JPH06299164A - Method for pyrolyzing coal - Google Patents

Method for pyrolyzing coal

Info

Publication number
JPH06299164A
JPH06299164A JP11531793A JP11531793A JPH06299164A JP H06299164 A JPH06299164 A JP H06299164A JP 11531793 A JP11531793 A JP 11531793A JP 11531793 A JP11531793 A JP 11531793A JP H06299164 A JPH06299164 A JP H06299164A
Authority
JP
Japan
Prior art keywords
coal
solvent
toluene
liquid
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11531793A
Other languages
Japanese (ja)
Inventor
Shozaburo Saito
正三郎 斉藤
Kunio Arai
邦夫 新井
Masafumi Ajiri
雅文 阿尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP11531793A priority Critical patent/JPH06299164A/en
Publication of JPH06299164A publication Critical patent/JPH06299164A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To provide a method for pyrolyzing coal, capable of massively producing relatively useful pyrolysis products. CONSTITUTION:Coal powder is subjected to a supercritical extraction treatment at a temperature higher than the critical temperature of a hydrocarbon such as toluene, that is 300-450 deg.C under such a condition that the retention time of the hydrocarbon solvent is <=600sec in a reactor, thus pyrolyzing the coal and simultaneously extracting and recovering the pyrolyzed products. Useful chemical components such as the toluene can not only be extracted and recovered in high yields, but also liquid products and volatile products can be produced in large amounts. Even when a catalyst and a donor are not used, the coal can be converted in a high conversion rate. The coal pyrolyzing method is a technique for enhancing the usefulness of the coal as a chemical raw material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は石炭の熱分解方法に関
し、詳しくは石炭を熱分解して有用な化合物又は混合物
を得る方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for thermally decomposing coal, and more particularly to a method for thermally decomposing coal to obtain a useful compound or mixture.

【0002】[0002]

【従来の技術】超臨界流体は、通常の液体と比べて拡散
性が高く、粘度が低いという特徴を有しており、溶剤と
しての能力は温度又は圧力を制御することにより容易に
変化させることができる。そのため、石炭を超臨界流体
で抽出する方法は、石炭分解あるいはこれにより生成す
る成分を制御することができることが期待されている
(Fuel,1975,54,227、同1984,6
3,1174、同1991,70,545及びJ,Ch
em,Eng,Japan,1991,24(6),7
15等)。ピッチや石炭を超臨界抽出して、分解、有用
成分の回収や精製等を行うことは知られている(特開昭
63−122787号公報等)。また、特開昭63−2
58983号公報には、トルエンやキノリン等の溶剤を
用いて、石炭を超臨界抽出する方法が記載されている。
この方法は、石炭と溶剤を超臨界状態で混合し、120
分程度の一定時間保持して、無灰の抽出物を得る方法で
あり、石炭を積極的に熱分解し、これから有用成分を回
収しようとすることを意図するものではない。本発明は
抽出物を回収しつつ、残渣炭あるいは灰分との分離が容
易であるように温度、圧力を調節することに着目したも
ので、上記超臨界液体の特性を生かし、より積極的に有
用成分を回収する方法を開発することを意図してなされ
たものである。
2. Description of the Related Art Supercritical fluids are characterized by higher diffusivity and lower viscosity than ordinary liquids, and their ability as a solvent can be easily changed by controlling temperature or pressure. You can Therefore, the method of extracting coal with a supercritical fluid is expected to be able to control coal decomposition or components produced thereby (Fuel, 1975, 54, 227, 1984, 6).
3, 1174, 1991, 70, 545 and J, Ch.
em, Eng, Japan, 1991, 24 (6), 7
15). It is known to perform supercritical extraction of pitch and coal to carry out decomposition, recovery and purification of useful components, and the like (JP-A-63-122787). Also, JP-A-63-2
Japanese Patent No. 58983 describes a method of supercritically extracting coal using a solvent such as toluene or quinoline.
This method mixes coal and solvent in a supercritical state,
It is a method of obtaining an ashless extract by holding for a certain period of time of about a minute, and is not intended to actively pyrolyze coal and recover useful components therefrom. The present invention focuses on adjusting the temperature and pressure so as to easily separate the residual coal or ash while recovering the extract, making the most of the characteristics of the supercritical liquid and more positively useful. It was designed with the intention of developing a method for recovering the components.

【0003】[0003]

【発明が解決しようとする課題】本発明は、有用成分を
多量に得ることができる石炭の熱分解方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a coal thermal decomposition method capable of obtaining a large amount of useful components.

【0004】[0004]

【課題を解決するための手段】本発明は、石炭粉末を、
炭化水素溶剤の臨界温度以上、300〜450℃の温度
で、炭化水素溶剤を用いて超臨界抽出することにより石
炭を熱分解する方法において、超臨界抽出帶域における
炭化水素溶剤の反応器内の滞留時間を600秒以下とす
ることを特徴とする石炭の熱分解方法である。
The present invention provides coal powder,
In the method of thermally decomposing coal by supercritical extraction using a hydrocarbon solvent at a temperature of 300 to 450 ° C., which is not lower than the critical temperature of the hydrocarbon solvent, in the reactor of the hydrocarbon solvent in the supercritical extraction zone. A method for thermally decomposing coal is characterized in that the residence time is 600 seconds or less.

【0005】本発明で使用できる石炭としては、水分以
外の揮発分を含むものが使用できるが、瀝青炭、褐炭、
泥炭等が好ましい。石炭粉末の粉末の大きさは、小さい
ほど液状生成物の割合が増えるので、10mm以下、好
ましくは1mm以下、より好ましくは0.2mm以下と
することがよい。超臨界液体を用いれば、通常の液体溶
媒の場合と比較して物質移動速度が高いため、同じ粒径
の石炭を用いても石炭粒子内での熱分解一次生成物の二
次反応が抑制されるが、粒径が小さいほど石炭粒子内で
の一次生成物の重合が抑制されるため、高い石炭転化
率、液収率が得られる。
As the coal which can be used in the present invention, those containing volatile components other than water can be used. Bituminous coal, lignite,
Peat and the like are preferred. The smaller the size of the coal powder, the larger the proportion of the liquid product as it becomes smaller. When using a supercritical liquid, the mass transfer rate is higher than in the case of a normal liquid solvent, so even if coal of the same particle size is used, the secondary reaction of the pyrolysis primary product in the coal particle is suppressed. However, the smaller the particle size is, the more the polymerization of the primary product in the coal particles is suppressed, so that the high coal conversion rate and the liquid yield can be obtained.

【0006】炭化水素溶剤としては、常温液体で、45
0℃以下の臨界温度を有するものが使用できるが、熱安
定性が良好な芳香族炭化水素類、脂肪族炭化水素類、脂
環族炭化水素類が好ましく、具体的にはベンゼン、トル
エン、キシレン及びシクロヘキサンから選ばれる1種又
は2種以上の混合物が挙げられる。また、シクロヘキサ
ン等の脂環族炭化水素類を溶剤として使用すると、トル
エン等の芳香族炭化水素類を使用したときに比べ、トル
エンが多量に生成し、ジベンジルの生成がないという傾
向が認められるので、溶剤の種類を選択することによっ
ても、目的とする有用成分の生成量を変化させることが
できる。これらの溶剤の臨界温度及び臨界圧力を示せ
ば、例えばベンゼンは289℃、4.9MPa、、トル
エンは319℃、4.0MPa、キシレンは343℃、
3.6MPaである。
As the hydrocarbon solvent, a liquid at room temperature is 45
Although those having a critical temperature of 0 ° C. or lower can be used, aromatic hydrocarbons, aliphatic hydrocarbons and alicyclic hydrocarbons having good thermal stability are preferable, and specifically, benzene, toluene and xylene. And a mixture of one or more selected from cyclohexane. Further, when alicyclic hydrocarbons such as cyclohexane are used as a solvent, it is observed that a large amount of toluene is produced and dibenzyl is not produced compared to when aromatic hydrocarbons such as toluene are used. Also, the production amount of the intended useful component can be changed by selecting the kind of the solvent. If the critical temperature and critical pressure of these solvents are shown, for example, benzene is 289 ° C. and 4.9 MPa, toluene is 319 ° C. and 4.0 MPa, xylene is 343 ° C.
It is 3.6 MPa.

【0007】本発明で行う超臨界抽出は、石炭の熱分解
温度で以上である300〜450℃の温度で行われるの
で、抽出と同時に石炭の熱分解が生じる。従って、本発
明でいう熱分解は抽出を含むものである。超臨界抽出
は、溶剤の臨界温度以上、臨界圧力以上の条件で行う
が、温度は300〜450℃の範囲とする必要があり、
300℃未満では熱分解が十分起こらず、450℃を越
えると分解が進みすぎて有用成分の生成が減少する。好
ましくは、320〜400℃である。また、圧力は高く
ても差し支えないが、余りに高圧にすることは粒子内の
拡散速度を低下させて石炭粒子内での二次分解、重合が
進み、有用成分の生成が減少するだけでなく、設備的に
高価なものとする必要があるので、臨界圧力〜40MP
a程度に止めることがよい。
Since the supercritical extraction carried out in the present invention is carried out at a temperature of 300 to 450 ° C., which is higher than the thermal decomposition temperature of coal, thermal decomposition of coal occurs simultaneously with extraction. Therefore, the thermal decomposition referred to in the present invention includes extraction. The supercritical extraction is carried out under the conditions of the critical temperature of the solvent or higher and the critical pressure or higher, and the temperature needs to be in the range of 300 to 450 ° C.
If it is less than 300 ° C, thermal decomposition does not occur sufficiently, and if it exceeds 450 ° C, decomposition proceeds too much to reduce the production of useful components. The temperature is preferably 320 to 400 ° C. Further, although the pressure may be high, if the pressure is too high, the diffusion rate in the particles is reduced to promote secondary decomposition and polymerization in the coal particles, and not only the production of useful components is reduced, Since it is necessary to make the equipment expensive, the critical pressure ~ 40MP
It is better to stop at about a.

【0008】本発明においては、超臨界抽出帯域におけ
る炭化水素溶剤の滞留時間を600秒以下、好ましくは
60秒以下とする。滞留時間が長すぎると石炭から抽出
された有用成分の分解が進みすぎる。したがって、短時
間であるほど不安定ではあるが、有用な成分の収量が増
える。
In the present invention, the residence time of the hydrocarbon solvent in the supercritical extraction zone is 600 seconds or less, preferably 60 seconds or less. If the residence time is too long, the useful components extracted from the coal will be decomposed too much. Thus, the shorter the time, the less stable, but the higher the yield of useful ingredients.

【0009】超臨界抽出は上記条件を満たす限り、任意
の方法で行うことができるが、好適には、抽出を行う圧
力容器に石炭粉末を充填し、ここに炭化水素溶剤を連続
的に流す方法が好ましい。この場合の炭化水素溶剤の滞
留時間tは圧力容器中の空隙をXΦ、炭化水素溶剤の流
速をFでとすれば、t=XΦ/Fで表される。なお、圧
力容器からなる抽出帯域を出たのち、減圧され、温度が
低下するまでの時間も可及的に短くすることがよい。ま
た、石炭の熱分解は温度にもよるが通常30分以内で完
了するので、炭化水素溶剤を流す時間は30分程度で十
分であるが、これ以上であっても差し支えない。
The supercritical extraction can be carried out by any method as long as the above conditions are satisfied, but preferably, a pressure vessel for carrying out the extraction is filled with coal powder, and a hydrocarbon solvent is continuously flowed therein. Is preferred. The residence time t of the hydrocarbon solvent in this case is represented by t = XΦ / F, where XΦ is the void in the pressure vessel and F is the flow rate of the hydrocarbon solvent. In addition, it is preferable to shorten the time until the temperature is reduced after the pressure is reduced after leaving the extraction zone composed of the pressure vessel. Further, although the thermal decomposition of coal is usually completed within 30 minutes depending on the temperature, the time for flowing the hydrocarbon solvent is about 30 minutes, but it may be longer than this.

【0010】この超臨界抽出で石炭の熱分解と抽出が行
われ、液状生成物と揮発性生成物は溶剤と共に流出し、
減圧、降温されて、揮発性生成物はガスとして分離さ
れ、液状生成物は液体として取り出される。また、固体
生成物は別に回収される。溶剤は揮発性生成物又は液状
生成物と共に回収されるが、これは蒸留等により分離す
ることができる。なお、回収された溶剤は再使用するこ
とができる。本発明で有用成分と称するのは、相対的な
ものであり、化学原料等として有用なトルエン等の化合
物、燃料や各種原料等として有用な液状生成物であっ
て、これらは石炭自体や固体生成物より価値の高いもの
である。
In this supercritical extraction, coal is pyrolyzed and extracted, liquid products and volatile products flow out together with the solvent,
When the pressure is reduced and the temperature is lowered, the volatile product is separated as a gas, and the liquid product is taken out as a liquid. Also, the solid product is recovered separately. The solvent is recovered with the volatile or liquid product, which can be separated by distillation or the like. The recovered solvent can be reused. The useful component in the present invention is a relative one, a compound such as toluene useful as a chemical raw material, a liquid product useful as a fuel or various raw materials, and these are coal itself or a solid product. It is more valuable than things.

【0011】[0011]

【実施例】以下、本発明を具体的に説明する。実施例に
おいて、実験は次のようにして行った。圧力容器として
内径8mm、長さ60mmのステンレス管を使用し、こ
れに約8gの乾燥した石炭粉末を充填した。なお、石炭
粉末層の上下にグラスウ−ルをセットして石炭粉末の流
出を防止した。溶剤はポンプで昇圧し、予熱器で昇温
し、圧力容器内の超臨界抽出帯域へ装入した。圧力容器
は外部より加熱し、10K/min.の割合で昇温し、
所定の反応温度に達したのち、2時間保持した。超臨界
抽出帯域からは、連続的に流体を抜きだし、冷却器で降
温したのち、常圧にまで減圧した。この際に発生したガ
スは揮発性生成物として回収したが、その量は無視でき
るほど少なかった。液状生成物は溶剤と共に回収した。
なお、使用した溶剤は蒸留により抽出物と分離し、更に
抽出物は真空乾燥して揮発性生成物と液状生成物を分離
した。また、固体生成物は終了後、圧力容器から回収し
た。ガス及び液体はGC−MS、GC−FIDを用いて
分析した。
The present invention will be specifically described below. In the examples, the experiment was conducted as follows. A stainless steel tube having an inner diameter of 8 mm and a length of 60 mm was used as a pressure vessel, and about 8 g of dried coal powder was filled in the stainless steel tube. Glass wool was set above and below the coal powder layer to prevent the coal powder from flowing out. The solvent was pressurized with a pump, heated with a preheater, and charged into the supercritical extraction zone in the pressure vessel. The pressure vessel is heated from the outside and heated at 10 K / min. The temperature rises at a rate of
After reaching the predetermined reaction temperature, the temperature was maintained for 2 hours. The fluid was continuously withdrawn from the supercritical extraction zone, the temperature was lowered by a cooler, and then the pressure was reduced to normal pressure. The gas generated at this time was recovered as a volatile product, but the amount was negligibly small. The liquid product was recovered with the solvent.
The solvent used was separated from the extract by distillation, and the extract was vacuum dried to separate the volatile product and the liquid product. Also, the solid product was recovered from the pressure vessel after completion. The gas and liquid were analyzed using GC-MS and GC-FID.

【0012】使用した石炭は亜瀝青炭(太平洋)であ
り、工業分析の値(wt% db:dry base)
は灰分14.2、揮発分45.0、固定炭素40.8
で、元素分析の値(wt% daf:dry ash
free basis)は炭素77.5、水素6.4、
チッ素1.2、イオウ0.3、酸素(diff.)1
4.6で、H/Cは0.99である。粉末のサイズは
0.076〜4mmの間とした。
The coal used was subbituminous coal (Pacific Ocean), and the value of industrial analysis (wt% db: dry base) was used.
Is ash 14.2, volatile 45.0, fixed carbon 40.8
Then, the value of the elemental analysis (wt% daf: dry ash
free basis) is carbon 77.5, hydrogen 6.4,
Nitrogen 1.2, sulfur 0.3, oxygen (diff.) 1
At 4.6, the H / C is 0.99. The size of the powder was between 0.076 and 4 mm.

【0013】石炭使用量 Ws〔g−daf〕、固体生
成物回収量 Wr〔g−daf〕、液状生成物回収量
Wq〔g−daf〕とするとき、石炭転化率x、液状生
成物収率Yq、揮発性生成物収率Yvは次の式により求
めることができる。 x =(Ws−Wr)/Ws×100 Yq=Wq/Ws×100 Yv=x−Yq
Coal consumption Ws [g-daf], solid product recovery amount Wr [g-daf], liquid product recovery amount
When Wq [g-daf] is set, the coal conversion rate x, the liquid product yield Yq, and the volatile product yield Yv can be calculated by the following equations. x = (Ws-Wr) / Ws * 100 Yq = Wq / Ws * 100 Yv = x-Yq

【0014】実施例1 溶剤としてトルエンを使用し、653K、20MPa、
石炭粉末の平均粒径0.8mm、溶剤の流速0.05〜
70cc/minの条件で、超臨界抽出して、石炭の熱
分解を行ったときの、溶剤の抽出帯域における滞留時間
tと液状生成物、揮発性生成物、固体生成物の生成割合
の関係を図1に示す。図1から、滞留時間が短いほど液
状生成物の生成量が多いことが分かる。これは、不安定
な液状生成物が滞留時間が長くなると分解してしまうた
めと考えられる。また、図1から20wt% daf程
度は安定な液状生成物であることが分かる。
Example 1 Using toluene as a solvent, 653 K, 20 MPa,
Coal powder average particle size 0.8 mm, solvent flow rate 0.05-
Under the condition of 70 cc / min, the relationship between the residence time t in the solvent extraction zone and the production ratio of the liquid product, the volatile product, and the solid product when the coal was pyrolyzed by supercritical extraction is shown. As shown in FIG. From FIG. 1, it can be seen that the shorter the residence time, the larger the amount of liquid products produced. It is considered that this is because the unstable liquid product decomposes when the residence time becomes long. Further, it can be seen from FIG. 1 that about 20 wt% daf is a stable liquid product.

【0015】実施例2 溶剤の流速を10cc/minに固定し、石炭粉末の粒
径を変化させた他は、実施例1と同様な条件で石炭の熱
分解を行ったときの、石炭粉末の粒径と液状生成物、揮
発性生成物、固体生成物の生成割合の関係を図2に示
す。図2から、石炭粉末の粒径が小さいほど液状生成物
の生成量が多いことが分かる。
Example 2 A coal powder was prepared by pyrolyzing coal under the same conditions as in Example 1 except that the flow rate of the solvent was fixed at 10 cc / min and the particle size of the coal powder was changed. FIG. 2 shows the relationship between the particle size and the production ratio of liquid products, volatile products, and solid products. It can be seen from FIG. 2 that the smaller the particle size of the coal powder, the larger the amount of liquid products produced.

【0016】実施例3 溶剤の流速を0.1cc/min、石炭粉末の粒径を1
6〜24メッシュ(1.0〜0.7mm)とした他は、
実施例1と同様な実験を行ったところ、結果は、石炭転
化率45.3wt%daf、液状生成物収率30.9w
t%daf、揮発性生成物収率14.4wt%dafで
あった。揮発性生成物中のガス分138ccについて分
析したところ、水素92.86cc、メタン20.94
cc、二酸化炭素22.52cc、エタン1.28c
c、プロパン0.40ccであった。なお、これは0.
070gに当たる。また、液分について分析したとこ
ろ、溶剤であるトルエン以外で、且つトルエンに近い位
置にピ−クを有する成分0.761g、それより重い成
分0.176gであった。これは、90.5%のマスバ
ランスに当たる。実施例4の結果を参照すると、この残
りの約10%はトルエンであると示唆される。
Example 3 The solvent flow rate was 0.1 cc / min, and the coal powder particle size was 1
Other than 6 to 24 mesh (1.0 to 0.7 mm),
When the same experiment as in Example 1 was performed, the results were: coal conversion 45.3 wt% daf, liquid product yield 30.9 w.
t% daf and volatile product yield were 14.4 wt% daf. When analyzed for a gas content of 138 cc in the volatile product, hydrogen was 92.86 cc, methane was 20.94.
cc, carbon dioxide 22.52cc, ethane 1.28c
c and propane were 0.40 cc. This is 0.
It hits 070 g. In addition, when the liquid content was analyzed, it was 0.761 g of a component other than toluene as a solvent and having a peak at a position close to toluene, and 0.176 g of a heavier component. This corresponds to a mass balance of 90.5%. Referring to the results of Example 4, it is suggested that this remaining about 10% is toluene.

【0017】実施例4 溶剤としてシクロヘキサンを使用し、溶剤の流速を15
cc/min、石炭粉末の粒径60〜100メッシュ
(0.25〜0.15mm)とした他は、実施例1と同
様な実験を行ったところ、結果は、石炭転化率46.9
wt%daf、液状生成物収率24.6wt%daf、
揮発性生成物収率22.3wt%dafであった。揮発
性生成物中の液分について分析したところ、トルエン
0.323g、GCのピ−ク位置がトルエンよりやや軽
質な成分0.197g、それより重い成分0.552g
であった。なお、ガス分は極微量であった。これは、1
00%のマスバランスに当たる。
Example 4 Cyclohexane was used as the solvent, and the flow rate of the solvent was 15
An experiment similar to that of Example 1 was carried out, except that the particle size of the cc / min was 60 to 100 mesh (0.25 to 0.15 mm) and the coal conversion rate was 46.9.
wt% daf, liquid product yield 24.6 wt% daf,
The volatile product yield was 22.3 wt% daf. When the liquid content in the volatile product was analyzed, 0.323 g of toluene, 0.197 g of a component having a GC peak position slightly lighter than toluene, and 0.552 g of a heavier component
Met. The gas content was extremely small. This is 1
It corresponds to a mass balance of 00%.

【0018】実施例5 溶剤の流速を15cc/min、石炭粉末の粒径を0.
2mmとした他は、実施例4と同様な実験を行い、揮発
性生成物中の液分について分析したところ、40wt%
がトルエン、25wt%がCO、メタン等のガス分,3
5wt%がトルエンよりやや軽質な成分であった。
Example 5 The solvent flow rate was 15 cc / min, and the coal powder particle size was 0.
An experiment similar to that of Example 4 was conducted except that the thickness was set to 2 mm, and the liquid content in the volatile product was analyzed and found to be 40 wt%.
Is toluene, 25 wt% is gas such as CO and methane, 3
5 wt% was a slightly lighter component than toluene.

【0019】実施例6 溶剤としてトルエンを使用し、溶剤の流速を2.5cc
/min、石炭粉末の粒径を16〜24メッシュとした
他は、実施例1と同様な実験を行った。
Example 6 Toluene was used as a solvent and the flow rate of the solvent was 2.5 cc.
/ Min, the same experiment as in Example 1 was performed except that the particle size of the coal powder was 16 to 24 mesh.

【0020】実施例7 溶剤としてトルエン−テトラリン(1:1)混合溶剤を
使用した他は、実施例6と同様な実験を行った。水素供
与性溶剤であるテトラリンを溶剤として用いることで、
熱分解一次生成物ラジカルが水添安定化され、石炭への
再結合あるいは重合チャ−化が抑制され、高い石炭転化
率、液収率が得られた。
Example 7 The same experiment as in Example 6 was carried out except that a toluene-tetralin (1: 1) mixed solvent was used as the solvent. By using tetralin, which is a hydrogen donating solvent, as a solvent,
The thermal decomposition primary product radicals were stabilized by hydrogenation, recombination to coal or polymerization char was suppressed, and high coal conversion and liquid yield were obtained.

【0021】実施例8 溶剤としてトルエンを使用し、溶剤の流速を60cc/
min、石炭粉末の粒径を60〜100メッシュとした
他は、実施例6と同様な実験を行った。粒径を小さくす
ることで、粒子内の重合チャ−化が生ずる前に一次生成
物が抽出されるため、高価なテトラリンを用いなくとも
高い転化率、液収率が得られた。
Example 8 Toluene was used as a solvent, and the flow rate of the solvent was 60 cc /
The same experiment as in Example 6 was performed except that min and the particle size of the coal powder were 60 to 100 mesh. By reducing the particle size, the primary product is extracted before the polymerization char within the particles occurs, so that a high conversion and a liquid yield were obtained without using expensive tetralin.

【0022】実施例6〜8の結果を図3に示す。図3か
ら、高流速(滞留時間が短い)、小粒径であるほど、液
状生成物の生成が多く、物質移動速度の高い超臨界流体
を用いれば、水素供与性溶剤を用いた場合と同程度の石
炭転化率、液収率が得られることが分かる。
The results of Examples 6 to 8 are shown in FIG. From FIG. 3, it can be seen that the higher the flow velocity (retention time is shorter) and the smaller the particle size is, the more the liquid product is generated, and the use of the supercritical fluid having a high mass transfer rate is similar to the case of using the hydrogen donating solvent. It can be seen that the coal conversion rate and liquid yield of the same degree can be obtained.

【0023】また、各図から生成物は概ね次のように分
類できると推測される。 a 揮発分に変化しやすい不安定な液状生成物 約10wt% daf b 安定な液状生成物 約20wt% daf c 石炭から直接生じる揮発分 約10wt% daf d 重合性の液状生成物 約15wt% daf e 固体生成物 約45wt% daf
From each figure, it can be inferred that the products can be roughly classified as follows. a Unstable liquid product that easily changes to volatiles About 10 wt% daf b Stable liquid product about 20 wt% daf c Volatile directly generated from coal about 10 wt% daf d Polymerizable liquid product about 15 wt% daf e Solid product about 45 wt% daf

【0024】石炭から直接生じる揮発分について、分析
したところ、ガス分は一酸化炭素、二酸化炭素、メタン
を、液分はエチルベンゼン、パラキシレン、メタキシレ
ン、トルエンを主成分とするものであることが判明し
た。特に、トルエンについては石炭重量当たり、数wt
%と高い収率となる。
When the volatile components directly generated from coal were analyzed, it was found that the gas component was composed mainly of carbon monoxide, carbon dioxide and methane, and the liquid component was composed mainly of ethylbenzene, para-xylene, meta-xylene and toluene. found. Especially, for toluene, several wt per unit weight of coal
The yield is as high as%.

【0025】安定な液状生成物について、GC−MSで
分析したところ、そのアセトン可溶分は1〜2環の芳香
族炭化水素及び脂肪族炭化水素を主に含むものであるこ
とが判明した。なお、この安定な液状生成物は、反応温
度を340℃、360℃、380℃と変化させてもその
生成量は殆ど同じであったので、これは340℃以下で
生成する成分であると考えられる。
When the stable liquid product was analyzed by GC-MS, it was found that the acetone-soluble matter mainly contained 1-2 ring aromatic hydrocarbons and aliphatic hydrocarbons. The stable liquid product produced almost the same amount even when the reaction temperature was changed to 340 ° C., 360 ° C., and 380 ° C. Therefore, it is considered that this stable liquid product is a component produced at 340 ° C. or lower. To be

【0026】重合性の液状生成物について、GC−MS
及びGC−FIDで分析したところ、そのアセトン可溶
分中のかなりの量がジベンジルであることが判明した。
なお、ジベンジルの生成量は、380℃、20MPa
で、次の条件のとき、次のようであった。 粉末度(メッシュ) 流速(cc/min) 生成量(wt%daf) 16〜24 0.1 0.38 16〜24 4.2 0.40 60〜100 0.14 3.60
GC-MS for polymerizable liquid products
And GC-FID analysis revealed that a significant amount of the acetone solubles was dibenzyl.
The production amount of dibenzyl was 380 ° C. and 20 MPa.
Then, under the following conditions, it was as follows. Fineness (mesh) Flow rate (cc / min) Amount of production (wt% daf) 16-24 0.1 0.38 16-24 4.2 0.40 60-100 0.14 3.60

【0027】揮発分に変化しやすい不安定な液状生成物
の生成は低温ほど少なくなり、これはアセトンに不溶な
成分が多いものであった。
The formation of an unstable liquid product which was liable to change to a volatile component decreased at lower temperatures, and this was due to the large amount of components insoluble in acetone.

【0028】[0028]

【発明の効果】本発明の石炭の熱分解法によれば、トル
エンやジベンジルのような有用な化学成分を高収率で得
ることができる他、液状生成物や揮発性生成物の生成量
も多い。また、触媒やドナ−を使用しなくとも高い石炭
の転化率を得ることもできる。これは、石炭の化学原料
としての有用性を高める一つの技術ともいえる。
EFFECTS OF THE INVENTION According to the pyrolysis method of coal of the present invention, useful chemical components such as toluene and dibenzyl can be obtained in a high yield, and the production amount of liquid products and volatile products can also be increased. Many. It is also possible to obtain a high coal conversion rate without using a catalyst or a donor. It can be said that this is one technique that enhances the usefulness of coal as a chemical raw material.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶剤の滞留時間と各生成物の生成量との関係を
示すグラフ
FIG. 1 is a graph showing the relationship between the residence time of a solvent and the production amount of each product.

【図2】石炭粉末の粒径と各生成物の生成量との関係を
示すグラフ
FIG. 2 is a graph showing the relationship between the particle size of coal powder and the amount of each product produced.

【図3】実施例6〜8の各生成物の生成量を示すグラフFIG. 3 is a graph showing the production amount of each product of Examples 6 to 8.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月30日[Submission date] June 30, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】 炭化水素溶剤としては、常温液体で、4
50℃以下の臨界温度を有するものが使用できるが、熱
安定性が良好な芳香族炭化水素類、脂肪族炭化水素類、
脂環族炭化水素類が好ましく、具体的にはベンゼン、ト
ルエン、キシレン及びシクロヘキサンから選ばれる1種
又は2種以上の混合物が挙げられる。同じ温度圧力であ
っても溶剤を変えると物質移動速度、溶解力が異なるの
で、石炭粒子内での二次反応の経路が変わりその結果
剤の種類を選択することによっても、目的とする有用成
分の生成量を変化させることができる。これらの溶剤の
臨界温度及び臨界圧力を示せば、例えばベンゼンは28
9℃、4.9MPa、トルエンは319℃、4.0MP
a、キシレンは343℃、3.6MPaである。
As the hydrocarbon solvent, a liquid at room temperature is 4
Those having a critical temperature of 50 ° C. or lower can be used, but aromatic hydrocarbons, aliphatic hydrocarbons having good thermal stability,
Alicyclic hydrocarbons are preferable, and specific examples thereof include one kind or a mixture of two or more kinds selected from benzene, toluene, xylene and cyclohexane. At the same temperature and pressure
Even if the solvent is changed, the mass transfer rate and the dissolving power will be different.
Then, the route of the secondary reaction in the coal particles is changed, and as a result , the production amount of the intended useful component can be changed by selecting the kind of the solvent. If the critical temperature and critical pressure of these solvents are shown, for example, benzene is 28
9 ℃, 4.9 MPa, toluene is 319 ℃, 4.0MP
a and xylene are 343 ° C. and 3.6 MPa.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】 本発明でいう超臨界抽出は、石炭の熱分
解温度以上である300〜450℃の温度で行われるの
で、抽出と同時に石炭の熱分解が生じる。従って、本発
明でいう抽出は熱分解を含むものである。超臨界抽出
は、溶剤の臨界温度以上、臨界圧力以上の条件で行う
が、温度は300〜450℃の範囲とする必要があり、
300℃未満では熱分解が十分起こらず、450℃を越
えると分解が進みすぎて有用成分の生成が減少する。好
ましくは、320〜400℃である。また、圧力は高く
ても差し支えないが、余りに高圧にすることは粒子内の
拡散速度を低下させて石炭粒子内での二次分解、重合が
進み、有用成分の生成が減少するだけでなく、設備的に
高価なものとする必要があるので、臨界圧力〜40MP
a程度に止めることがよい。
The supercritical extraction according to the present invention is performed at a temperature of 300 to 450 ° C., which is higher than the thermal decomposition temperature of coal, so that thermal decomposition of coal occurs simultaneously with extraction. Therefore, the extraction referred to in the present invention includes thermal decomposition . The supercritical extraction is carried out under the conditions of the critical temperature of the solvent or higher and the critical pressure or higher, and the temperature needs to be in the range of 300 to 450 ° C.
If it is less than 300 ° C, thermal decomposition does not occur sufficiently, and if it exceeds 450 ° C, decomposition proceeds too much to reduce the production of useful components. The temperature is preferably 320 to 400 ° C. Further, although the pressure may be high, if the pressure is too high, the diffusion rate in the particles is reduced to promote secondary decomposition and polymerization in the coal particles, and not only the production of useful components is reduced, Since it is necessary to make the equipment expensive, the critical pressure ~ 40MP
It is better to stop at about a.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】実施例1 溶剤としてトルエンを使用し、653K、20MPa、
石炭粉末の平均粒径0.8mm、溶剤の流速0.05〜
70cc/minの条件で、超臨界抽出して、石炭の熱
分解を行ったときの、溶剤の抽出帯域における滞留時間
tと液状生成物、揮発性生成物、固体生成物の生成割合
の関係を図1に示す。図1から、滞留時間が短いほど液
状生成物の生成量が多いことが分かる。これは、不安定
な液状生成物が滞留時間が長くなると分解してしまうた
めと考えられる。また、図1から長時間高温下にさらし
ても液状生成物として回収された20wt% daf程
度は安定な液状生成物であることが分かる。
Example 1 Using toluene as a solvent, 653 K, 20 MPa,
Coal powder average particle size 0.8 mm, solvent flow rate 0.05-
Under the condition of 70 cc / min, the relationship between the residence time t in the solvent extraction zone and the production ratio of the liquid product, the volatile product, and the solid product when the coal was pyrolyzed by supercritical extraction is shown. As shown in FIG. From FIG. 1, it can be seen that the shorter the residence time, the larger the amount of liquid products produced. It is considered that this is because the unstable liquid product decomposes when the residence time becomes long. Also, exposed from high temperature for a long time from Figure 1.
However, it can be seen that about 20 wt% daf recovered as a liquid product is a stable liquid product.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】実施例4 溶剤としてシクロヘキサンを使用し、溶剤の流速を15
cc/min、石炭粉末の粒径60〜100メッシュ
(0.25〜0.15mm)とした他は、実施例1と同
様な実験を行ったところ、結果は、石炭転化率46.9
wt%daf、液状生成物収率24.6wt%daf、
揮発性生成物収率22.3wt%dafであった。揮発
性生成物中の液分について分析したところ、トルエン
近い成分0.323g、GCのピーク位置がトルエンよ
りやや軽質な成分0.197g、それより重い成分0.
552gであった。なお、ガス分は極微量であった。こ
れは、100%のマスバランスに当たる。
Example 4 Cyclohexane was used as the solvent, and the flow rate of the solvent was 15
An experiment similar to that of Example 1 was carried out, except that the particle size of the cc / min was 60 to 100 mesh (0.25 to 0.15 mm) and the coal conversion rate was 46.9.
wt% daf, liquid product yield 24.6 wt% daf,
The volatile product yield was 22.3 wt% daf. Analysis for the liquid content of the volatile product, in toluene
0.323 g of the closest component, 0.197 g of which the GC peak position is a little lighter than toluene, and the heavier component of 0.
It was 552 g. The gas content was extremely small. This corresponds to a mass balance of about 100%.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】実施例5 溶剤の流速を15cc/min、石炭粉末の粒径を0.
2mmとした他は、実施例4と同様な実験を行い、揮発
性生成物中の液分について分析したところ、70wt%
がトルエン及びトルエンより軽質な成分、25wt%が
CO、メタン等のガス分であった
Example 5 The solvent flow rate was 15 cc / min, and the coal powder particle size was 0.
An experiment similar to that in Example 4 was conducted except that the thickness was set to 2 mm, and the liquid content in the volatile product was analyzed and found to be 70 wt%.
Was toluene and components lighter than toluene, and 25 wt% was gas components such as CO and methane.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】 石炭から直接生じる揮発分について、分
析したところ、ガス分は一酸化炭素、二酸化炭素、メタ
ンを、液分はエチルベンゼン、パラキシレン、メタキシ
レン、トルエンを主成分とするものであることが判明し
た。特に、トルエン及びそれに近い構造の成分について
は石炭重量当たり、数wt%と高い収率となる。
When the volatile matter generated directly from coal was analyzed, it was found that the gas content was composed mainly of carbon monoxide, carbon dioxide, and methane, and the liquid content was composed mainly of ethylbenzene, paraxylene, metaxylene, and toluene. found. In particular, the yield of toluene and components having a structure close to it is as high as several wt% based on the weight of coal.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】削除[Correction method] Delete

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】[0028]

【発明の効果】 本発明の石炭の熱分解法によれば、
ルエンのような有用な化学成分を高収率で得ることがで
きる他、液状生成物や揮発性生成物の生成量も多い。ま
た、触媒やドナーを使用しなくとも高い石炭の転化率を
得ることもできる。これは、石炭の化学原料としての有
用性を高める一つの技術ともいえる。
According to the coal thermal decomposition method of the present invention ,
In addition to being able to obtain useful chemical components such as ruene in high yield, it also produces a large amount of liquid products and volatile products. It is also possible to obtain a high coal conversion rate without using a catalyst or a donor. It can be said that this is one technique that enhances the usefulness of coal as a chemical raw material.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 石炭粉末を、炭化水素溶剤の臨界温度以
上、300〜450℃の温度で、炭化水素溶剤を用いて
超臨界抽出することにより石炭を熱分解する方法におい
て、超臨界抽出帶域における炭化水素溶剤の反応器内の
滞留時間を600秒以下とすることを特徴とする石炭の
熱分解方法。
1. A method of thermally decomposing coal by supercritically extracting coal powder with a hydrocarbon solvent at a temperature of 300 to 450 ° C. above the critical temperature of the hydrocarbon solvent, in the supercritical extraction zone. The method for thermally decomposing coal, wherein the residence time of the hydrocarbon solvent in the reactor is 600 seconds or less.
【請求項2】 炭化水素溶剤の反応器内の滞留時間を6
0秒以下とする請求項1記載の石炭の熱分解方法。
2. The residence time of the hydrocarbon solvent in the reactor is 6
The method for thermally decomposing coal according to claim 1, which is set to 0 seconds or less.
【請求項3】 石炭粉末の平均粒子径を1mm以下とす
る請求項1記載の石炭の熱分解方法。
3. The method for thermally decomposing coal according to claim 1, wherein the average particle diameter of the coal powder is 1 mm or less.
【請求項4】 炭化水素溶剤がベンゼン、トルエン、キ
シレン又はシクロヘキサンである請求項1記載の石炭の
熱分解方法。
4. The method for thermally decomposing coal according to claim 1, wherein the hydrocarbon solvent is benzene, toluene, xylene or cyclohexane.
【請求項5】 炭化水素溶剤を連続的に流しながら超臨
界抽出を行う請求項1又は2記載の石炭の熱分解方法。
5. The thermal decomposition method for coal according to claim 1, wherein the supercritical extraction is carried out while continuously flowing a hydrocarbon solvent.
JP11531793A 1993-04-19 1993-04-19 Method for pyrolyzing coal Withdrawn JPH06299164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11531793A JPH06299164A (en) 1993-04-19 1993-04-19 Method for pyrolyzing coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11531793A JPH06299164A (en) 1993-04-19 1993-04-19 Method for pyrolyzing coal

Publications (1)

Publication Number Publication Date
JPH06299164A true JPH06299164A (en) 1994-10-25

Family

ID=14659615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11531793A Withdrawn JPH06299164A (en) 1993-04-19 1993-04-19 Method for pyrolyzing coal

Country Status (1)

Country Link
JP (1) JPH06299164A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532780A (en) * 2011-10-31 2014-12-08 サウジ アラビアン オイル カンパニー Supercritical water process to improve oil quality
CN105219406A (en) * 2012-02-15 2016-01-06 梵德克斯能源有限责任公司 A kind of equipment and the method for transforming hydrocarbon material
CN105647568A (en) * 2016-03-16 2016-06-08 新奥科技发展有限公司 Heavy tar and fine powder treatment method
JP2022100349A (en) * 2017-04-11 2022-07-05 テラパワー, エルエルシー Flexible pyrolysis system
US12006219B2 (en) 2020-03-12 2024-06-11 University Of Wyoming Thermo-chemical processing of coal via solvent extraction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532780A (en) * 2011-10-31 2014-12-08 サウジ アラビアン オイル カンパニー Supercritical water process to improve oil quality
CN105219406A (en) * 2012-02-15 2016-01-06 梵德克斯能源有限责任公司 A kind of equipment and the method for transforming hydrocarbon material
CN105647568A (en) * 2016-03-16 2016-06-08 新奥科技发展有限公司 Heavy tar and fine powder treatment method
JP2022100349A (en) * 2017-04-11 2022-07-05 テラパワー, エルエルシー Flexible pyrolysis system
US12006219B2 (en) 2020-03-12 2024-06-11 University Of Wyoming Thermo-chemical processing of coal via solvent extraction

Similar Documents

Publication Publication Date Title
US4166786A (en) Pyrolysis and hydrogenation process
US4324643A (en) Pyrolysis process for producing condensed stabilized hydrocarbons
US4105502A (en) Simplified liquefaction pyrolysis process and apparatus therefor
US4162959A (en) Production of hydrogenated hydrocarbons
US3700583A (en) Coal liquefaction using carbon radical scavengers
EP0093501B1 (en) Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions
US3817723A (en) Two-stage gasification of pretreated coal
RU1836408C (en) Method of obtaining liquid products from carbon-containing meterials
US4324642A (en) Pyrolysis process for producing condensed stabilized hydrocarbons utilizing a beneficially reactive gas
US4243489A (en) Pyrolysis reactor and fluidized bed combustion chamber
US3997423A (en) Short residence time low pressure hydropyrolysis of carbonaceous materials
US4324644A (en) Pyrolysis process for stabilizing volatile hydrocarbons utilizing a beneficially reactive gas
US3850738A (en) Bituminous coal liquefaction process
US4012311A (en) Short residence time low pressure hydropyrolysis of carbonaceous materials
Raman et al. Gasification of waste tires in a fluid bed reactor
US4324641A (en) Pyrolysis process utilizing a beneficially reactive gas
US4250014A (en) Coal liquefaction process
US4101412A (en) Process and apparatus for rapid pyrolysis of carbonaceous materials
US4324637A (en) Pyrolysis process with feed pretreatment utilizing a beneficially reactive gas
US4003820A (en) Short residence time hydropyrolysis of carbonaceous material
SU927125A3 (en) Process for producing synthetic liquid fuel
US4035281A (en) Production of fuel oil
JPH06299164A (en) Method for pyrolyzing coal
US4148710A (en) Fluidized bed process for retorting oil shale
JPH08269459A (en) Coal liquefaction method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704