JPH06298319A - Storage equipment in underground cavity - Google Patents

Storage equipment in underground cavity

Info

Publication number
JPH06298319A
JPH06298319A JP5237350A JP23735093A JPH06298319A JP H06298319 A JPH06298319 A JP H06298319A JP 5237350 A JP5237350 A JP 5237350A JP 23735093 A JP23735093 A JP 23735093A JP H06298319 A JPH06298319 A JP H06298319A
Authority
JP
Japan
Prior art keywords
tank
water
cavity
compressed air
pressure fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5237350A
Other languages
Japanese (ja)
Other versions
JP2739544B2 (en
Inventor
Hiroyuki Kakiuchi
弘幸 垣内
Tatsuya Kishimoto
達也 岸本
Takeshi Nakade
剛 中出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP5237350A priority Critical patent/JP2739544B2/en
Publication of JPH06298319A publication Critical patent/JPH06298319A/en
Application granted granted Critical
Publication of JP2739544B2 publication Critical patent/JP2739544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

PURPOSE:To secure the airtightness of high pressure fluid with a simple structure by installing a void from a wall surface of an underground cavity, setting up a tank, whose lower end is opened, in this void and, after filling up this void with water of the same pressure as the high pressure fluid to be stored, storing this high pressure fluid in the tank. CONSTITUTION:When compressed air A is introduced into a tank 20 filled up with water W from a pipeline 22, this compressed air A is stored in an upper part of this tank 20. At that time, since the water W of a volumetric portion in this compressed air A is put back to a storage reservoir 14 after being passed through an interconnecting pipe 12, the compressed air A in the tank 20 is balanced in pressure of water in a cavity 10. In brief, while a specified amount of the compressed air is stored, this air A in the tank 20 and the water in the cavity 10 are balanced with each other at both sides of each interface and a wall surface of the tank 20. In addition, with the introduction of a fluid into the tank 20, buoyancy conformed with the extent of volume of this introduced fluid works on the tank 20, so that it is recommendable that the tank 20 is fixed by an anchor 23 as a flotage preventing means. With this constitution, a stress burden to the tank is reduced and thereby airtightness is thus secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、水と非混合性の高圧
流体を地下の空洞内に貯蔵する装置に関し、特に、圧縮
空気、天然ガス、LPGおよびLNG等の高圧流体を地
下空洞内に安全に貯蔵する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for storing a high-pressure fluid immiscible with water in an underground cavity, and more particularly to a high-pressure fluid such as compressed air, natural gas, LPG and LNG in an underground cavity. It relates to a device for safe storage.

【0002】[0002]

【従来技術】エネルギー備蓄や供給電力の平準化といっ
た分野において、前記高圧流体を地下空洞内に漏気させ
ることなく貯蔵することが要請されている。従来、地下
の空洞内に原油やLPG等の流体を貯蔵する方法として
は、空洞内に流れ込もうとする地下水の水圧を利用する
水封方式および気密性の比較的高いライニング方式が知
られている。
2. Description of the Related Art In the fields of energy storage and leveling of supplied electric power, it is required to store the high-pressure fluid in an underground cavity without leaking it. Conventionally, as a method of storing a fluid such as crude oil or LPG in an underground cavity, a water sealing method that utilizes the water pressure of the groundwater that tries to flow into the cavity and a lining method that has a relatively high airtightness are known. There is.

【0003】水封方式は、岩盤を素掘した状態で地下水
位より深いところに空洞を設け、当該空洞の壁面で常に
地下水圧が内部圧力を上回るようにすることによって原
油やLPG等の流体を封入し貯蔵するものである。
In the water-sealing method, a rock is dug in a state where a hollow is formed deeper than the groundwater level, and the groundwater pressure is constantly higher than the internal pressure on the wall surface of the hollow, so that a fluid such as crude oil or LPG can be supplied. It is enclosed and stored.

【0004】ライニング方式は、スチール、コンクリー
ト、ゴム等のライニング材により地下空洞の気密性を確
保し、内部圧力を周辺の地山に負担させるものであり、
岩盤の割れ目状態や地下水理状態によらず、一般的に高
い気密性が得られることから水封方式に比べて信頼性の
点では有利である。
The lining method is to secure the airtightness of the underground cavity with a lining material such as steel, concrete, rubber or the like, and to bear the internal pressure on the surrounding ground.
Generally, high airtightness can be obtained regardless of the fractured condition of the bedrock and the hydraulic condition of the ground.

【0005】[0005]

【発明が解決しようとする課題】前記水封方式は、原理
的にも構造的にも単純であり、蒸気圧の比較的低い原油
やLPGの貯蔵方法として実用化されているが、水封の
メカニズムが十分解明されていないため、例えば10kg
/cm2f を越えるような高圧流体を貯蔵する場合には、岩
盤による気密性を確保するための問題やそれを実証する
大深度での調査方法といった課題が残されている。
The water-sealing method is simple in principle and structure and has been put to practical use as a storage method for crude oil and LPG having a relatively low vapor pressure. Since the mechanism is not fully understood, for example, 10kg
When storing a high-pressure fluid that exceeds / cm 2 f, there remain issues such as the problem of ensuring the airtightness of the bedrock and the investigation method at a large depth to prove it.

【0006】ライニング方式は、水封方式と異なり、空
洞の設置深度は、内圧に対する適当な反力が確保されれ
ば、周辺岩盤の間隙水圧の大きさに拘らず浅くできるた
め、立坑掘削費が軽減できるメリットもある。反面、内
圧によるライニング材の伸びの問題や背面水圧の処理等
の点で未解決の課題が残されており、気密性を確保する
ための構造が複雑なものとなっている。
Unlike the water-sealing method, the lining method can reduce the installation depth of the cavities as long as an appropriate reaction force against the internal pressure is ensured, regardless of the pore water pressure of the surrounding rock, and thus the shaft excavation cost is high. There is also a merit that can be reduced. On the other hand, there are still unsolved problems such as elongation of the lining material due to internal pressure and treatment of water pressure on the back surface, and the structure for ensuring airtightness is complicated.

【0007】この発明は上記課題を解決することを目的
とするものであり、簡易な構造によって高圧流体の気密
性を確実に確保することのできる地下空洞内貯蔵装置を
提供するものである。
An object of the present invention is to solve the above-mentioned problems, and to provide an underground cavity storage device capable of reliably ensuring the airtightness of a high-pressure fluid with a simple structure.

【0008】本発明に係る地下空洞内貯蔵装置は、地下
空洞内に当該空洞の壁面から間隙を設けて配置され下端
が開放されたタンクと、貯蔵すべき高圧流体と同じ圧力
を有し前記間隙に充満された水と、前記タンクに接続さ
れた高圧流体の配管とからなることを特徴とするもので
ある。
The underground cavity storage device according to the present invention comprises a tank, which is arranged in the underground cavity with a gap from the wall surface of the cavity and has an open lower end, and which has the same pressure as the high-pressure fluid to be stored. And a pipe for high-pressure fluid connected to the tank.

【0009】前記間隙に充満した水は、地上に設置され
た貯水池と連通し、また、前記空洞と前記貯水池とを接
続する連通管にバルブを介在させることが好ましい。更
に、前記タンクは、浮上防止手段を具えていることが望
ましい。
The water filled in the gap preferably communicates with a reservoir installed on the ground, and a valve is preferably interposed in a communication pipe connecting the cavity with the reservoir. Further, it is preferable that the tank is provided with a floating prevention means.

【0010】また、本発明に係る別の地下空洞内貯蔵装
置は、地下空洞内に当該空洞の壁面から間隙を設けて配
置され下端が開放されたタンクと、貯蔵すべき高圧流体
と同じ圧力を有し前記間隙に充満された水と、少なくと
も該タンクの上部と対向する壁面との間に設置され当該
間隙を保持し、かつ、前記水を流通可能な通水手段と、
前記タンクに接続された高圧流体の配管とからなること
を特徴とするものである。
Further, another underground cavity storage device according to the present invention has the same pressure as that of a high pressure fluid to be stored and a tank which is disposed in the underground cavity with a gap from the wall surface of the cavity and whose lower end is open. Water that has the water filled in the gap and is installed between at least an upper surface of the tank and a wall surface that faces the gap, and holds the gap, and water passage means capable of circulating the water,
A high-pressure fluid pipe connected to the tank.

【0011】[0011]

【作用】水が充満したタンク内に配管から高圧流体を導
入すると、タンク内の高圧流体の体積分の水は連通管を
通って貯水池に戻り、タンク内の高圧流体と空洞内の水
が、夫々の界面とタンクの壁面との双方でバランスす
る。
[Operation] When a high-pressure fluid is introduced from a pipe into a tank filled with water, the volume of the high-pressure fluid in the tank returns to the reservoir through the communication pipe, and the high-pressure fluid in the tank and the water in the cavity are Balance both at each interface and the wall of the tank.

【0012】高圧流体の貯蔵と排出を繰り返しても、空
洞内の水は連通管を介して貯水池との間を自由に行き来
するから、タンク内の高圧流体の圧力は空洞内の水の圧
力と常時釣り合っている。このため、タンクの壁に発生
する面内応力は最大でもタンク高さに等しい水のヘッド
差によるものだけである。
Even if the high-pressure fluid is repeatedly stored and discharged, the water in the cavity freely flows back and forth between the reservoir and the reservoir via the communication pipe, so that the pressure of the high-pressure fluid in the tank is equal to the pressure of the water in the cavity. Always balanced. For this reason, the in-plane stress generated in the wall of the tank is only due to the head difference of water which is equal to the tank height at the maximum.

【0013】前記貯蔵装置において、前記間隙を保持す
る通水手段により、水が間隙を自由に流通して、タンク
の背面には水圧が速やかに作用する。また、高圧流体の
導入によりタンクに働く浮力は、前記通水手段を介して
岩盤に伝達されるので、タンクの浮き上がりが防止され
る。
In the storage device, the water flow means for holding the gap allows water to freely flow through the gap, and the water pressure quickly acts on the back surface of the tank. Further, since the buoyancy acting on the tank due to the introduction of the high-pressure fluid is transmitted to the bedrock through the water passage means, the tank is prevented from rising.

【0014】[0014]

【実施例】以下、本発明の好ましい実施例を図面に基づ
いて説明する。図1は圧縮空気を地下空洞内に貯蔵する
装置の概要を示す断面図であり、同図において符号10
は地下の岩盤内に設けられたトンネル状または球状の空
洞である。空洞10は連通管12を介して地上に設けた
貯水池14と接続しており、従って、空洞10内の水W
には水頭分の圧力が作用する。空洞10における連通管
12の取り出し位置は、図1のように空洞10の底部で
もよいし、空洞10の頂部でもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an outline of a device for storing compressed air in an underground cavity.
Is a tunnel-shaped or spherical cavity provided in the underground rock. The cavity 10 is connected to a reservoir 14 provided on the ground via a communication pipe 12, and therefore the water W in the cavity 10 is connected.
The pressure of the water head acts on. The communication pipe 12 may be taken out from the cavity 10 at the bottom of the cavity 10 as shown in FIG. 1 or at the top of the cavity 10.

【0015】空洞10の内部には水と混合しにくい高圧
流体を貯蔵するためのタンク20を設置する。この実施
例では底部が完全に開放されたタンク20を用いたが、
タンク20の形状としては、タンク20の内部に水Wが
流通していること以外に格別の制限はなく、例えば、タ
ンク20の壁面に内外周面を貫通する孔を有する構造と
してもよい。
Inside the cavity 10, a tank 20 for storing a high pressure fluid that is difficult to mix with water is installed. In this embodiment, the tank 20 whose bottom is completely opened is used.
The shape of the tank 20 is not particularly limited except that the water W is flowing inside the tank 20, and for example, the wall surface of the tank 20 may have a hole penetrating the inner and outer peripheral surfaces.

【0016】貯蔵すべき高圧流体の種類や容量、その他
の要請によって、タンク20を空洞10内に複数個設置
することも、あるいは、タンク20内部を適当な壁面で
仕切って貯蔵室を複数とすることも任意である。
Depending on the type and capacity of the high-pressure fluid to be stored and other requirements, a plurality of tanks 20 may be installed in the cavity 10, or the inside of the tank 20 may be partitioned by an appropriate wall surface to provide a plurality of storage chambers. It is also optional.

【0017】タンク20は、スチールやコンクリートの
ような非透気性の材料で製造するが、後述するように、
タンク20には過大な応力はかからないので、強度的に
は軽微なもので十分である。
The tank 20 is made of a non-permeable material such as steel or concrete.
Since the tank 20 is not subjected to an excessive stress, a light strength is sufficient.

【0018】符号22は高圧流体の配管であり、その一
端部はタンク20の内部上方に開口している。配管22
はタンク20の壁面を貫通させて内部に挿入してもよ
い。
Reference numeral 22 is a pipe for high-pressure fluid, one end of which is open above the inside of the tank 20. Piping 22
May be inserted through the wall surface of the tank 20.

【0019】タンク20内への流体の導入に伴い、タン
ク20には導入流体の体積に応じた浮力が働くので、浮
き上がり防止手段が必要となることもある。図1に示す
実施例では、浮き上がり防止手段としてアンカー23に
よりタンク20を定着しているが、その他にもタンク2
0の構成材料を適当に選択することによって、その自重
を浮力以上としたり、あるいはタンク20の頂部と空洞
10の天井部との間の空間に緩衝材を介在させて、前記
浮力を上部岩盤により押さえる方法等を採用することが
できる。この場合、緩衝材としては、軽石、骨材などの
透水性の材料がよい。
As the fluid is introduced into the tank 20, a buoyancy force acts on the tank 20 according to the volume of the introduced fluid, so that a lifting prevention means may be required. In the embodiment shown in FIG. 1, the tank 20 is fixed by the anchor 23 as a lifting prevention means, but in addition, the tank 2 is fixed.
By properly selecting the constituent material of 0, its own weight is made to be more than the buoyancy, or a cushioning material is interposed in the space between the top of the tank 20 and the ceiling of the cavity 10, so that the above buoyancy is exerted by the upper bedrock. A pressing method or the like can be adopted. In this case, the cushioning material is preferably a water-permeable material such as pumice or aggregate.

【0020】次に、この実施例の作用を説明する。図1
において、水Wで満たされたタンク20内に配管22か
ら圧縮空気を導入すると、タンク20内上部には圧縮空
気Aが収容される。このとき圧縮空気Aの体積分の水W
は連通管12を通って貯水池14に戻るから、タンク2
0内の圧縮空気Aは空洞10内の水Wと圧力バランスし
ている。即ち、所定量の圧縮空気を貯蔵している間はタ
ンク20の圧縮空気Aと空洞10内の水Wが、夫々の界
面とタンク20の壁面との双方でバランスする。
Next, the operation of this embodiment will be described. Figure 1
In, when the compressed air is introduced from the pipe 22 into the tank 20 filled with the water W, the compressed air A is stored in the upper portion of the tank 20. At this time, the volume W of compressed air A
Returns to the reservoir 14 through the communication pipe 12, so the tank 2
The compressed air A in 0 is in pressure balance with the water W in the cavity 10. That is, while the predetermined amount of compressed air is stored, the compressed air A in the tank 20 and the water W in the cavity 10 balance at both the respective interfaces and the wall surface of the tank 20.

【0021】また、圧縮空気Aの貯蔵と排出を繰り返し
ても、空洞10内の水Wは連通管12を介して貯水池1
4との間を自由に行き来するから、タンク20内の圧縮
空気Aの圧力は空洞10内の水Wの圧力と常時釣り合っ
ている。このため、タンク20の壁に発生する面内応力
は最大でもタンク高さに等しい水のヘッド差によるもの
だけである。従って、タンク20の壁面には過大な応力
が発生せず、気密性を確保する上で有利である。また、
空洞の内部圧力は一定であるため、周辺岩盤に与える影
響も小さい。
Even if the compressed air A is repeatedly stored and discharged, the water W in the cavity 10 passes through the communication pipe 12 and the reservoir 1
The pressure of the compressed air A in the tank 20 is always in balance with the pressure of the water W in the cavity 10 since it freely travels back and forth between the tanks 4 and 4. Therefore, the in-plane stress generated in the wall of the tank 20 is only due to the head difference of water which is equal to the tank height at the maximum. Therefore, no excessive stress is generated on the wall surface of the tank 20, which is advantageous in ensuring the airtightness. Also,
Since the internal pressure of the cavity is constant, the influence on the surrounding rock is small.

【0022】更に、万一タンク20が破損した場合で
も、圧縮空気Aは空洞の内部に一時的に留まり、急激に
外部へ漏洩することはない。
Further, even if the tank 20 is damaged, the compressed air A temporarily stays inside the cavity and does not suddenly leak to the outside.

【0023】続いて、本発明の別の実施例を図2により
説明するが、同図において、図1と同じ部材には図1と
同じ符号を付して説明を省略する。図2に示す貯蔵装置
は、比較的深度の浅い部分に装置を建設しても高圧流体
を貯蔵することができるものである。
Next, another embodiment of the present invention will be described with reference to FIG. 2, in which the same members as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The storage device shown in FIG. 2 is capable of storing high-pressure fluid even if the device is constructed in a relatively shallow portion.

【0024】空洞10と貯水池14とを接続する連通管
12には、バルブ16が設けられている。バルブ16は
高圧用のものであれば、仕切弁、グローブ弁等、いずれ
の形式のものでもよい。連通管12においてバルブ16
を設置する位置については、格別の制限はない。
A valve 16 is provided in the communication pipe 12 connecting the cavity 10 and the reservoir 14. The valve 16 may be of any type such as a sluice valve or a globe valve as long as it is for high pressure. A valve 16 in the communication pipe 12
There are no special restrictions on the location of the installation.

【0025】符号18は、連通管12のバイパス管であ
り、空洞10内の水Wが自由に流通して、タンク20の
背面に水圧が速やかに作用するように設けたものであ
る。また、タンク20の外壁面と空洞10の内壁面との
間には、透水性の高い裏込材26が配装されている。
Reference numeral 18 is a bypass pipe of the communication pipe 12, which is provided so that the water W in the cavity 10 can freely flow and the water pressure can quickly act on the back surface of the tank 20. Further, a backing material 26 having high water permeability is provided between the outer wall surface of the tank 20 and the inner wall surface of the cavity 10.

【0026】この図2に示す貯蔵装置において、前記図
1の貯蔵装置と同様にして、タンク20の底部付近まで
圧縮空気Aを貯めた状態で、バルブ16を閉じると、タ
ンク20内の圧縮空気Aおよび空洞10内の水Wには、
連通管12の水頭Hがかかった状態となる。そこで、タ
ンク20内に配管22から高圧の圧縮空気をさらに供給
すれば、空洞10内の水Wが被圧され、タンク20の圧
縮空気Aと空洞10内の水Wとが、夫々の界面とタンク
20の壁面との双方でバランスする。なお、この貯蔵装
置では周辺地山にも圧縮空気Aと同じ高い水圧がかかる
から、周辺岩盤は、それに耐え得る強度条件と、ある程
度透水係数が小さく水の逸水が少ないという条件が必要
となる。
In the storage device shown in FIG. 2, similarly to the storage device shown in FIG. 1, when the valve 16 is closed with the compressed air A stored near the bottom of the tank 20, the compressed air in the tank 20 is closed. In A and the water W in the cavity 10,
The water head H of the communication pipe 12 is applied. Therefore, if high-pressure compressed air is further supplied into the tank 20 from the pipe 22, the water W in the cavity 10 is pressurized, and the compressed air A in the tank 20 and the water W in the cavity 10 form respective interfaces. Balance both on the wall of the tank 20. In addition, in this storage device, the same high water pressure as the compressed air A is applied to the surrounding rocks, so the surrounding bedrock must have strength conditions that can withstand it and conditions that the hydraulic conductivity is small to a certain extent and that there is little water loss. .

【0027】次に、タンク20の外周部に通水手段21
を設けた実施例について説明する。通水手段21は、図
3の拡大断面図に示されるように、タンク20の外壁に
近い方から、通水プレート24、透水シート25、およ
び裏込めコンクリート26の3層により構成されてい
る。
Next, a water passage means 21 is provided on the outer peripheral portion of the tank 20.
An embodiment provided with will be described. As shown in the enlarged cross-sectional view of FIG. 3, the water-passing means 21 is composed of three layers of a water-passing plate 24, a water-permeable sheet 25, and back-filling concrete 26 from the side closer to the outer wall of the tank 20.

【0028】通水プレート24は、この実施例では図4
の斜視図に示すようにプラスチックまたは鋼板等により
波型に成型され、同プレート24には通水孔28が穿設
されている。この波型形状により、タンク外壁面と空洞
10の内壁面との間隙に水の流通空間を確保するととも
に、同プレート24を補強する構造としている。従っ
て、通水プレート24の形状は、通水可能で、水を保持
することができ、かつ、タンク20に作用する浮力を岩
盤に伝え得る強度を持つ構造であればよく、この他に
も、ハニカム形状、表面凹凸形状などとすることもでき
る。
The water passage plate 24 is the same as that shown in FIG.
As shown in the perspective view of FIG. 1, the plate 24 is formed in a corrugated shape with a water passage hole 28. Due to this corrugated shape, a water circulation space is secured in the gap between the outer wall surface of the tank and the inner wall surface of the cavity 10, and the plate 24 is reinforced. Therefore, the shape of the water passage plate 24 may be any structure as long as it is water-permeable, can retain water, and has a strength capable of transmitting the buoyancy acting on the tank 20 to the bedrock. A honeycomb shape, a surface uneven shape, or the like can also be used.

【0029】透水シート25は、裏込めコンクリート2
6を打設するときの型枠の役割と、周辺岩盤から浸透し
てくる地下水を通水プレート24に導く役割を果たすも
のであり、一般に用いられている土木用シートを使用す
ることができる。なお、通水プレート24および透水シ
ート25は、予めタンク20に取着されていてもよい。
The water-permeable sheet 25 is made of backfill concrete 2
It plays a role of a form when placing 6, and also plays a role of guiding groundwater that permeates from the surrounding rock to the water plate 24, and a commonly used civil engineering sheet can be used. The water passage plate 24 and the water permeable sheet 25 may be attached to the tank 20 in advance.

【0030】裏込めコンクリート26は、透水シート2
5と岩盤との間隙を充填して、前記したタンク20に作
用する浮力を岩盤に伝達するためのものである。裏込め
コンクリート26としては、通常のモルタルコンクリー
トを用いることもできるが、特に、透水性の高いものが
望ましい。
The back-filled concrete 26 is the permeable sheet 2
This is for filling the gap between the rock 5 and the bedrock and transmitting the buoyancy acting on the tank 20 to the bedrock. As the backfill concrete 26, a normal mortar concrete can be used, but a concrete having a high water permeability is particularly desirable.

【0031】次に、通水手段21を有したこの実施例の
作用を説明する。水Wで満たされたタンク20内に配管
22から圧縮空気を導入していくと、タンク20内上部
には圧縮空気Aが貯留され、このとき圧縮空気Aの体積
分の水Wは連通管12を通って貯水池14に戻ると同時
に、通水プレート24に保持された水Wは通水孔28を
自由に流通する。
Next, the operation of this embodiment having the water passage means 21 will be described. When the compressed air is introduced from the pipe 22 into the tank 20 filled with the water W, the compressed air A is stored in the upper portion of the tank 20. At this time, the volume W of the compressed air A is contained in the communication pipe 12. At the same time as returning to the reservoir 14 through the water, the water W held on the water passage plate 24 freely flows through the water passage hole 28.

【0032】従って、タンク20の背面には水Wの水圧
が速やかに作用して、タンク20の壁面を介してタンク
20内の圧縮空気Aと通水手段21内の水Wとが圧力バ
ランスする。即ち、所定量の圧縮空気を貯蔵している間
はタンク20の圧縮空気Aと空洞10内の水Wが、夫々
の界面とタンク20の壁面との双方でバランスする。
Therefore, the water pressure of the water W quickly acts on the back surface of the tank 20, and the compressed air A in the tank 20 and the water W in the water passage means 21 are pressure balanced through the wall surface of the tank 20. . That is, while the predetermined amount of compressed air is stored, the compressed air A in the tank 20 and the water W in the cavity 10 balance at both the respective interfaces and the wall surface of the tank 20.

【0033】なお、通水手段21は、タンク20の頂部
と側面の全てに設けてもよいし、タンク20の浮上を防
止するという観点からは頂部だけの施工でもよい。
The water passage means 21 may be provided on all of the top and side surfaces of the tank 20, or from the viewpoint of preventing the tank 20 from floating, only the top portion may be installed.

【0034】[0034]

【発明の効果】この発明は、タンク内に貯蔵する高圧流
体の圧力と空洞内の水の圧力を常時バランス状態とする
ため、タンクへの応力負担が小さく、軽微な構造の貯蔵
タンクであっても確実な気密性を期待することができ
る。又、空洞の内面には常に一定の圧力が作用するた
め、周辺岩盤に対する安定性も極めて高いという優れた
効果を有している。
According to the present invention, since the pressure of the high-pressure fluid stored in the tank and the pressure of the water in the cavity are always in a balanced state, the stress load on the tank is small and the storage tank has a slight structure. Can also be expected to have reliable airtightness. Further, since a constant pressure is constantly applied to the inner surface of the cavity, it has an excellent effect that the stability against the surrounding rock is extremely high.

【0035】さらに、万一タンクが破損した場合でも、
貯蔵されている高圧流体が外界へ直接放出されることが
ないので、安全性に対する信頼性も高い。
Further, even if the tank is damaged,
Since the stored high-pressure fluid is not directly discharged to the outside world, the safety is high.

【0036】連通管にバルブを介在させた貯蔵装置で
は、地下空洞周辺地山の強度条件などが揃えば、当該空
洞の建設深度を浅くすることができる。
In the storage device in which a valve is interposed in the communication pipe, the construction depth of the cavity can be made shallow if the strength conditions of the ground around the underground cavity are the same.

【0037】タンクの外周面頂部に通水手段を設けた貯
蔵装置では、当該通水手段によりタンクの浮上を防止す
ると同時に、タンク背面に水圧を確実に作用させること
ができ、タンクへの応力負担を極めて小さくすることが
可能となる
In the storage device in which the water passage means is provided at the top of the outer peripheral surface of the tank, the water passage means can prevent the tank from floating and at the same time make it possible to exert a water pressure on the back surface of the tank without fail, so that the tank is not stressed. Can be made extremely small

【図面の簡単な説明】[Brief description of drawings]

【図1】地下空洞内貯蔵装置の概要を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing an outline of a storage device in an underground cavity.

【図2】他の地下空洞内貯蔵装置の概要を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing the outline of another underground cavity storage device.

【図3】タンク外周部に設けた通水手段の拡大断面図で
ある。
FIG. 3 is an enlarged cross-sectional view of a water passage means provided on the outer peripheral portion of the tank.

【図4】波型形状の通水プレートの部分的な斜視図であ
る。
FIG. 4 is a partial perspective view of a corrugated water-passing plate.

【符号の説明】[Explanation of symbols]

10 地下空洞 12 連通管 16 バルブ 14 貯水池 20 タンク 21 通水手段 22 高圧流体の配管 23 浮上防止手段(アンカー) 24 通水プレート 25 透水シート 26 裏込めコンクリート 28 通水孔 10 Underground Cavity 12 Communication Pipe 16 Valve 14 Reservoir 20 Tank 21 Water Flow Means 22 High Pressure Fluid Pipe 23 Floating Prevention Means (Anchor) 24 Water Flow Plate 25 Water Permeable Sheet 26 Backfill Concrete 28 Water Hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 地下空洞内に当該空洞の壁面から間隙を
設けて配置され下端が開放されたタンクと、貯蔵すべき
高圧流体と同じ圧力を有し前記間隙に充満された水と、
前記タンクに接続された高圧流体の配管とからなること
を特徴とする地下空洞内貯蔵装置。
1. A tank, which is arranged in a subterranean cavity with a gap from a wall surface of the cavity and has an open lower end, and water having the same pressure as the high-pressure fluid to be stored and filling the gap.
An underground cavernous storage device comprising a high-pressure fluid pipe connected to the tank.
【請求項2】 前記間隙に充満した水が、地上に設置さ
れた貯水池に連通していることを特徴とする請求項1記
載の地下空洞内貯蔵装置。
2. The underground cavity storage device according to claim 1, wherein the water filled in the gap communicates with a reservoir installed on the ground.
【請求項3】 前記空洞と前記貯水池とを接続する連通
管にバルブを介在させたことを特徴とする請求項2記載
の地下空洞内貯蔵装置。
3. The underground cavity storage device according to claim 2, wherein a valve is interposed in a communication pipe connecting the cavity and the reservoir.
【請求項4】 前記タンクが、浮上防止手段を具えてい
ることを特徴とする請求項1記載の地下空洞内貯蔵装
置。
4. The underground cavity storage device according to claim 1, wherein the tank is provided with a floatation preventing means.
【請求項5】 地下空洞内に当該空洞の壁面から間隙を
設けて配置され下端が開放されたタンクと、貯蔵すべき
高圧流体と同じ圧力を有し前記間隙に充満された水と、
少なくとも該タンクの上部と対向する壁面との間に設置
され当該間隙を保持し、かつ、前記水を流通可能な通水
手段と、前記タンクに接続された高圧流体の配管とから
なることを特徴とする地下空洞内貯蔵装置。
5. A tank, which is arranged in the underground cavity with a gap from the wall surface of the cavity and has an open lower end, and water having the same pressure as the high-pressure fluid to be stored and filling the gap.
At least an upper portion of the tank and a wall surface facing each other, which is provided with a water passage means which holds the gap and allows the water to flow, and a high-pressure fluid pipe connected to the tank. Storage device in underground cavern.
JP5237350A 1993-02-18 1993-08-30 Underground storage device Expired - Fee Related JP2739544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5237350A JP2739544B2 (en) 1993-02-18 1993-08-30 Underground storage device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5293993 1993-02-18
JP5-52939 1993-02-18
JP5237350A JP2739544B2 (en) 1993-02-18 1993-08-30 Underground storage device

Publications (2)

Publication Number Publication Date
JPH06298319A true JPH06298319A (en) 1994-10-25
JP2739544B2 JP2739544B2 (en) 1998-04-15

Family

ID=26393610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237350A Expired - Fee Related JP2739544B2 (en) 1993-02-18 1993-08-30 Underground storage device

Country Status (1)

Country Link
JP (1) JP2739544B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085739A (en) * 2017-11-02 2019-06-06 電源開発株式会社 High pressure fluid storage facility, high pressure fluid storage method, electric power storage system and hydroelectric power plant
CN111594269A (en) * 2020-05-18 2020-08-28 中铁第一勘察设计院集团有限公司 Underground oil gas tunnel storage tank structure and construction method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085739A (en) * 2017-11-02 2019-06-06 電源開発株式会社 High pressure fluid storage facility, high pressure fluid storage method, electric power storage system and hydroelectric power plant
CN111594269A (en) * 2020-05-18 2020-08-28 中铁第一勘察设计院集团有限公司 Underground oil gas tunnel storage tank structure and construction method thereof

Also Published As

Publication number Publication date
JP2739544B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US10060090B2 (en) Type of suction leg, an offshore caisson and a sit-on-bottom offshore platform
US20120260839A1 (en) Systems and methods for subsea gas storage installation and removal
US4647258A (en) Arrangement in vibration isolation or vibration damping
WO2013173709A1 (en) Excavated underground caverns for fluid storage
US3831385A (en) Arctic offshore platform
CN103270239A (en) Offshore tower for drilling and/or production
AU735028B2 (en) Buoyancy device and method for using same
CN104395530A (en) Suction-type pile leg, offshore caisson, and seabed-fixed offshore platform
US20170267447A1 (en) Subsea platform
GB1585170A (en) Forming concrete structures for underwater pipelines
JP3823253B2 (en) Semi-underground flat-bottom cylindrical liquid storage tank construction method and semi-underground flat-bottom cylindrical liquid storage tank
JPH06298319A (en) Storage equipment in underground cavity
US3064436A (en) Sealing underground cavities
JP3051895B2 (en) Rock tank for high pressure gas storage
JP2740842B2 (en) Method of storing high pressure gas in rock and rock tank for storing high pressure gas
Kovári Basic consideration on storage of compressed natural gas in rock chambers
US20180245302A1 (en) Anchoring system and method
JPH07137816A (en) Storage device in underground cavity
JPS63115997A (en) Gas tank device installed underground
US3552129A (en) High pressure resistant cofferdam
JP6983623B2 (en) High-pressure fluid storage equipment and power storage system
JP3106871B2 (en) Storage structure of water-insoluble or poorly water-soluble substance and method of storing the substance
JPH0617555A (en) Underground tank for storage of compressed air
CN114809063A (en) Multi-compartment composite cylindrical foundation and construction method thereof
JP4196287B2 (en) Water-sealed underground tank

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971209

LAPS Cancellation because of no payment of annual fees