JPH06297982A - Running controller for vehicle - Google Patents

Running controller for vehicle

Info

Publication number
JPH06297982A
JPH06297982A JP8198093A JP8198093A JPH06297982A JP H06297982 A JPH06297982 A JP H06297982A JP 8198093 A JP8198093 A JP 8198093A JP 8198093 A JP8198093 A JP 8198093A JP H06297982 A JPH06297982 A JP H06297982A
Authority
JP
Japan
Prior art keywords
vehicle
distance
speed
follow
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8198093A
Other languages
Japanese (ja)
Other versions
JP3055355B2 (en
Inventor
Tatsuaki Yokoyama
竜昭 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5081980A priority Critical patent/JP3055355B2/en
Publication of JPH06297982A publication Critical patent/JPH06297982A/en
Application granted granted Critical
Publication of JP3055355B2 publication Critical patent/JP3055355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a running controller which is capable of following a preceding car without delay or sudden approach not only in running on a flat road but on a slope. CONSTITUTION:An inter-vehicle distance detected by a rader device 10 and a car speed detected by a car-speed sensor 12 are supplied to an ECU 14. The ECU 14 calculates a target driving force to follow a preceding car and controls a throttle actuator 16 or a brake actuator 18. When the ECU 14 calculates the target driving force, a virtual model vehicle is set which can follow the preceding car with a desired following characteristic, whether it is on a flat road or a slope, and an acceleration, car speed and running distance of the model vehicle is simulated. The target driving force is calculated using a high gain in order to exactly follow this model vehicle based on the acceleration, car speed and running distance obtained through calculation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車両用走行制御装置、特
に先行車との車間距離を所定距離に維持して先行車に追
従走行する制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle travel control device, and more particularly to a control device that keeps a vehicle-to-vehicle distance to a preceding vehicle at a predetermined distance and follows the preceding vehicle.

【0002】[0002]

【従来の技術】従来より、運転者の運転操作低減や安全
性向上を目的とした種々の装置が開発、搭載されてお
り、自車の走行状態から安全車間距離を算出し、この安
全車間距離を維持しつつ自車速を制御して先行車に追従
する走行制御装置もその1つである。
2. Description of the Related Art Conventionally, various devices have been developed and installed for the purpose of reducing the driving operation of the driver and improving safety. The safe inter-vehicle distance is calculated from the running condition of the own vehicle. One of them is a travel control device that controls the own vehicle speed while keeping the following, and follows the preceding vehicle.

【0003】すなわち、安全車間距離(目標車間距離)
Ld を自車速度Vから Ld =pV+q ただしp,qは定数により算出し、この目標車間距離と
なるために必要な自車の目標駆動力Fを F=M{k1 (L−Ld )+k2 Vr } により算出する。ただし、Mは自車の質量、Lは車間距
離、Vr は相対速度、k1 、k2 はそれぞれ車間距離ゲ
イン、相対速度ゲインである。そして、この目標駆動力
Fと自車の走行抵抗との大小比較により加速が必要かあ
るいは減速が必要かを判断してスロットルアクチュエー
タまたはブレーキアクチュエータを制御し、先行車に追
従する。なお、車間距離ゲインk1 、相対速度ゲインk
2 は追従精度の向上の観点から定められ、例えば(k1
,k2 =0.49,0.64)の如く設定される。本
願出願人は先にこのような走行制御装置を特願平3−2
64863号にて提案している。
That is, the safe inter-vehicle distance (target inter-vehicle distance)
Ld is calculated from the vehicle speed V by Ld = pV + q, where p and q are calculated by constants, and the target driving force F of the vehicle required to reach the target inter-vehicle distance is F = M {k1 (L-Ld) + k2 Vr } Is calculated. Here, M is the mass of the vehicle, L is the inter-vehicle distance, Vr is the relative speed, and k1 and k2 are the inter-vehicle distance gain and the relative speed gain, respectively. Then, by comparing the target driving force F with the running resistance of the own vehicle, it is determined whether acceleration or deceleration is necessary, and the throttle actuator or the brake actuator is controlled to follow the preceding vehicle. The inter-vehicle distance gain k1 and the relative speed gain k
2 is determined from the viewpoint of improving the tracking accuracy, for example (k1
, K2 = 0.49, 0.64). The applicant of the present application previously applied for such a traveling control device in Japanese Patent Application No. 3-2.
Proposed in No. 64863.

【0004】[0004]

【発明が解決しようとする課題】一定条件下において
は、これらゲインk1 ,k2 を適宜調整することにより
追従特性が運転フィーリングに合致するように調整する
ことができる。すなわち、ゲインを大きくすれば先行車
が急加速した場合でもそれに対応して追従でき、またゲ
インを小さくすればなだらかに加速して先行車に追従す
るようになる。しかしながら、このように一定条件下で
はなく、何等かの外乱、例えば路面の勾配や車重の変化
などが加わると上記目標駆動力Fでは所望の追従特性が
得られない問題があった。
Under certain conditions, the following characteristics can be adjusted so as to match the driving feeling by appropriately adjusting these gains k1 and k2. That is, if the gain is increased, it is possible to follow the preceding vehicle even if the preceding vehicle suddenly accelerates, and if the gain is decreased, the vehicle is smoothly accelerated and follows the preceding vehicle. However, there is a problem in that the desired follow-up characteristic cannot be obtained with the target driving force F when some kind of disturbance such as a change in the road gradient or the vehicle weight is applied instead of under a constant condition.

【0005】すなわち、先行車に追従すべく目標駆動力
Fを所望のゲインk1 ,k2 で算出しても、例えば勾配
路では重力が自車に作用するため、登坂路では平坦路に
比べて実際の駆動力が目標駆動力に比べて減じられ、所
望の加速よりも小さい加速で追従することになってしま
う。従って、急勾配な登坂路においては、先行車に追従
できない場合が生じ、また降坂路においては先行車に異
常接近してしまう可能性もある。
That is, even if the target driving force F is calculated with the desired gains k1 and k2 in order to follow the preceding vehicle, for example, gravity acts on the vehicle on a slope road, and therefore, on an uphill road compared to a flat road. Driving force is reduced as compared with the target driving force, and the vehicle will follow with an acceleration smaller than the desired acceleration. Therefore, there may be a case where the vehicle cannot follow the preceding vehicle on a steep slope, and there is a possibility that the vehicle may approach the preceding vehicle abnormally on the descending road.

【0006】ゲインが大きい場合、先行車に対して目標
車間距離を保って追従走行できるが、自車の加減速が頻
繁に行われるため、自車内の乗員にとっては運転フィー
リングが悪い。そこで、運転フィーリングの向上には、
ゲインを小さくするのが望ましい。しかし、先行車に対
する自車の追従ゲインが小さい場合、多少の車間距離変
化では目標駆動力Fの調整量が小さい為、例えば登り坂
などでは目標車間距離よりも長い車間距離をとらないと
先行車に追従走行できない可能性がある。
When the gain is large, the vehicle can follow the preceding vehicle while maintaining the target inter-vehicle distance, but since the own vehicle is frequently accelerated and decelerated, the occupant in the own vehicle has a bad driving feeling. Therefore, to improve the driving feeling,
It is desirable to reduce the gain. However, when the tracking gain of the host vehicle with respect to the preceding vehicle is small, the adjustment amount of the target driving force F is small with a slight change in the inter-vehicle distance. Therefore, for example, on an uphill road, the inter-vehicle distance must be longer than the target inter-vehicle distance. You may not be able to follow.

【0007】その様子を運動方程式を用いて説明する。The state will be described using a motion equation.

【0008】自車の重量M、自車の加速度A、目標駆動
力F、走行抵抗力(外乱を含む)fから、運動方程式 MA=F−f が成立する。登坂路を走行中、自車には斜面に沿って下
向きに力が働くのでfは平坦路より増大する(f>
0)。登坂で定速追従走行中、A=0とするとF=fと
なる。F=M{k1(L−Ld)+k2 Vr}である
が、定速追従走行中は相対速度Vr=0なので、(L−
Ld)≠0とならなければならない。従って、車間距離
Lが目標車間距離Ldより大きくなるのである。特にゲ
インk1 の値が小さいと一層LがLdに比較して大きく
なるのである。下り坂では逆にLが目標車間距離Ldよ
り小さくなる可能性がある。
From the weight M of the own vehicle, the acceleration A of the own vehicle, the target driving force F, and the running resistance force (including disturbance) f, the equation of motion MA = F-f is established. While the vehicle is traveling on an uphill road, a force acts downward on the vehicle along the slope, so that f is greater than on a flat road (f>
0). During constant speed follow-up traveling on an ascending slope, if A = 0, then F = f. F = M {k1 (L-Ld) + k2 Vr}, but since the relative speed Vr = 0 during constant speed follow-up traveling, (L-
Ld) ≠ 0. Therefore, the inter-vehicle distance L becomes larger than the target inter-vehicle distance Ld. Especially, when the value of the gain k1 is small, L becomes larger than Ld. On the downhill, on the contrary, L may be smaller than the target inter-vehicle distance Ld.

【0009】勿論、車両に別途勾配センサなどを設け、
勾配路においてゲインk1 、k2 を自動調整することも
考えられるが、装置構成が複雑になると共に、ゲインk
1 、k2 の変化に伴いドライバビリティーが悪化する問
題も生じてしまう。
Of course, the vehicle is provided with a separate gradient sensor,
It may be possible to automatically adjust the gains k1 and k2 in the gradient road, but the device configuration becomes complicated and the gain k
There is also a problem that drivability deteriorates with changes in 1 and k2.

【0010】本発明は上記従来技術の有する課題に鑑み
なされたものであり、その目的は道路勾配や車重の変化
などの外乱が加わった状況下においても、先行車に所望
の追従特性で追従走行することが可能な車両用走行制御
装置を提供することにある。
The present invention has been made in view of the above problems of the prior art, and its purpose is to follow a preceding vehicle with a desired following characteristic even in a situation where a disturbance such as a change in road gradient or vehicle weight is applied. An object of the present invention is to provide a vehicle travel control device capable of traveling.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の車両用走行制御装置は、先行車との車間距
離を所定の目標車間距離に維持して先行車に追従走行す
べく自車の目標駆動力を制御する車両用走行制御装置に
おいて、自車速を検出する車速検出手段と、先行車との
車間距離を検出する車間距離検出手段と、先行車との相
対速度を検出する相対速度検出手段と、前記目標車間距
離、検出された車間距離及び相対速度に基づき先行車に
所望の追従特性で追従するために要求される加速度、車
速を演算する演算手段と、前記加速度、車速及び走行距
離を得るべく高ゲインで自車の駆動力をフィードバック
制御する制御手段と、を有することを特徴とする。
In order to achieve the above object, the vehicular travel control device of the present invention is designed to keep the inter-vehicle distance from a preceding vehicle at a predetermined target inter-vehicle distance and follow the preceding vehicle. In a vehicle travel control device for controlling a target driving force of an own vehicle, a vehicle speed detecting means for detecting an own vehicle speed, an inter-vehicle distance detecting means for detecting an inter-vehicle distance to a preceding vehicle, and a relative speed to the preceding vehicle are detected. Relative speed detection means, calculation means for calculating acceleration and vehicle speed required to follow the preceding vehicle with desired tracking characteristics based on the target vehicle distance, detected vehicle distance and relative speed, and the acceleration and vehicle speed. And a control unit that feedback-controls the driving force of the own vehicle with a high gain so as to obtain the traveling distance.

【0012】[0012]

【作用】本発明における車両用走行制御装置において
は、平坦路や勾配路などによらず、先行車に所望の追従
特性で追従し得る理想のモデル車両を仮想的に設定し、
このモデル車両に対して自車がぴったり追従するように
高ゲインで駆動力をフィードバック制御するものであ
る。
In the vehicle travel control device according to the present invention, an ideal model vehicle that can follow the preceding vehicle with desired tracking characteristics is set virtually regardless of whether it is on a flat road or a slope road.
The driving force is feedback-controlled with a high gain so that the own vehicle follows the model vehicle exactly.

【0013】ここで、仮想的に設定されるモデル車両の
加速度、車速及び走行距離は所望の追従特性を有するよ
うに先行車との車間距離や相対速度、目標車間距離に基
づき算出され、例えば勾配路下においても重力加速度の
影響を受けずに加速度、車速及び走行距離が算出され
る。
Here, the acceleration, vehicle speed and mileage of the virtually set model vehicle are calculated based on the inter-vehicle distance and relative speed with respect to the preceding vehicle and the target inter-vehicle distance so as to have desired follow-up characteristics. Even under the road, the acceleration, the vehicle speed, and the traveling distance are calculated without being affected by the gravitational acceleration.

【0014】従って、このように仮想的に設定されたモ
デル車両の加速度、車速及び走行距離を得るべく自車の
車速を制御することにより、結果的に外乱下においても
先行車に所望の追従特性で追従することが可能となる。
Therefore, by controlling the vehicle speed of the own vehicle so as to obtain the acceleration, vehicle speed and mileage of the model vehicle thus virtually set, as a result, the desired following characteristic of the preceding vehicle can be obtained even under disturbance. It becomes possible to follow with.

【0015】[0015]

【実施例】以下、図面を用いながら本発明の車両用走行
装置の好適な実施例を説明する。図1には本実施例の構
成ブロック図が示されている。車両の所定位置にはレー
ダ装置10が搭載され、先行車との車間距離が検出され
る。なお、レーダ装置10としてはミリ波レーダやレー
ザレーダなどを用いることができる。検出された先行車
との車間距離データは電子制御装置ECU14に供給さ
れ、車間距離データを時間微分して相対速度データが算
出される。一方、車速センサ12も設けられ、自車速を
検出してECU14に供給される。ECU14ではこれ
ら車間距離データ、相対速度データ、車速データに基づ
き、自車の目標駆動力を演算し、スロットルアクチュエ
ータ16乃至ブレーキアクチュエータ18を制御して先
行車に追従走行する構成である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of a vehicle traveling apparatus of the present invention will be described below with reference to the drawings. FIG. 1 shows a block diagram of the configuration of this embodiment. The radar device 10 is mounted at a predetermined position of the vehicle, and the inter-vehicle distance from the preceding vehicle is detected. A millimeter wave radar, a laser radar, or the like can be used as the radar device 10. The detected inter-vehicle distance data with the preceding vehicle is supplied to the electronic control unit ECU 14, and the inter-vehicle distance data is time-differentiated to calculate the relative speed data. On the other hand, a vehicle speed sensor 12 is also provided to detect the own vehicle speed and supply it to the ECU 14. The ECU 14 is configured to calculate the target driving force of the own vehicle based on the inter-vehicle distance data, the relative speed data, and the vehicle speed data, control the throttle actuator 16 to the brake actuator 18, and follow the preceding vehicle.

【0016】ここで、ECU14は目標駆動力を算出す
る際、先行車に所望の追従特性で追従する仮想的なモデ
ル車両を設定し、このモデル車両に要求される加速度、
車速及び走行距離を算出する。そして、自車がこの加速
度、車速及び走行距離で走行するように目標駆動力を算
出する。図2にはECU14での処理の概念図が示され
ている。先行車100に対し、所望の追従特性を有する
仮想的なモデル車両300(図中破線で示す)を設定
し、先行車100とこのモデル車両300との車間距離
L13と目標車間距離Ld (自車速に基づき算出される)
に基づきモデル車両300に要求される加速度a3 、車
速V3 及び走行距離d3 がシミュレートされる。このモ
デル車両300はどのような外乱下、例えば急勾配路か
においても先行車100に所望の追従特性で追従できる
車両である。そして、このモデル車両300にぴったり
追従するように高ゲインフィードバック制御を行って自
車両200の車速を制御する。仮想的なモデル車両30
0は所望の追従特性を有し、所望の運転フィーリングで
いかなる外乱下においても先行車100に追従できるの
で、結果的に自車両200もこの先行車100にいかな
る外乱下においても追従できることになる。
Here, when calculating the target driving force, the ECU 14 sets a virtual model vehicle that follows the preceding vehicle with desired following characteristics, and determines the acceleration required for this model vehicle.
Calculate vehicle speed and mileage. Then, the target driving force is calculated so that the host vehicle travels at the acceleration, the vehicle speed, and the traveling distance. FIG. 2 shows a conceptual diagram of processing in the ECU 14. A virtual model vehicle 300 (shown by a broken line in the figure) having a desired tracking characteristic is set for the preceding vehicle 100, and a vehicle-to-vehicle distance L13 between the preceding vehicle 100 and this model vehicle 300 and a target vehicle-to-vehicle distance Ld (vehicle speed). Calculated based on
Based on the above, the acceleration a3, the vehicle speed V3 and the mileage d3 required for the model vehicle 300 are simulated. The model vehicle 300 is a vehicle that can follow the preceding vehicle 100 with desired tracking characteristics under any disturbance, for example, on a steep road. Then, the vehicle speed of the host vehicle 200 is controlled by performing high gain feedback control so as to follow the model vehicle 300 exactly. Virtual model vehicle 30
0 has a desired follow-up characteristic and can follow the preceding vehicle 100 under any disturbance with a desired driving feeling. As a result, the host vehicle 200 can also follow the preceding vehicle 100 under any disturbance. .

【0017】図3には本実施例のECU14での制御内
容がより詳細に模式的に示されている。なお、説明の都
合上各変数は以下のように定義される。
FIG. 3 schematically shows the control contents of the ECU 14 of this embodiment in more detail. For convenience of explanation, each variable is defined as follows.

【0018】V1 :先行車の車速 V2 :追従車(自車)の車速 V3 :理想追従車(仮想的なモデル車両)の車速 L12:先行車と追従車との車間距離 L13:先行車と理想追従車の車間距離 L23:理想追従車と追従車の車間距離 d2 :時刻t=0から追従車が進んだ走行距離 d3 :時刻t=0から理想追従車が進んだ走行距離 a3 :理想追従車の加速度 Ld :目標車間距離 F:追従車に要求される目標駆動力 図3において、先行車100の車速V1 が追従車(自
車)の車速V2 と相対速度Vr から算出され、このV1
と理想追従車300の車速V3 の差分を積分することに
より先行車100と理想追従車300との車間距離L13
が算出される。一方、追従車200の車速V2 に基づき
定数p,qを用いて目標車間距離Ld が算出され、L13
とLd の差分が演算される。そして、この先行車100
と理想追従車300の車間距離L13と目標車間距離Ld
との差及び先行車100の車速V1と理想追従車300
の車速V3 との差分、すなわち先行車100と理想追従
車300との相対速度に基づき、所望のゲインk1 ,k
2 を用いて理想追従車300に要求される加速度a3 が
算出される。すなわち、理想追従車300の加速度a3
は、 a3 =k1 (L13−Ld )+k2 (V1 −V3 ) となる。
V1: vehicle speed of preceding vehicle V2: vehicle speed of following vehicle (own vehicle) V3: ideal vehicle speed of following vehicle (virtual model vehicle) L12: distance between preceding vehicle and following vehicle L13: preceding vehicle and ideal vehicle Distance between following vehicles L23: Distance between ideal following vehicle and following vehicle d2: Distance traveled by following vehicle from time t = 0 d3: Distance traveled by ideal following vehicle from time t = 0 a3: Ideal following vehicle Acceleration Ld: Target inter-vehicle distance F: Target driving force required for the following vehicle In FIG. 3, the vehicle speed V1 of the preceding vehicle 100 is calculated from the vehicle speed V2 of the following vehicle (own vehicle) and the relative speed Vr.
And the ideal following vehicle 300 by integrating the difference in vehicle speed V3 between the preceding vehicle 100 and the ideal following vehicle 300.
Is calculated. On the other hand, the target inter-vehicle distance Ld is calculated using the constants p and q based on the vehicle speed V2 of the following vehicle 200, and L13 is calculated as L13.
And Ld is calculated. And this preceding vehicle 100
And the ideal following vehicle 300 distance L13 and target distance Ld
And the vehicle speed V1 of the preceding vehicle 100 and the ideal following vehicle 300
Of the desired gains k1 and k based on the difference between the vehicle speed V3 and the relative speed between the preceding vehicle 100 and the ideal following vehicle 300.
The acceleration a3 required for the ideal following vehicle 300 is calculated using 2. That is, the acceleration a3 of the ideal following vehicle 300
Is a3 = k1 (L13-Ld) + k2 (V1-V3).

【0019】このようにして理想追従車300の加速度
a3 が算出され、次の制御時間における理想追従車30
0の車速V3 がこの加速度a3 を積分することにより得
られる。そして、理想追従車300の車速V3 と追従車
200の車速V2 との差分を積分することにより、理想
追従車300と追従車200との車間距離L23が算出さ
れる。そして、理想追従車300に要求される加速度a
3 、理想追従車300と追従車200の車間距離L23及
び理想追従車300と追従車200との相対速度V3 −
V2 に基づき、この理想追従車にぴったり追従するよう
に高ゲインk3,k4 を用いて目標駆動力Fが F=M{a3 +k3 ・L23+k4 (V3 −V2 )} により算出される。この目標駆動力Fで追従車200
(自車)のスロットル及びブレーキを制御することによ
り、追従車200は理想追従車300にぴったり追従す
ることになり、一方理想追従車300は先行車100に
いかなる外乱下においても所望の追従特性で追従するた
め、結局追従車200は先行車100に所望の加速度
で、かついかなる外乱下においても追従できることとな
る。
In this way, the acceleration a3 of the ideal following vehicle 300 is calculated, and the ideal following vehicle 30 at the next control time is calculated.
A vehicle speed V3 of 0 is obtained by integrating this acceleration a3. Then, the inter-vehicle distance L23 between the ideal following vehicle 300 and the following vehicle 200 is calculated by integrating the difference between the vehicle speed V3 of the ideal following vehicle 300 and the vehicle speed V2 of the following vehicle 200. Then, the acceleration a required for the ideal following vehicle 300
3, the following distance L23 between the ideal following vehicle 300 and the following vehicle 200, and the relative speed V3 between the ideal following vehicle 300 and the following vehicle 200 −
Based on V2, the target driving force F is calculated by F = M {a3 + k3.L23 + k4 (V3-V2)} using high gains k3 and k4 so as to follow the ideal following vehicle exactly. This target driving force F causes the following vehicle 200
By controlling the throttle and brake of (the own vehicle), the following vehicle 200 follows the ideal following vehicle 300 exactly, while the ideal following vehicle 300 has the desired following characteristic with respect to the preceding vehicle 100 under any disturbance. In order to follow, the following vehicle 200 can eventually follow the preceding vehicle 100 at a desired acceleration and under any disturbance.

【0020】ECU14はこのような制御内容により目
標駆動力Fを算出し、自車の車速を制御する。
The ECU 14 calculates the target driving force F based on such control contents and controls the vehicle speed of the vehicle.

【0021】以下、図4のフローチャートを用いて処理
手順を具体的に説明する。
The processing procedure will be specifically described below with reference to the flowchart of FIG.

【0022】本実施例における制御周期は32msec
に設定されている。まず、自車速V2 及び先行車100
との車間距離L12が計測される(S101)。自車速V
2 は車速センサ12により検出され、車間距離L12はレ
ーダ装置10により検出される。なお、現在の制御周期
におけるデータであることを示すためにインデックスi
が用いられる。計測された自車速V2 、車間距離L12に
基づき、理想追従車300(モデル車両)に要求される
加速度a3 を算出する。加速度a3 を算出するために、
まず自車の走行距離d2 、先行車100の車速V1 、モ
デル車両と自車との車間距離L23、先行車100とモデ
ル車両300との車間距離L13が算出される(S10
2)。自車の走行距離d2 は前回までの走行距離d2 に
制御時間Δt・自車速V2 を加算することにより得られ
る。また、先行車100の車速V1は先行車100との
車間距離を時間微分して得られる相対速度と自車速V2
から算出される。また、モデル車両と自車との車間距離
はモデル車両の走行距離d3と自車の走行距離d2 から
算出され、モデル車両の走行距離d3 は前回算出された
モデル車両の加速度a3 を2回時間積分して算出するこ
とができる。さらに、先行車100とモデル車両300
との車間距離L13は先行車100と自車200との車間
距離L12とL23から算出される。さらに、モデル車両の
車速V3 は前回のモデル車両の加速度a3 を時間積分し
て算出される。一方、先行車100との目標車間距離L
d が定数p,qを用いてLd =p・V2 +qにより算出
される。このようにしてL13、Ld 、V1 、V3 が算出
された後、ECU14はこれら変数に基づき、モデル車
両に要求される加速度a3 を算出する(S103)。加
速度a3 は前述したように、 a3 [i]=a1 (L13[i]−Ld [i])+k2
(V1 [i]−V3 [i]) により算出される。なお、このときのゲインk1 ,k2
は追従精度を重視して例えば(k1 ,k2 =0.49,
0.64)に設定される。
The control cycle in this embodiment is 32 msec.
Is set to. First, the own vehicle speed V2 and the preceding vehicle 100
The inter-vehicle distance L12 is measured (S101). Own vehicle speed V
2 is detected by the vehicle speed sensor 12, and the inter-vehicle distance L12 is detected by the radar device 10. The index i is used to indicate that the data is data in the current control cycle.
Is used. The acceleration a3 required for the ideal following vehicle 300 (model vehicle) is calculated based on the measured own vehicle speed V2 and the inter-vehicle distance L12. In order to calculate the acceleration a3,
First, the traveling distance d2 of the host vehicle, the vehicle speed V1 of the preceding vehicle 100, the inter-vehicle distance L23 between the model vehicle and the own vehicle, and the inter-vehicle distance L13 between the preceding vehicle 100 and the model vehicle 300 are calculated (S10).
2). The traveling distance d2 of the own vehicle is obtained by adding the control time Δt and the own vehicle speed V2 to the traveling distance d2 up to the previous time. Further, the vehicle speed V1 of the preceding vehicle 100 is the relative speed obtained by time-differentiating the inter-vehicle distance from the preceding vehicle 100 and the own vehicle speed V2.
Calculated from The inter-vehicle distance between the model vehicle and the own vehicle is calculated from the running distance d3 of the model vehicle and the running distance d2 of the own vehicle. The running distance d3 of the model vehicle is obtained by integrating the previously calculated acceleration a3 of the model vehicle twice over time. Can be calculated. Furthermore, the preceding vehicle 100 and the model vehicle 300
The inter-vehicle distance L13 is calculated from the inter-vehicle distances L12 and L23 between the preceding vehicle 100 and the own vehicle 200. Further, the vehicle speed V3 of the model vehicle is calculated by time-integrating the acceleration a3 of the previous model vehicle. On the other hand, the target inter-vehicle distance L with the preceding vehicle 100
d is calculated by Ld = p.V2 + q using constants p and q. After L13, Ld, V1 and V3 are calculated in this way, the ECU 14 calculates the acceleration a3 required for the model vehicle based on these variables (S103). The acceleration a3 is, as described above, a3 [i] = a1 (L13 [i] -Ld [i]) + k2
It is calculated by (V1 [i] -V3 [i]). Note that the gains k1 and k2 at this time are
Places emphasis on tracking accuracy, for example (k1, k2 = 0.49,
0.64).

【0023】そして、このようにして算出された加速度
a3 の符号が判定され(S104)、加速度a3 が負、
すなわち減速制御の場合には追従精度を重視して設定さ
れた加速度a3 のままで制御が行われ、一方加速度a3
が正、すなわち加速が要求される場合には、ブレーキタ
イミングを重視した制御とすべくゲインk1 ´、k2´
を用いて a3 [i]=K1 ´(L13[i]−Ld [i])+k2
´(V1 [i]−V3[i]) とする。なお、k1 ´、k2 ´は例えば(k1 ´,k2
´)=(0.10,0.80)に設定される。
Then, the sign of the acceleration a3 thus calculated is determined (S104), and the acceleration a3 is negative,
That is, in the case of deceleration control, the control is performed with the acceleration a3 set with emphasis on tracking accuracy, while the acceleration a3
Is positive, that is, when acceleration is required, the gains k1 'and k2' should be set in order to perform control with emphasis on brake timing.
A3 [i] = K1 '(L13 [i] -Ld [i]) + k2
'(V1 [i] -V3 [i]). Note that k1 'and k2' are, for example, (k1 ', k2
′) = (0.10, 0.80) is set.

【0024】このようにしてモデル車両300に要求さ
れる加速度a3 が算出され、この加速度a3 を用いてモ
デル車両300に要求される車速V3 及び走行距離d3
が算出される。すなわち、車速V3 は加速度a3 を時間
積分して得られ、走行距離d3 は算出された車速V3 を
さらに時間積分して算出される(S106)。そして、
これら加速度a3 、車速V3 、走行距離d3 を用い、モ
デル車両300にぴったり追従するように自車の目標駆
動力Fを設定する。すなわち、目標駆動力Fはゲインk
3 、k4 を用いて、 F[i]=M{a3 [i]+k3 ・L23[i]+k4
(V3 [i]−V2 [i])} により算出される。なお、ゲインk3 、k4 は高ゲイン
に設定され、例えば(k3 ,k4 )=(1.0,3.4
6)に設定される。この目標駆動力Fはモデル車両30
0の加速度、車速、走行距離にぴったり追従できる駆動
力であり、この目標駆動力Fを用いてスロットル乃至ブ
レーキを制御する(S108)。
In this way, the acceleration a3 required for the model vehicle 300 is calculated, and the vehicle speed V3 and the traveling distance d3 required for the model vehicle 300 are calculated using this acceleration a3.
Is calculated. That is, the vehicle speed V3 is obtained by time integration of the acceleration a3, and the traveling distance d3 is calculated by further time integration of the calculated vehicle speed V3 (S106). And
Using these acceleration a3, vehicle speed V3, and traveling distance d3, the target driving force F of the own vehicle is set so as to follow the model vehicle 300 exactly. That is, the target driving force F is the gain k
Using 3 and k4, F [i] = M {a3 [i] + k3.L23 [i] + k4
(V3 [i] -V2 [i])}. The gains k3 and k4 are set to high gains, for example, (k3, k4) = (1.0, 3.4).
6) is set. The target driving force F is the model vehicle 30.
It is a driving force that can exactly follow the acceleration of 0, the vehicle speed, and the traveling distance, and the target driving force F is used to control the throttle or the brake (S108).

【0025】このように、本実施例では先行車に所望の
追従特性で追従可能なモデル車両に高ゲインフィードバ
ックでしっかり追従するように自車のスロットル乃至ブ
レーキを制御するので、勾配路においても先行車に確実
に追従することができる。
As described above, in the present embodiment, the throttle or brake of the own vehicle is controlled so as to firmly follow the model vehicle capable of following the preceding vehicle with a desired following characteristic by high gain feedback, so that the preceding vehicle is also performed on the slope road. You can follow the car reliably.

【0026】また、本実施例における目標駆動力Fは高
ゲインk3 、k4 で決定されるため、例えば2種類の制
御ゲインを用いる場合に比べてドライバビリティーの悪
化がなく、ハンチングなどを起すこともない。
Further, since the target driving force F in this embodiment is determined by the high gains k3 and k4, the drivability is not deteriorated as compared with the case where two kinds of control gains are used, and hunting or the like is caused. Nor.

【0027】なお、ディーゼル機関の場合には、燃料供
給量を制御することにより追従制御を行うことができ、
また機関制御だけでなく、変速機を制御してもよい。
In the case of a diesel engine, follow-up control can be performed by controlling the fuel supply amount,
Further, not only the engine control but also the transmission may be controlled.

【0028】[0028]

【発明の効果】以上説明したように、本発明に係る車両
用走行制御装置によれば、勾配路における重力の影響な
どの外乱が生じている場合においても、所望の追従特性
で先行車に円滑に追従走行することができる。
As described above, according to the vehicle travel control device of the present invention, even if a disturbance such as the influence of gravity on a grade road occurs, the vehicle can smoothly follow the preceding vehicle with a desired follow-up characteristic. You can follow.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の構成ブロック図である。FIG. 1 is a configuration block diagram of an embodiment of the present invention.

【図2】同実施例における制御の概念図である。FIG. 2 is a conceptual diagram of control in the same embodiment.

【図3】同実施例における制御内容の説明図である。FIG. 3 is an explanatory diagram of control contents in the embodiment.

【図4】同実施例におけるECUの処理フローチャート
である。
FIG. 4 is a processing flowchart of an ECU in the embodiment.

【符号の説明】[Explanation of symbols]

10 レーダ装置 12 車速センサ 14 ECU 16 スロットルアクチュエータ 18 ブレーキアクチュエータ 10 radar device 12 vehicle speed sensor 14 ECU 16 throttle actuator 18 brake actuator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 先行車との車間距離を所定の目標車間距
離に維持して先行車に追従走行すべく自車の目標駆動力
を制御する車両用走行制御装置において、 自車速を検出する車速検出手段と、 先行車との車間距離を検出する車間距離検出手段と、 先行車との相対速度を検出する相対速度検出手段と、 前記目標車間距離、検出された車間距離及び相対速度に
基づき先行車に所望の追従特性で追従するために要求さ
れる加速度、車速を演算する演算手段と、 前記加速度、車速及び走行距離を得るべく高ゲインで自
車の駆動力をフィードバック制御する制御手段と、 を有することを特徴とする車両用走行制御装置。
1. A vehicle traveling control device for controlling a target driving force of a vehicle so as to follow the preceding vehicle while maintaining a vehicle-to-vehicle distance between the vehicle and a preceding vehicle at a predetermined target vehicle-to-vehicle distance, and detecting a vehicle speed of the vehicle. A detection means, an inter-vehicle distance detection means for detecting an inter-vehicle distance to the preceding vehicle, a relative speed detection means for detecting a relative speed with respect to the preceding vehicle, and a preceding vehicle based on the target inter-vehicle distance, the detected inter-vehicle distance and the relative speed. A calculation unit that calculates the acceleration and the vehicle speed required to follow the vehicle with a desired tracking characteristic, and a control unit that feedback-controls the driving force of the own vehicle with a high gain in order to obtain the acceleration, the vehicle speed, and the mileage. A travel control device for a vehicle, comprising:
JP5081980A 1993-04-08 1993-04-08 Travel control device for vehicles Expired - Lifetime JP3055355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5081980A JP3055355B2 (en) 1993-04-08 1993-04-08 Travel control device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5081980A JP3055355B2 (en) 1993-04-08 1993-04-08 Travel control device for vehicles

Publications (2)

Publication Number Publication Date
JPH06297982A true JPH06297982A (en) 1994-10-25
JP3055355B2 JP3055355B2 (en) 2000-06-26

Family

ID=13761637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5081980A Expired - Lifetime JP3055355B2 (en) 1993-04-08 1993-04-08 Travel control device for vehicles

Country Status (1)

Country Link
JP (1) JP3055355B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338057A (en) * 1997-06-10 1998-12-22 Hitachi Ltd Automatic travel controller and inter-vehicle distance warning device for automobile
JPH1178598A (en) * 1997-09-05 1999-03-23 Nissan Motor Co Ltd Travel control device for vehicle
JP2001328454A (en) * 2000-05-19 2001-11-27 Nissan Motor Co Ltd Vehicle-to-vehicle distance control device
JP2011255876A (en) * 2010-05-13 2011-12-22 Denso Corp Speed control device for vehicle
JP2012187965A (en) * 2011-03-09 2012-10-04 Mitsubishi Motors Corp Driving support device
WO2019082361A1 (en) * 2017-10-26 2019-05-02 日産自動車株式会社 Control method and control device for autonomous vehicle
US11285946B2 (en) 2018-05-09 2022-03-29 Mitsubishi Electric Corporation Moving object detector, vehicle control system, method for detecting moving object, and method for controlling vehicle
US11535278B2 (en) 2017-10-12 2022-12-27 Nissan Motor Co., Ltd. Control method and control device for autonomous vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338057A (en) * 1997-06-10 1998-12-22 Hitachi Ltd Automatic travel controller and inter-vehicle distance warning device for automobile
JPH1178598A (en) * 1997-09-05 1999-03-23 Nissan Motor Co Ltd Travel control device for vehicle
JP2001328454A (en) * 2000-05-19 2001-11-27 Nissan Motor Co Ltd Vehicle-to-vehicle distance control device
JP2011255876A (en) * 2010-05-13 2011-12-22 Denso Corp Speed control device for vehicle
US8954256B2 (en) 2010-05-13 2015-02-10 Denso Corporation Vehicle-use speed control apparatus
JP2012187965A (en) * 2011-03-09 2012-10-04 Mitsubishi Motors Corp Driving support device
US11535278B2 (en) 2017-10-12 2022-12-27 Nissan Motor Co., Ltd. Control method and control device for autonomous vehicle
WO2019082361A1 (en) * 2017-10-26 2019-05-02 日産自動車株式会社 Control method and control device for autonomous vehicle
US11598279B2 (en) 2017-10-26 2023-03-07 Nissan Motor Co., Ltd. Control method and control device for automated vehicle
US11285946B2 (en) 2018-05-09 2022-03-29 Mitsubishi Electric Corporation Moving object detector, vehicle control system, method for detecting moving object, and method for controlling vehicle

Also Published As

Publication number Publication date
JP3055355B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
JP3651259B2 (en) Preceding vehicle tracking control device
JP3777970B2 (en) Preceding vehicle tracking control device
US7561955B2 (en) Preceding-vehicle following control system
US6618000B2 (en) Method and device for controlling the distance from a vehicle to a preceding vehicle
US7054733B2 (en) Adaptive cruise control system for vehicle
US20100198478A1 (en) Method and apparatus for target vehicle following control for adaptive cruise control
CN112061106B (en) Automatic driving control method, device, vehicle and storage medium
US6778897B2 (en) Adaptive cruise control system and strategy
JPH0549492B1 (en)
JPH06297982A (en) Running controller for vehicle
JP2006264571A (en) Following stop control unit and method of controlling following stop
JPH0747862A (en) Running control device for automobile
JP2007314179A (en) Running controller
JPH0855300A (en) Controller of vehicle group travel system
JP3365064B2 (en) Travel control device for vehicles
JP3957057B2 (en) Vehicle traveling control apparatus and method
JP3649108B2 (en) Vehicle tracking control device
JP2004322729A (en) Running control device
JPH0717298A (en) Running control device for automobile
JP3932851B2 (en) Vehicle control device
JPH10338056A (en) Vehicular follow-up running control device
JP3901024B2 (en) Travel control device
JP2006044590A (en) Deceleration control device for vehicle
JP3127083B2 (en) Rear-end collision judgment method in rear-end collision prevention system
JP2004161175A (en) Travel speed control device