JPH06300515A - Scanning probe microscope probe and fine machining device - Google Patents

Scanning probe microscope probe and fine machining device

Info

Publication number
JPH06300515A
JPH06300515A JP9029593A JP9029593A JPH06300515A JP H06300515 A JPH06300515 A JP H06300515A JP 9029593 A JP9029593 A JP 9029593A JP 9029593 A JP9029593 A JP 9029593A JP H06300515 A JPH06300515 A JP H06300515A
Authority
JP
Japan
Prior art keywords
probe
sample
cantilever
scanning
microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9029593A
Other languages
Japanese (ja)
Inventor
Osamu Kusumoto
修 楠本
Hiroyuki Kado
博行 加道
Takao Toda
隆夫 任田
Shinichi Yamamoto
伸一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9029593A priority Critical patent/JPH06300515A/en
Publication of JPH06300515A publication Critical patent/JPH06300515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To perform fine pit machining in nanometer scale by applying an appropriate current between a probe of an atomic force microscope and a conductor sample surface. CONSTITUTION:In a surface of a conductive probe 1 provided at a tip of a cantilever 2, an insulating coating film 3 of appropriate thickness of, for example, about 10nm-1mum is formed. A surface where the probe 1 is not fitted is coated with an Au thin film 4 in order to find deflection of the cantilever 2 by means of an optical lever method, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子間力顕微鏡を代表
とする走査プローブ顕微鏡等に用いる走査プローブ顕微
鏡用プローブと微細加工装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe for a scanning probe microscope used in a scanning probe microscope typified by an atomic force microscope and a fine processing apparatus.

【0002】[0002]

【従来の技術】従来、固体表面を原子オーダで観察でき
る装置として走査トンネル顕微鏡(以後STMと呼ぶ)
が提案されている。STMは観察のみらず、試料探針間
を1nm程度に保った状態で試料探針間に高さ数V、幅ms
ec以下のパルス電圧を印加することによって、試料表面
に直径数nmのピットやマウンドを形成することが可能と
なっており[ アプライド・フィジックス・レター55号
17巻1727頁〜1729頁(1989年)(Appl.Ph
ys.Lett.55(17)1727-1729(1989))]、超高密度探針記録
技術への展開が期待されている。ところがSTMでは探
針試料間の距離制御にトンネル電流を用いている。パル
ス電圧印加時にトンネル電流以外の電流も流れ、印加後
もしばらくはトンネル電流が安定しない。したがって複
数の場所でパルス電圧を印加するとき、場所の移動はト
ンネル電流が安定するまで待たねばならない。
2. Description of the Related Art Conventionally, a scanning tunneling microscope (hereinafter referred to as STM) has been used as an apparatus capable of observing a solid surface in an atomic order.
Is proposed. STM is not only for observation, but the height between the sample tips is several V and the width is ms with the distance between the sample tips kept at about 1 nm.
It is possible to form pits and mounds with a diameter of several nanometers on the sample surface by applying a pulse voltage of ec or less [Applied Physics Letter 55, Vol. 17, pp. 1727 to 1729 (1989). (Appl.Ph
ys.Lett.55 (17) 1727-1729 (1989))], and is expected to be applied to ultra-high density probe recording technology. However, in STM, a tunnel current is used to control the distance between probe samples. A current other than the tunnel current flows when the pulse voltage is applied, and the tunnel current is not stable for a while after the application. Therefore, when applying a pulse voltage at a plurality of places, the movement of the places must wait until the tunnel current stabilizes.

【0003】STMの他に原子間力顕微鏡(以後AFM
と呼ぶ)が開発されている。STMではトンネル電流を
検出していたが、AFMでは探針先端と試料表面との間
に働く原子間力を検出し、これを一定にすることによっ
て試料探針間の距離を制御する。したがって、試料探針
間にパルス電圧を印加して加工を行う場合、安定な距離
制御が可能である。このため、複数の箇所を加工すると
きにSTMよりも短時間で行うことが可能であると考え
られる。近年AFM探針を導電性の膜で被覆し、試料探
針間に電圧を印加する微細加工が行われている。例え
ば、小柳らはSiO2 製カンチレバー表面にAuをコーテ
ィングして、探針を試料に押し付け10-8Nの斥力を保
った状態で試料探針間に-5V,0.3 秒のパルス電圧を印加
することによって、グラファイト表面にピットを形成し
ている[ 第53回応用物理学会学術講演会講演予稿集4
56頁(1992)] 。
In addition to STM, atomic force microscope (hereinafter AFM)
Called) is being developed. The STM detects the tunnel current, but the AFM detects the interatomic force acting between the tip of the probe and the sample surface, and controls the distance between the sample probes by keeping this constant. Therefore, when processing is performed by applying a pulse voltage between the sample tips, stable distance control is possible. Therefore, it is considered possible to process a plurality of locations in a shorter time than STM. In recent years, fine processing has been performed in which the AFM probe is covered with a conductive film and a voltage is applied between the sample probes. For example, Koyanagi et al. Apply Au to the surface of a SiO 2 cantilever and apply a pulse voltage of -5V for 0.3 seconds between the sample probes while pressing the sample against the sample and maintaining a repulsive force of 10 -8 N. By doing so, pits are formed on the graphite surface [Proceedings of the 53rd JSAP Academic Lecture Meeting 4
56 (1992)].

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記A
FMによる加工では導電性の試料の場合、導電性の探針
が直接試料に接触した状態でパルス電圧を印加するため
STMでの加工に比べ過度の電流が流れ、25nm未満のピ
ットを形成することはきわめて困難である。
[Problems to be Solved by the Invention] However, the above A
In the case of a conductive sample processed by FM, a pulse voltage is applied while the conductive probe is in direct contact with the sample, so an excessive current flows compared with STM processing and pits of less than 25 nm are formed. Is extremely difficult.

【0005】本発明は、前記従来の課題を解決するた
め、パルス電圧印加時に流れる電流を適当な値に抑え、
試料表面に25nm未満のピットまたはマウンドを形成する
ことができる走査プローブ顕微鏡用プローブと微細加工
装置を提供することを目的とする。
In order to solve the above conventional problems, the present invention suppresses the current flowing when a pulse voltage is applied to an appropriate value,
An object of the present invention is to provide a probe for a scanning probe microscope and a microfabrication device capable of forming pits or mounds of less than 25 nm on the surface of a sample.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明の走査プローブ顕微鏡用プローブは、先鋭化
された金属または半導体の表面を絶縁物で被覆した探針
を持ったカンチレバーからなるという構成を備えたもの
である。
In order to achieve the above object, the probe for a scanning probe microscope of the present invention comprises a cantilever having a probe in which the surface of a sharpened metal or semiconductor is coated with an insulator. It has a configuration.

【0007】前記構成においては、絶縁物の厚さが10
nm以下であることが好ましい。また前記構成において
は、絶縁物が窒化物であることが好ましい。
In the above structure, the thickness of the insulator is 10
It is preferably nm or less. Further, in the above structure, the insulator is preferably a nitride.

【0008】また本発明の微細加工装置は、前記の走査
プローブ顕微鏡用プローブと、前記プローブまたは試料
を3次元方向に走査する手段と、カンチレバーのたわみ
量を測定する手段と、前記カンチレバーのたわみ量を一
定にするための制御手段と、試料と前記プローブの間に
電圧を印加する手段を具備したものである。
Further, the microfabrication apparatus of the present invention comprises the probe for a scanning probe microscope, means for scanning the probe or sample in a three-dimensional direction, means for measuring the amount of deflection of the cantilever, and amount of deflection of the cantilever. And a means for applying a voltage between the sample and the probe.

【0009】[0009]

【作用】前記した本発明の構成によれば、導電性探針の
表面が絶縁膜で覆われているため、探針の導電性部分が
直接試料と接触しない。しかしながら絶縁膜を適度に薄
くしてやれば、パルス電圧印加時に探針の導電性部分と
試料の間でトンネル電流、電界放出電流、変位電流など
を流すことができる。これらの電流はパルス電圧の高
さ、幅を変化させたり、立ち上がり、立ち下がりの勾配
を調節することによって数百μA以下におさえることが
可能である。このため試料表面に形成されるピットを、
より小さくすることができる。
According to the above-described structure of the present invention, since the surface of the conductive probe is covered with the insulating film, the conductive portion of the probe does not come into direct contact with the sample. However, if the insulating film is appropriately thinned, a tunnel current, a field emission current, a displacement current, etc. can flow between the conductive portion of the probe and the sample when the pulse voltage is applied. These currents can be suppressed to several hundred μA or less by changing the height and width of the pulse voltage and adjusting the rising and falling slopes. Therefore, the pits formed on the sample surface are
Can be smaller.

【0010】[0010]

【実施例】以下、本発明の実施例を具体的に説明する。
図1に、本発明の一実施例のプローブの断面図を示す。
このプローブは図2に示すように以下の方法で作成し
た。抵抗率0.1 Ω・cmのシリコン基板21を加工し、厚
さ20μm 長さ100μm のカンチレバーを作った。表
面に窒化膜を形成し、フォトリソグラフィにより直径5
μmの円上のマスク22をカンチレバー先端部の表面に
作成した(図2(a))。その後KOH水溶液によりカ
ンチレバーを等方的にエッチングした。マスク下部は表
面からはエッチングされないが、サイドからエッチング
されるために図2(b)のように突起物ができた。窒化
膜のマスクを取り除いた(図2(c))後に、先端部の
曲率半径をさらに微小化するために、以下に示すような
処理を施した。シリコン突起物の表面を、950℃で乾
燥酸素によりドライ酸化し、熱酸化膜23を形成した
(図2(d))。この酸化過程では、突起物尖端部のシ
リコンは酸化時の体積膨張による応力を受け、他の部分
に比べ酸化速度が遅くなり、酸化膜下部のシリコン尖端
部の曲率半径は酸化以前に比べて小さくなる。酸化膜の
厚さが厚くなると酸化速度が遅くなり、発生する応力の
緩和速度の方が早くなり、上記のような作用が得られな
くなる。従って、この工程での酸化膜の厚さは、100
オングストローム(10nm)以上1μm以下が望まし
い。本実施例では100nm の酸化膜を作製した。次に、熱
酸化膜23をバッファエッチ溶液(HF:NH4 F=
1:6(容量比)の混合液)で除去することにより非常
に小さな曲率半径の先端部分を有するシリコン突起物が
得られた(図2(e))。熱酸化膜を除去したのちにこ
れを石英管に入れ、以下の方法で表面を窒化して窒化シ
リコン膜24を形成した(図2(f))。石英管に0.1T
orr の窒素ガスを導入し、石英管を取り囲むように設置
されたコイルに周波数400kHz、500 kWの交流電力を投
入した。この状態で温度を約1100℃にし、10時間
保持した。この後、透過電子顕微鏡で探針の先端を観察
したところ、規則正しい原子配列をした円錐の表面に厚
さ約4nmの不規則な原子配列の層が見られた。この表
面の層は窒化膜であると考えられる。カンチレバーの探
針のついてない面には厚さ200nm のAu薄膜25を蒸着
した(図2(g))。
EXAMPLES Examples of the present invention will be specifically described below.
FIG. 1 shows a sectional view of a probe according to an embodiment of the present invention.
This probe was prepared by the following method as shown in FIG. A silicon substrate 21 having a resistivity of 0.1 Ω · cm was processed to form a cantilever having a thickness of 20 μm and a length of 100 μm. A nitride film is formed on the surface and the diameter is 5 by photolithography.
A mask 22 having a circle of μm was formed on the surface of the tip of the cantilever (FIG. 2A). After that, the cantilever was isotropically etched with a KOH aqueous solution. Although the lower part of the mask is not etched from the surface, it is etched from the side, so that a protrusion is formed as shown in FIG. 2B. After removing the mask of the nitride film (FIG. 2C), the following treatment was performed in order to further reduce the radius of curvature of the tip portion. The surface of the silicon protrusion was dry-oxidized with dry oxygen at 950 ° C. to form a thermal oxide film 23 (FIG. 2 (d)). During this oxidation process, the silicon at the tips of the protrusions receives stress due to volume expansion during oxidation, and the oxidation rate becomes slower than at other portions, and the radius of curvature of the silicon tips at the bottom of the oxide film is smaller than that before oxidation. Become. If the thickness of the oxide film becomes thicker, the oxidation rate becomes slower, and the relaxation rate of the generated stress becomes faster, so that the above-mentioned action cannot be obtained. Therefore, the thickness of the oxide film in this step is 100
It is desirable that the thickness is between Angstrom (10 nm) and 1 μm. In this example, a 100 nm oxide film was formed. Next, the thermal oxide film 23 is formed into a buffer etch solution (HF: NH 4 F =
By removing with a mixed solution of 1: 6 (volume ratio), a silicon protrusion having a tip portion with a very small radius of curvature was obtained (FIG. 2 (e)). After removing the thermal oxide film, it was put in a quartz tube, and the surface thereof was nitrided by the following method to form a silicon nitride film 24 (FIG. 2 (f)). 0.1T for quartz tube
Nitrogen gas of orr was introduced, and AC power with a frequency of 400 kHz and 500 kW was applied to the coil installed so as to surround the quartz tube. In this state, the temperature was raised to about 1100 ° C. and kept for 10 hours. After that, when the tip of the probe was observed with a transmission electron microscope, a layer of irregular atomic arrangement with a thickness of about 4 nm was observed on the surface of the cone with regular atomic arrangement. This surface layer is considered to be a nitride film. A 200 nm-thick Au thin film 25 was vapor-deposited on the surface of the cantilever having no probe (FIG. 2 (g)).

【0011】図3に示すように、このプローブ31を板
バネ32でAFMボディー33に取り付けた。このとき
板バネ32の強さを調節し、プローブ内部の導電性の部
分と導通がとれるようにした。AFMボデイー33はス
テンレスでできており、接地電位とした。試料34は絶
縁スペーサ35を介して3次元微動機構36に固定され
ている。また試料34はパルス発生器37に電気的に接
続されている。HOPGを試料にして、微細加工を行っ
た。まず、探針と試料を接地電位にした状態で1×10-9
Nの定斥力モードでHOPG(高配向性グラファイト)
の50nm×50nmの領域をAFM観察した。この領域では表
面粗さが非常に小さく、1nm 以下であった。観察後、視
野の中心に探針を移動させ、探針を接地電位にした状態
で、試料側に4.0V、20μsec の方形波パルスを印加し
た。この後、試料を接地電位に戻して再びAFM観察を
行ったところ、視野の中心に直径5nm 、深さ0.6nm のピ
ットが形成されていることを確認した。この方法で50nm
×50nmの領域に10nmピッチで16個のピットを形成した
が、要した時間は1秒以内で、STMのそれに比べ1/10
以下で行うことができた。またピットではなく、数nm
以下の高さの盛り上がり(マウンド)が形成されること
もあった。
As shown in FIG. 3, the probe 31 is attached to the AFM body 33 with a leaf spring 32. At this time, the strength of the leaf spring 32 was adjusted so that it could be electrically connected to the conductive portion inside the probe. The AFM body 33 is made of stainless steel and has a ground potential. The sample 34 is fixed to a three-dimensional fine movement mechanism 36 via an insulating spacer 35. The sample 34 is electrically connected to the pulse generator 37. Fine processing was performed using HOPG as a sample. First, with the probe and sample at ground potential, 1 × 10 -9
HOPG (highly oriented graphite) in N repulsive force mode
Area of 50 nm × 50 nm was observed by AFM. In this region, the surface roughness was very small and was 1 nm or less. After the observation, the probe was moved to the center of the visual field, and with the probe at the ground potential, a square wave pulse of 4.0 V and 20 μsec was applied to the sample side. After that, when the sample was returned to the ground potential and subjected to AFM observation again, it was confirmed that a pit having a diameter of 5 nm and a depth of 0.6 nm was formed in the center of the visual field. 50 nm this way
16 pits were formed at a pitch of 10 nm in a region of × 50 nm, but the time required was less than 1 second, which was 1/10 that of STM.
I was able to do the following: Also, it is not a pit, but a few nm
The following mounds were sometimes formed.

【0012】なお、熱酸化やプラズマ酸化によって表面
に酸化膜を形成したプローブでも、同様な結果が得られ
た。またCVD法によって窒化シリコン薄膜や酸化シリ
コン薄膜を探針表面に形成したプローブでも同様な結果
が得られた。ただし、酸化膜を形成した場合は、大気中
で自然酸化してその膜厚が制御しにくいため、窒化膜を
形成したプローブよりもピット形成の再現性は落ちた。
Similar results were obtained with a probe having an oxide film formed on its surface by thermal oxidation or plasma oxidation. Similar results were obtained with a probe in which a silicon nitride thin film or a silicon oxide thin film was formed on the probe surface by the CVD method. However, when the oxide film was formed, the reproducibility of the pit formation was lower than that of the probe formed with the nitride film because the film thickness was difficult to control due to natural oxidation in the air.

【0013】なお、窒化膜の厚さを20nmにしたとき
はパルス電圧を印加してもピットを形成することはでき
なかった。これは探針の導電性部分の先端と試料表面の
距離が大きすぎるためにトンネル電流や電界放出電流が
流れなかったためと思われる。窒化膜の厚さが4nmの場
合、探針と試料が接触した状態で試料に2Vの一定電圧
を印加したところ、試料探針間に約0.1nA のトンネル電
流が流れているのを確認した。
When the thickness of the nitride film was set to 20 nm, pits could not be formed even if a pulse voltage was applied. This is probably because the distance between the tip of the conductive part of the probe and the surface of the sample was too large, and tunnel current or field emission current did not flow. When the thickness of the nitride film was 4 nm, when a constant voltage of 2 V was applied to the sample with the probe and the sample in contact with each other, it was confirmed that a tunnel current of about 0.1 nA was flowing between the sample probes.

【0014】なお、本実施例では0.1 Ω・cmの低抵抗
シリコンを用いたが、10Ω・cm以上の抵抗率の高抵
抗シリコンを用いてカンチレバーと探針を作り、熱酸化
膜を除去した後に、Cr,Fe,Ni,W,Mo,A
l,Ptなどを探針およびカンチレバー表面に蒸着し、
さらにその上にCVD法によって窒化シリコン薄膜や酸
化シリコン薄膜を蒸着したプローブを用いても、同様に
試料表面にピットを形成することができた。また、Au
薄膜や、MoS2 やNbSe2 などのカルコゲナイド物
質を試料にした場合も同様に加工できた。
Although low resistance silicon of 0.1 Ω · cm was used in this embodiment, a cantilever and a probe were made of high resistance silicon having a resistivity of 10 Ω · cm or more, and after removing the thermal oxide film. , Cr, Fe, Ni, W, Mo, A
l, Pt, etc. are deposited on the surface of the probe and cantilever,
Even if a probe having a silicon nitride thin film or a silicon oxide thin film deposited thereon by a CVD method was used, pits could be similarly formed on the sample surface. Also, Au
Similar processing was possible when a thin film or a chalcogenide substance such as MoS 2 or NbSe 2 was used as a sample.

【0015】[0015]

【発明の効果】以上述べたように本発明により、STM
に比べて高速で行えるAFMによる微細加工において導
電性の物質からなる試料の表面に直径25nm未満の微細な
ピット構造を作ることが可能になった。
As described above, according to the present invention, the STM
It became possible to form a fine pit structure with a diameter of less than 25 nm on the surface of a sample made of a conductive material in the fine processing by AFM which can be performed at a higher speed than the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるプローブの断面を示
す図である。
FIG. 1 is a diagram showing a cross section of a probe according to an embodiment of the present invention.

【図2】本発明の一実施例におけるプローブの作製方法
を説明する図である。
FIG. 2 is a diagram illustrating a method of manufacturing a probe according to an embodiment of the present invention.

【図3】本発明の一実施例における微細加工装置の構成
を示す図である。
FIG. 3 is a diagram showing a configuration of a microfabrication device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 導電性探針 2 カンチレバー 3 絶縁皮膜 4 Au薄膜 21 低抵抗シリコン基板 22 円状マスク 23 熱酸化シリコン膜 24 窒化シリコン膜 25 Au薄膜 31 プローブ 32 板バネ 33 AFMボディー 34 試料 35 絶縁スペーサ 36 3次元微動機構 37 パルス発生器 1 Conductive probe 2 Cantilever 3 Insulating film 4 Au thin film 21 Low resistance silicon substrate 22 Circular mask 23 Thermally oxidized silicon film 24 Silicon nitride film 25 Au thin film 31 Probe 32 Leaf spring 33 AFM body 34 Sample 35 Insulating spacer 36 3D Fine movement mechanism 37 Pulse generator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 伸一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinichi Yamamoto 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 先鋭化された金属または半導体の表面を
絶縁物で被覆した探針を持ったカンチレバーからなる走
査プローブ顕微鏡用プローブ。
1. A probe for a scanning probe microscope comprising a cantilever having a probe in which the surface of a sharpened metal or semiconductor is covered with an insulator.
【請求項2】 絶縁物の厚さが10nm以下である請求
項1記載の走査プローブ顕微鏡用プローブ。
2. The probe for a scanning probe microscope according to claim 1, wherein the insulator has a thickness of 10 nm or less.
【請求項3】 絶縁物が窒化物である請求項1または2
記載の走査プローブ顕微鏡用プローブ。
3. The insulator according to claim 1, wherein the insulator is a nitride.
A probe for a scanning probe microscope as described above.
【請求項4】 請求項1、請求項2または請求項3記載
のプローブと、前記プローブまたは試料を3次元方向に
走査する手段と、カンチレバーのたわみ量を測定する手
段と、前記カンチレバーのたわみ量を一定にするための
制御手段と、試料と前記プローブの間に電圧を印加する
手段を具備した微細加工装置。
4. The probe according to claim 1, claim 2 or claim 3, means for scanning the probe or sample in a three-dimensional direction, means for measuring the amount of deflection of the cantilever, and amount of deflection of the cantilever. A microfabrication apparatus comprising a control means for keeping the temperature constant and a means for applying a voltage between the sample and the probe.
JP9029593A 1993-04-16 1993-04-16 Scanning probe microscope probe and fine machining device Pending JPH06300515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9029593A JPH06300515A (en) 1993-04-16 1993-04-16 Scanning probe microscope probe and fine machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9029593A JPH06300515A (en) 1993-04-16 1993-04-16 Scanning probe microscope probe and fine machining device

Publications (1)

Publication Number Publication Date
JPH06300515A true JPH06300515A (en) 1994-10-28

Family

ID=13994551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9029593A Pending JPH06300515A (en) 1993-04-16 1993-04-16 Scanning probe microscope probe and fine machining device

Country Status (1)

Country Link
JP (1) JPH06300515A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864888A (en) * 1987-04-13 1989-09-12 Mitsubishi Denki Kabushiki Kaisha Robot articulation joint
JPH10283972A (en) * 1997-04-10 1998-10-23 Seiko Instr Inc Machining, recording, and reproducing device using scanning probe microscope
KR100736358B1 (en) * 2004-11-12 2007-07-06 재단법인서울대학교산학협력재단 Method to assemble nanostructures at the end of scanning probe microscope's probe and scanning probe microscope with the probe
US7577078B2 (en) 2002-12-14 2009-08-18 Samsung Electronics Co., Ltd. Magnetic recording medium and apparatus and method for reading data from the magnetic recording medium using parallel and anti-parallel magnetization direction in separate magnetic layers
KR101435630B1 (en) * 2012-07-25 2014-08-28 전북대학교산학협력단 Probe for scanning capacitance microscope
CN111638388A (en) * 2020-06-24 2020-09-08 东南大学 Preparation method of spin polarization probe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864888A (en) * 1987-04-13 1989-09-12 Mitsubishi Denki Kabushiki Kaisha Robot articulation joint
JPH10283972A (en) * 1997-04-10 1998-10-23 Seiko Instr Inc Machining, recording, and reproducing device using scanning probe microscope
US7577078B2 (en) 2002-12-14 2009-08-18 Samsung Electronics Co., Ltd. Magnetic recording medium and apparatus and method for reading data from the magnetic recording medium using parallel and anti-parallel magnetization direction in separate magnetic layers
KR100736358B1 (en) * 2004-11-12 2007-07-06 재단법인서울대학교산학협력재단 Method to assemble nanostructures at the end of scanning probe microscope's probe and scanning probe microscope with the probe
KR101435630B1 (en) * 2012-07-25 2014-08-28 전북대학교산학협력단 Probe for scanning capacitance microscope
CN111638388A (en) * 2020-06-24 2020-09-08 东南大学 Preparation method of spin polarization probe

Similar Documents

Publication Publication Date Title
Xu et al. Novel cold cathode materials and applications
Tseng et al. Nanofabrication by scanning probe microscope lithography: A review
JP4140765B2 (en) Acicular silicon crystal and method for producing the same
Stiévenard et al. Silicon surface nano-oxidation using scanning probe microscopy
Chien et al. Nano-oxidation of silicon nitride films with an atomic force microscope: chemical mapping, kinetics, and applications
JPH0684455A (en) Micro tip, probe unit, manufacture thereof, and scanning tunneling microscope and information processing unit using them
JP2006189441A (en) Probe with field-effect transistor-channel structure for probe scanning microscope and its manufacturing method
US5986261A (en) Tapered structure suitable for microthermocouples microelectrodes, field emission tips and micromagnetic sensors with force sensing capabilities
WO2000074107A2 (en) Tip structures, devices on their basis, and methods for their preparation
JPH06300515A (en) Scanning probe microscope probe and fine machining device
Wendel et al. Nanolithography with an atomic force microscope
JP3502804B2 (en) Method for growing carbon nanotubes and method for manufacturing electron gun and probe using the same
JPH097238A (en) Probe and recording medium of information high-speed recording device and information high-speed recording method using same
Chang et al. Creation of nanostructures on gold surfaces in nonconducting liquid
Irmer et al. Nanolithography by non-contact AFM-induced local oxidation: fabrication of tunnelling barriers suitable for single-electron devices
Dryakhlushin et al. Development of contact scanning probe lithography methods for the fabrication of lateral nano-dimensional elements
JP3524326B2 (en) Female substrate used for manufacturing micro short needle, method for manufacturing female substrate, and method for manufacturing micro short needle and probe using female substrate
Campbell et al. Fabrication of nanometer-scale conducting silicon wires with a scanning tunneling microscope
Litovchenko et al. The enhanced field emission from microtips covered by ultrathin layers
JP3421332B1 (en) Method for producing carbon nanotube
Miura et al. Room temperature operation of amorphous carbon-based single-electron transistors fabricated by beam-induced deposition techniques
Fujita et al. Silver nanostructures formation on Si (111)-(7× 7) surfaces by the tip of a scanning tunneling microscope
Campbell et al. Proximal probe-based fabrication of nanostructures
Takemura et al. Modification of electrical properties and magnetic domain structures in magnetic nanostructures by AFM nanolithography
Brückl et al. Observation of Coulomb Blockade Effects in AFM‐machined Tunnel Junctions