developed in recent years to read an angle by an electric method, has become popular as an electronic theodolite. However, in both cases, the target level and the reflector are captured by the telescope, and the angle of the optical axis of the telescope is read only optically or electrically by the angle scale or pattern scale, and the accuracy and precision of the angle measurement is limited. There is. The minimum reading is about 1 to 10 seconds (1 to 10 /
(360 × 60 × 60) ≈10 −5 to 10 −6 ), the number of effective digits for measurement is about 5 to 6 digits, and the accuracy is even worse.

【0003】 測量に用いる距離測定機器は、基準尺,
巻尺,光学距離計および電波測距儀などがある。特に光
学距離計および電波測距儀は進歩し、普及している。し
かし、その測定は、電磁波の伝播速度とその往復時間な
どから測定するもので(干渉方法で検出するものが多
い)、大気の気温,気圧,湿度による伝播速度の変化
や、電波ではさらに地上や電離層の多重伝播が影響し、
このため精密な測定ではこれらの補正を行う必要がある
が困難を伴い、その測定誤差は、固定的誤差2〜5mm
に、伝播速度等々の誤差2〜5Pppm距離が加わった
値以上と云われている。(測定の有効ケタ数4〜5ケ
タ)
A distance measuring device used for surveying is a standard scale,
There are tape measures, optical rangefinders, and radio rangefinders. In particular, optical rangefinders and radio rangefinders have advanced and become popular. However, the measurement is based on the propagation velocity of the electromagnetic wave and its round-trip time (often detected by an interference method), and changes in the propagation velocity due to the temperature, pressure, and humidity of the atmosphere, as well as on the ground by radio waves. Multiple propagation of the ionosphere affects,
For this reason, it is necessary to perform these corrections in precise measurement, but this is difficult, and the measurement error is a fixed error of 2 to 5 mm.
In addition, it is said that the value is equal to or more than a value obtained by adding an error of 2 to 5 ppm of the propagation velocity and the like. (The number of effective digits for measurement is 4 to 5 digits)

【0004】[0004]

【発明が解決しようとする課題】 近年の測量では、更
に確度および精度を高めた測定(以下、高精密測定と略
す)のニーズが高い。例えば、地図,地理の精密化,地
核変位の精密測定による地震予知,土地図面の正確化,
ナビエートシステムの精密・簡易化などである。すなわ
ち、従来方法に替わる高精密測定方法の開発が待たれ、
これらの基本となる測角は特に開発が待たれ、この測角
方法の開発を課題とする。
In surveying in recent years, there is a great need for measurement with higher accuracy and precision (hereinafter abbreviated as high precision measurement). For example, map, geographic refinement, earthquake prediction by precise measurement of earth core displacement, land map refinement,
This includes precision and simplification of the navigation system. In other words, the development of a high-precision measurement method that replaces the conventional method is awaited,
The development of this basic angle measurement method is particularly awaited, and the development of this angle measurement method is an issue.

【0005】[0005]

【課題を解決するための手段】 近年の測量では、確度
および精度を共に高めた測定が必要である・計測方法の
内、確度および精度の高い計測は、時間,質量,波数の
カウントなどで確立されており、有効ケタ数6〜10ケ
タの測定は容易である。本発明では、それを応用し測角
を時間の測定(または波数のカウント)によって行い、
この高精密化を達成する。その方法を図1の原理図で説
明する。旋回する電磁波ビーム(以下、旋回ビームと
略す)の通遇時間を測定点2箇所a.bで測定し、その
通過時間tと旋回ビームの周期Tとの比から、その旋回
ビームの中心点を頂点する測定点2箇所間の角度θを
求めるものである。式で示せば次式となる。 角度θ=2πt/T [rad]‥‥‥‥‥(1)式 =360t/T [度]‥‥‥‥‥(2)式
[Means for Solving the Problems] In recent surveys, it is necessary to measure with higher accuracy and precision. ・ Among the measurement methods, high accuracy and precision are established by counting time, mass, and wave number. It is easy to measure the number of effective digits of 6 to 10 digits. In the present invention, it is applied to measure the angle by measuring the time (or counting the wave number),
This high precision is achieved. The method will be described with reference to the principle diagram of FIG. The service time of the electromagnetic wave beam that swirls (hereinafter abbreviated as swirl beam) is measured at two measurement points a. The angle θ between the two measurement points at the apex of the center point of the swirling beam is obtained from the ratio of the passing time t and the period T of the swirling beam, which is measured in step b. It can be expressed by the following equation. Angle θ = 2πt / T [rad] ···· (1) Formula = 360t / T [°] ······ (2) Formula

【0006】[0006]

【作用】 均一な速度で回転する旋回ビームの一周の周
期Tは、角度2π rad(=360゜)に対応する。
また、その旋回ビームが描く平面上の上の測定点2箇所
の旋回ビームの通過時間tは、旋回ビームの中心点を頂
点する測定点2箇所間の角度θに対応する。すなわち、
(1)式,(2)式が成立し、測定点2箇所の通過時間
tと周期Tの測定により、その角度θが求まる。
The period T of one round of the swirling beam rotating at a uniform speed corresponds to the angle 2π rad (= 360 °).
The passing time t of the swirling beam at two measurement points on the plane drawn by the swirling beam corresponds to the angle θ between the two measurement points at which the center point of the swirling beam is apex. That is,
The expressions (1) and (2) are established, and the angle θ is obtained by measuring the passing time t and the cycle T at two measurement points.

【0007】なお、旋回ビームは、出来るだけシャープ
な幅の狭いビームが望ましいが、旋回平面に対して直角
な面への広がりはこの測定上ではかまわない。むしろ積
極的にこの直角方向へ広げた扇状のビームを用いると、
その旋回ビームが描く平面上へ投影した測定点2箇所間
の角度θ’が前述の方法で求まる。換言すれば旋回ビー
ムの回転を水準器などを用いて水平な旋回平面にすれ
ば、任意な測定点2箇所の測量に必要な水平面上へ投影
した角度θが容易に求まる。同様に鉛直な旋回平面に
すれば測量に必要な鉛直面上へ投影した角度θも容易
に求まる。
It is desirable that the swirling beam be as narrow and narrow as possible, but the spread to a plane perpendicular to the swiveling plane is acceptable for this measurement. Rather, if you use this fan-shaped beam that is positively spread in the right angle direction,
The angle θ ′ between the two measurement points projected on the plane drawn by the swirling beam is obtained by the above-mentioned method. In other words, if the rotation of the swivel beam is made into a horizontal swivel plane using a level or the like, the angle θ H projected on the horizontal plane necessary for surveying two arbitrary measurement points can be easily obtained. Similarly, if a vertical turning plane is used, the angle θ V projected on the vertical plane required for surveying can be easily obtained.

【0008】 電磁波ビームは、光,電波,X線などが
用いられる。特にレーザー発信器の出力光は拡散の少な
い強力な光ビームであるので、本願の旋回ビームの光源
に好ましい。測量機器の中には、この光源を用いたレー
ザープレーナーがあり、レーザービームを水平および鉛
直に旋回させ射出する機種が市販されており、その機構
が本願の方法に利用できる。
Light, radio waves, X-rays, etc. are used as the electromagnetic wave beam. In particular, since the output light of the laser oscillator is a strong light beam with little diffusion, it is preferable for the light source of the swirling beam of the present application. Among surveying instruments, there is a laser planer using this light source, and a model that horizontally and vertically swirls a laser beam is commercially available, and its mechanism can be used in the method of the present application.

【0009】 本願の測角方法の精度に関係する重要項
目は、次の2項目である。 (1)旋回ビームの角速度の均一性 (2)旋回ビームの周期Tと通過時間tの時間測定精度 旋回ビームは、その回転の角速度が可能な限り均一であ
る事と、その旋回の中心が一定でその位置が確認できる
事である。角速度の均一性は、発光回転体の回転モーメ
ントが均一に分布している事の他に、地球上の回転機器
ではその軸受けの影響が大きく、ジャイロコンパスやL
Pレコードの回転部などが参考となり、均一性の向上が
計られる。なお、本願では回転の角速度の絶対値測定は
必要でない。それは、回転の周期Tを一回転毎に角度の
絶対値360゜で検定している事になり、そのため厳密
には一周する間均一であればよく、その均一性は10
−5〜10−10程度のむらに出来る。宇宙では人工衛
星の自転、地球や星の自転,公転、2重星の回転などが
利用できる。周期Tと通過時間tの測定(正確にはt/
Tの比率測定)の精度は、旋回ビーム(シグナルが欠け
た影のビームでも良い)の幅,および測時機器のスイッ
チングの感度と再現性に依存する。より精度を高める為
には、旋回ビームや測時機器系を高周波変調し、波数カ
ウンターにより周期Tと通過時間tとの測定を行い、カ
ウント数N(=周期T)とn(=通過時間t)との比n
/Tを求め、次式により角度を求める。 角度e=2πn/N [rad]‥‥‥‥‥(3)式 =360n/N [度]‥‥‥‥‥(4)式 周波変調の周波数を10GHz程度にすれば、その有効
ケタ数6〜10ケタの測定は容易である。複数の高周波
変調を行うと、測時のスイッチング精度を高められる。
なお本願の測定は、ビームの旋回毎に測定値が得られる
ので、繰り返し測定が容易であり、繰り返し測定による
精度の向上も容易である。なお、従来の測角機器の多く
は、望遠鏡による目視を基本操作としているが、人為的
な誤差,自動化困難の他に、精度向上には大口径のレン
ズで分解能を上げる必要がありコストの急激なアップな
どの欠点がある。これに対し、本願の方法では、望遠鏡
の無い測角機器が作れ、遠距離の分解能低下もなく、人
に係わる誤差の低減と自動化,能率化とコストダウンが
計られる。
The following two items are important items related to the accuracy of the angle measuring method of the present application. (1) Uniformity of angular velocity of swirling beam (2) Accuracy of time measurement of period T of swirling beam and passage time t The swirling beam has a uniform angular velocity of rotation as much as possible and a constant center of swirling. The position can be confirmed with. Regarding the uniformity of angular velocity, in addition to the fact that the rotational moments of the light-emitting rotating body are evenly distributed, the bearings of rotating devices on the earth have a great influence, and the gyro compass and L
The rotating part of the P record is used as a reference to improve the uniformity. In this application, the absolute value measurement of the angular velocity of rotation is not necessary. This means that the cycle T of rotation is tested with an absolute value of an angle of 360 ° for each rotation. Therefore, strictly speaking, it is only required to be uniform during one round, and the uniformity is 10
The unevenness can be about -5 to 10 -10 . In space, the rotation of artificial satellites, the rotation of the earth and stars, orbits, and the rotation of double stars can be used. Measurement of period T and transit time t (to be exact, t /
The accuracy of the T ratio measurement) depends on the width of the swirling beam (or the shadow beam lacking the signal) and the switching sensitivity and reproducibility of the timing device. In order to improve the accuracy, the swirling beam and the timekeeping device system are subjected to high frequency modulation, the period T and the passage time t are measured by a wave number counter, and the count number N (= period T) and n (= passing time t ) Ratio n
/ T is calculated, and the angle is calculated by the following equation. Angle e = 2πn / N [rad] Equation (3) = 360n / N [degree] Equation (4) If the frequency of frequency modulation is set to about 10 GHz, the number of effective digits is 6 Measurement of 10 digits is easy. If multiple high frequency modulations are performed, the switching accuracy at the time measurement can be improved.
In the measurement of the present application, since the measurement value is obtained for each turning of the beam, repeated measurement is easy, and the accuracy of repeated measurement is easily improved. Most conventional angle measuring devices use visual observation with a telescope as a basic operation. However, in addition to human error and difficulty in automation, it is necessary to increase the resolution with a large-diameter lens to improve accuracy, and the cost is sharp. There are drawbacks such as up. On the other hand, according to the method of the present application, an angle-measuring device without a telescope can be manufactured, resolution of long distance is not deteriorated, and errors related to humans can be reduced, automation, efficiency, and cost reduction can be achieved.

【0010】 三角測量方法においては、まず三角点間
の角度をそれぞれ精密に測角する事が基本となる。本願
では、三角点上に旋回する電磁波ビームの中心点を置
き、他の2点上でビームの通過時間を測定し、前述の方
法で角度を計算し、三角点間の角度を逐次求める。な
お、1個の旋回ビーム,2個の受信器を用いて、各三角
点間を移動さして測定してもよいが、旋回ビームと受信
器との組合せセット3組を各点上に置くと一度に三角点
間の角度が求まり、自動化も容易である。次いで三角点
間の距離は、各三点間の角度が求まると、通常の三角測
量計算方法によって、三角点の2点間を基準長として各
点間の距離が求められるが、本願の方法による各三角点
の周期Tと通過時間tの測定値から、直接にも三角点の
2点間を基準長として各点間の距離が求められる。この
応用として、例えば双眼鏡の中に受信器a,bを設け、
旋回ビーム(例えば燈台)を観測すると、そのa,b間
の長さを基準長として旋回ビームの半径(=距離)が求
まる距離計ができ、船舶用などの距離計に応用される。
In the triangulation method, it is fundamental to first precisely measure the angles between the triangular points. In the present application, the center point of the electromagnetic wave beam that swirls is placed on the triangular point, the transit time of the beam is measured on the other two points, the angle is calculated by the method described above, and the angle between the triangular points is sequentially obtained. It should be noted that it is possible to use one turning beam and two receivers to move between each triangular point for measurement, but if three sets of combinations of turning beam and receiver are placed on each point The angle between the triangle points can be found, and automation is easy. Next, as for the distance between the triangular points, when the angle between the three points is obtained, the distance between the three points is obtained by the normal triangulation calculation method with the two points of the triangular points as the reference length. From the measured values of the period T and the passage time t of each triangular point, the distance between the triangular points can be directly obtained with the distance between the two triangular points as the reference length. As an application of this, for example, the receivers a and b are provided in binoculars,
When observing a swirling beam (for example, a lighthouse), a distance meter can be obtained in which the radius (= distance) of the swirling beam can be obtained by using the length between a and b as a reference length, which is applied to a distance meter for ships and the like.

【0011】 地核変位の精密測定は、例えば山頂の観
測点3箇所で旋回ビームを常時射出して各観測点で連続
観測すれば、3箇所間の相対変位が検出でき、地震の予
知などに役立つ。なお旋回ビーム源を全国に設置されて
いる気象レーダーや燈台にとり、それらの間で測定すれ
ば、全国的な観測ができる。この場合には、電波ビーム
や燈台の光ビームの改良が必要となろう。
For precise measurement of displacement of the earth's core, for example, if a swirling beam is constantly emitted at three observation points on the summit and continuous observation is performed at each observation point, relative displacement between the three points can be detected, and earthquake prediction, etc. Be useful. In addition, if the orbiting beam source is installed in meteorological radars or lighthouses installed all over the country and measurements are taken between them, nationwide observation is possible. In this case, it will be necessary to improve the radio beam or the light beam of the lighthouse.

【0012】 ナビゲートシステムは、前述の地核変位
の精密測定方法の応用で可能であり、自分の位置を2点
以上の定点旋回ビーム(光燈台,電波燈台など)の観測
から求められる。定点を人工衛星にとれば、広簡囲のナ
ビゲートシステムが可能になる。救命ブイや人工衛星,
航空機,船舶,車両などに旋回ビーム発信器を取り付け
れば、その位置の連続追跡ができ、そのシステム化も容
易である。
The navigation system can be applied by applying the above-mentioned method of precisely measuring the displacement of the earth's core, and its own position can be obtained by observing two or more fixed-point turning beams (lighthouse, electric lighthouse, etc.). If the fixed point is an artificial satellite, a wide and simple navigation system will be possible. Life buoys and satellites,
If a turning beam transmitter is attached to an aircraft, ship, vehicle, etc., its position can be continuously tracked, and its systemization is easy.

【0013】[0013]

【実施例】 以下に実施例をあげて本発明を具体的に説
明するが、本発明はこの実施例によって限定されるもの
ではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0014】 実施例1 角度の測定実験を行った。測定器具は、旋回ビーム発射
器,受光器および時間測定器からなる。その旋回ビーム
発射器は、回転軸を垂直方向に向けた1rpmの減速機
付きシンクロモータの回転軸に直角プリズムを置き、こ
の上方から光レーザービーム(スライド映写用品の赤色
レーザー手持指示器を固定して使用)をあてて、ほぼ水
平方向に回転する旋回ビームを発射する装置とした。受
光器は、約0.5mm幅のスリットを付けたフォトセル
a,bの2箇とした。時間測定器は、フォトセルの出力
を2ペンmVレコーダーに記録し、そのチャート上の長
さをルーベとデジタルノギスで計る方法とした。実験で
は、この旋回ビームの光路上にフォトセルaを固定し、
bを三角定規を用いてaから30,60,90,180
度のそれぞれの角度に移動して、その周期Tおよびab
間の通過時間に相当するチャート上の長さを測定し、
(4)式を用いて計算し角度を求めた。その結果を表1
に示す。簡単な装置でも容易に角度が求められ、時間測
定器を精度の高い装置に替えれば更に良好な結果が得ら
れる事が推定される。なお、実験では、1rpmのモー
タでビームの旋回を行ったが、実用装置ではもっと早い
方が好ましい。
Example 1 An angle measurement experiment was conducted. The measuring instrument consists of a swing beam emitter, a light receiver and a time measuring device. The orbiting beam emitter has a right-angle prism placed on the rotary shaft of a 1-rpm synchro motor with a speed reducer with the rotary axis oriented vertically, and the optical laser beam (a red laser hand-held indicator for slide projection equipment is fixed from above this prism. It was used as a device to emit a swirling beam that rotates in a substantially horizontal direction. Two photocells a and b with slits each having a width of about 0.5 mm were used as the light receivers. For the time measuring device, the output of the photocell was recorded on a 2-pen mV recorder, and the length on the chart was measured with a loupe and a digital caliper. In the experiment, the photocell a was fixed on the optical path of the swirling beam,
b is a triangle ruler from 30, 60, 90, 180
Moved to each angle of degrees, and its period T and ab
Measure the length on the chart that corresponds to the transit time between,
The angle was calculated by using the formula (4). The results are shown in Table 1.
Shown in. Even with a simple device, the angle can be easily obtained, and it is presumed that better results can be obtained by replacing the time measuring device with a highly accurate device. In the experiment, the beam was swung by a motor of 1 rpm, but it is preferable that the beam is swiveled in a practical device.

【0015】 実施例2 旋回ビーム発射器に、市販のレーザープレーナー(レー
ザーレベラーなど)を用いた以外は、実施例1と同じ装
置で実験した。その結果、水平面および鉛直面に投影し
たa,b間の角度が測定できた。なを、測角の方法を確
立すれば、この応用,展開は既に述べたように容易に実
施できるので、応用の実施例は省略する。
Example 2 An experiment was carried out with the same apparatus as in Example 1 except that a commercially available laser planer (laser leveler or the like) was used as the orbiting beam emitter. As a result, the angle between a and b projected on the horizontal plane and the vertical plane could be measured. However, if an angle measuring method is established, this application and development can be easily carried out as described above, and therefore the application example will be omitted.

【0016】[0016]

【発明の効果】 以上、既に述べた本発明の効果を、次
に改めて列記する。 ○測角の原理が簡単で、比較的簡単な装置(旋回ビーム
発射器,受信器および時間測定器)により角度の精密測
定が可能で、自動化も容易な方法を提供する。 ○旋回ビームの旋回面を水平や鉛直面にすると、その面
に投影した測定点の角度が求められ、測量に好都合であ
る。 ○距離計に応用すれぱ、従来の光波距離計や電波距離計
の欠点である気象条件などの伝播速度補正が不要な精密
距離計ができる。 ○現状の測量器、例えばセオドライトやトータルステイ
ションなどの大部分は望遠鏡を備え、これにより目標の
標尺や反射板などを目視で観測して角度や距離を求めて
いる。このため、遠方の分解度の低下や個人差による誤
差の拡大さらには、自動化が困難などの問題点がある
が、本願の方法ではこの望遠鏡は必要でなく、目標の標
尺や反射板などに変えて受信器などを置く操作でよく、
人為誤差のほとんど入らない自動測量機器システムがで
きる。 ○角度の精密自動測定が可能となり、その応用分野は広
く、測量の他に地核変動の連続測定,ナビゲートシステ
ム,移動物体の追跡システムなどに応用でき、社会の高
度化ニーズに寄与する効果は大きい。
The effects of the present invention described above will be listed below. ○ The principle of angle measurement is simple, and a relatively simple device (swivel beam emitter, receiver and time measuring device) enables precise angle measurement and provides a method that is easy to automate. ○ If the swivel plane of the swirl beam is horizontal or vertical, the angle of the measurement point projected on that plane is obtained, which is convenient for surveying. ○ When applied to rangefinders, precision rangefinders that do not require propagation velocity correction such as weather conditions, which is a drawback of conventional lightwave rangefinders and radio rangefinders, can be made. ○ Most of the current survey instruments, such as theodolite and total station, are equipped with a telescope, which allows the angle and distance to be determined by visually observing the target staff and reflector. For this reason, there is a problem that the resolution in the distance decreases and the error increases due to individual differences, and further automation is difficult, but the method of the present application does not require this telescope, and it can be changed to a target staff or reflector. Operation such as placing a receiver,
An automatic surveying instrument system with almost no human error can be created. -Precision automatic measurement of angles is possible, and its application fields are wide, and it can be applied to continuous measurement of earth movements, navigation systems, tracking systems of moving objects, etc. in addition to surveying, and contributes to the societal needs of society. Is big.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の実施原理を示す平面図である。FIG. 1 is a plan view showing an implementation principle of the invention.

【符号の説明】 、’ 旋回する電磁波ビーム 旋回する電磁波ビームの中心点 a 受信器a b 受信器b T 旋回する電磁波ビームの周期 t 旋回する電磁波ビームのab間の通過時間 θ 角度[Explanation of Codes] ', circling electromagnetic wave beam central point of circling electromagnetic wave beam a receiver a b receiver b T period of circling electromagnetic wave beam t t transit time between ab of circling electromagnetic wave beam θ angle

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 旋回する電磁波ビームの通過時間を測定
点2箇所で測定し、その通過時間と旋回ビームの周期と
の比から、その旋回する電磁波ビームの中心点を頂点す
る測定点2箇所間の角度を求める事を特徴とする角度の
測定方法。
1. A transit time of a swirling electromagnetic wave beam is measured at two measuring points, and from the ratio of the transit time to the period of the swirling beam, a measuring point between the two measuring points apex of the central point of the swirling electromagnetic wave beam. Angle measurement method characterized by finding the angle of.
【請求項2】 旋回面に直角な面へ広げた扇状の旋回す
る電磁波ビームを用い、測定点2箇所の通過時間を測定
し、特許請求の範囲要求項1の方法で、その旋回ビーム
が描く平面上へ投影した測定点2箇所間の角度を求める
事を特徴とする角度の測定方法。
2. The passing time at two measurement points is measured by using a fan-shaped electromagnetic wave beam which is expanded to a plane perpendicular to the plane of rotation, and the swirl beam is drawn by the method according to claim 1. An angle measuring method characterized by obtaining an angle between two measurement points projected on a plane.
【請求項3】 三角測量方法において、三角点上に旋回
する電磁波ビームの中心点を置き、他の2点上でビーム
の通過時間を測定し、特許請求の範囲要求項1または要
求項2の方法で、各三角点間の角度を求める事、および
三角点の2点間を基準長として各点間の距離を求める事
を特徴とする測量方法。
3. In the triangulation method, the center point of the electromagnetic wave beam that swirls is placed on a triangular point, and the transit time of the beam is measured on the other two points. A surveying method characterized in that the angle between each triangular point is obtained by the method, and the distance between each point is obtained with the two points of the triangular points as a reference length.
JP12645493A 1993-04-17 1993-04-17 Angle measurement method Pending JPH06300564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12645493A JPH06300564A (en) 1993-04-17 1993-04-17 Angle measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12645493A JPH06300564A (en) 1993-04-17 1993-04-17 Angle measurement method

Publications (1)

Publication Number Publication Date
JPH06300564A true JPH06300564A (en) 1994-10-28

Family

ID=14935626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12645493A Pending JPH06300564A (en) 1993-04-17 1993-04-17 Angle measurement method

Country Status (1)

Country Link
JP (1) JPH06300564A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174518A (en) * 2000-12-06 2002-06-21 Taisei Corp Automatic survey system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174518A (en) * 2000-12-06 2002-06-21 Taisei Corp Automatic survey system

Similar Documents

Publication Publication Date Title
US5739785A (en) Location and generation of high accuracy survey control marks using satellites
US5379045A (en) SATPS mapping with angle orientation calibrator
US5512905A (en) Pole-tilt sensor for surveyor range pole
JP2749265B2 (en) Terrestrial surveying and satellite positioning integrated device and method
US6369755B1 (en) Integrated SATPS total survey station
US5760748A (en) Pivoting support bracket to mount a GPS antenna above a theodolite or a total station mounted on a tripod
CN101010563A (en) Combination laser system and global navigation satellite system
CN109459054B (en) Moving base attitude calibration method based on auto-collimation tracking
JP2008525811A (en) Method for determining at least one target posture information item and rotating laser therefor
US3736058A (en) Rotating reflector level rod
CN106153021A (en) A kind of north finding method based on network RTK and equipment
US20140249750A1 (en) Navigational and location determination system
US5046259A (en) Underwater measuring systems and methods
RU2152625C1 (en) Method determining orientation of objects in space, range to them and bearing, position coordinates and components of velocity vector by navigation radio signals of spacecraft of space radio navigation systems
GB2173369A (en) Determining position
JPH06300564A (en) Angle measurement method
JPH06323855A (en) Method and apparatus for turning beam system triangulation
Walker et al. Total station: measurements and computations
US5831573A (en) Method and apparatus continously offsetting survey points by half angle calculations in real time in the field
JP2911363B2 (en) High-accuracy high-speed surveying method and device using satellite
Golubev Surveying
RU94031143A (en) Method for calculation of heading angle and coordinates of objects by means of signals from spacecraft of satellite navigation systems
JPH08145668A (en) Scanning laser survey system
KR100496811B1 (en) Method for obtaining height information of buildings and producing digital map using gps measurement
Purohit et al. Estimation and Visualization of 3D orbits of GPS satellites using GPS navigation data file and SP3 data file