JPH06297709A - Ink jet recording apparatus - Google Patents

Ink jet recording apparatus

Info

Publication number
JPH06297709A
JPH06297709A JP9139393A JP9139393A JPH06297709A JP H06297709 A JPH06297709 A JP H06297709A JP 9139393 A JP9139393 A JP 9139393A JP 9139393 A JP9139393 A JP 9139393A JP H06297709 A JPH06297709 A JP H06297709A
Authority
JP
Japan
Prior art keywords
piezoelectric element
ink
voltage
ink chamber
recording apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9139393A
Other languages
Japanese (ja)
Other versions
JP3594628B2 (en
Inventor
Masaru Hoshino
勝 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9139393A priority Critical patent/JP3594628B2/en
Publication of JPH06297709A publication Critical patent/JPH06297709A/en
Application granted granted Critical
Publication of JP3594628B2 publication Critical patent/JP3594628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

PURPOSE:To prevent the fatigue destruction of a piezoelectric element, in a apparatus wherein the voltage applied to a piezoelectric element is changed to expand and contract the volume of an ink chamber to emit ink from a nozzle, by always applying strain to the piezoelectric element in a definite direction at a time of the expansion/contraction of the ink chamber. CONSTITUTION:An ink chamber 2 is allowed to communicate with a nozzle 1 emitting ink. A pressure wall 2p changing the volume of the ink chamber 2 is arranged to the ink chamber 2 and ink is supplied from a supply passage 3 and a piezoelectric element 4 is arranged. The volume of the ink chamber 2 is expanded and contracted by the change of the voltage applied to the piezoelectric element 4 to emit ink from the nozzle 1. In this case, the common electrode terminal tc of the piezoelectric element 4 is connected to a charging and discharging device 5 and a segment electrode terminal ts is connected to a switching device 7. A bias voltage applying device 6 is provided to the charging and discharging device 5 and, in such a state that bias voltage is applied, the piezoelectric element 4 is charged and discharged to expand and contract the ink chamber 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はデータに基づいて紙面や
記録媒体上にインクを吐出し文字や画像などを記録する
インクジェット記録装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ink jet recording apparatus for recording characters and images by ejecting ink on a paper surface or a recording medium based on data.

【0002】[0002]

【従来の技術】インクジェット方式による記録装置は小
型で低騒音であり装置コスト、ランニングコストともに
比較的安価であるためにコンピュータなどに接続して文
字や画像などのデータを記録する目的で広く使用されて
いる。しかしながら、印字速度が遅いために高速記録が
要求される場合においては高価で複雑、大型の電子写真
方式の記録装置に頼らざるを得ない。インクジェット方
式の記録装置の記録速度を電子写真方式のそれに匹敵す
る速度に高速化するためには、インクジェット記録装置
の1ノズル当りのインク吐出の繰返し応答周波数を向上
すること、記録装置のノズル数を増やすことが要求され
る。
2. Description of the Related Art Ink jet recording apparatuses are widely used for recording data such as characters and images by connecting to a computer or the like because they are small in size, have low noise, and are relatively inexpensive in terms of apparatus cost and running cost. ing. However, in the case where high-speed recording is required due to the slow printing speed, it is necessary to rely on an expensive, complicated, and large-sized electrophotographic recording apparatus. In order to increase the recording speed of the ink jet recording apparatus to a speed comparable to that of the electrophotographic method, the repetition response frequency of ink ejection per nozzle of the ink jet recording apparatus should be improved and the number of nozzles of the recording apparatus should be increased. It is required to increase.

【0003】現状のインクジェット記録装置の1ノズル
当りのインク吐出の繰返し応答周波数は3〜10kHz
程度であるが、この繰返し周波数を実験的に上げて駆動
した場合、それぞれのノズルのインク吐出は可能である
が、各ノズル間の吐出インク量、吐出インクスピードの
ばらつきが激しくなり、更に駆動繰返し周波数を上げた
場合、一部のノズルでインクの吐出が可能でも残りのノ
ズルでインク吐出ができない状態になる。すなわち、現
状のインクジェット記録装置で吐出繰返し周波数を上げ
るとノズル間のインク吐出特性のばらつきが激しくなっ
たり吐出不良が発生したりすることで記録装置として実
用的でなくなってしまう。
In the current ink jet recording apparatus, the repetition response frequency of ink ejection per nozzle is 3 to 10 kHz.
To some extent, if this repetition frequency is experimentally raised and driven, ink can be ejected from each nozzle, but the amount of ink ejected from each nozzle and the ejection ink speed will vary greatly, and further drive repetition will occur. When the frequency is increased, some nozzles can eject ink, but the remaining nozzles cannot eject ink. That is, if the ejection repetition frequency is increased in the current inkjet recording apparatus, the dispersion of ink ejection characteristics between nozzles becomes large and ejection failure occurs, which makes the recording apparatus unpractical.

【0004】更に、現状のインクジェット記録装置で吐
出繰返し周波数を実験的に上げると、圧電素子の圧縮、
伸張の繰返しによる疲労現象によって破壊寿命が著しく
短くなり、この点からも記録装置としての実用性が損な
われる。また、電子写真方式に匹敵する高速記録を実現
するためにはインクの吐出繰返し周波数を上げると同時
にインクノズル数も現状の48〜64ノズル程度から少
なくとも100ノズル以上に増やさなければならない。
しかしながら、インクジェット記録装置においては1ノ
ズルでも吐出不良が発生すると記録装置として不良とな
るために、現状のインクジェット方式でノズル数を増や
すことは装置としての不良率を著しく増加させてしまい
実用的な信頼性を得ることは困難であった。
Further, when the ejection repetition frequency is experimentally increased in the current ink jet recording apparatus, compression of the piezoelectric element,
The fatigue life due to repeated stretching shortens the breaking life remarkably, which also impairs the practicality of the recording apparatus. Further, in order to realize high-speed recording comparable to the electrophotographic system, it is necessary to increase the ink ejection repetition frequency and simultaneously increase the number of ink nozzles from the current 48 to 64 to at least 100 or more.
However, in the inkjet recording apparatus, if even one nozzle has a defective ejection, it becomes defective as a recording apparatus. Therefore, increasing the number of nozzles in the current inkjet method remarkably increases the defective rate of the apparatus, resulting in a practical reliability. It was difficult to get sex.

【0005】すなわち、従来のインクジェット記録装置
は高速化に当って、インク吐出特性がばらつく、圧電素
子の疲労破壊により寿命が短い、圧電素子の不良発生率
が高すぎるといった問題があった。
That is, the conventional ink jet recording apparatus has problems in that the ink ejection characteristics are varied, the life is short due to the fatigue breakdown of the piezoelectric element, and the defective occurrence rate of the piezoelectric element is too high due to the increase in speed.

【0006】従来のインクジェット記録装置のインク吐
出部構成例の断面を図16及び図17に示す。図16は
ノズル1に連通するインク室2とインク供給路3から成
るインク流路に満たされているインクを、インク室2の
一部に設けられた圧力壁2pに接続された圧電素子4へ
両面の電極4eによって電圧を印加することで圧電素子
4に縦横比の変化としての歪みを生じさせてインク室2
を加圧しノズル1からインクを吐出させる構成である。
図17はノズル1に連通するインク室2とインク供給路
3から成るインク流路にインクが満たされており、イン
ク室2の一部に設けられた圧力壁2pに両面に電極4e
をもつ圧電セラミクスと弾性板4tを張り合わせてなる
圧電素子4を備え、電極間に電圧を印加することで圧電
素子4を屈曲させ、インク室2を加圧しノズル1からイ
ンクを吐出させる構成である。従来例として示す図1
6、図17とも圧電素子に印加する電圧によってインク
室を拡張または縮小させる構造となっている点で圧電素
子を用いたインクジェット記録装置に共通する構成であ
る。
16 and 17 show cross sections of an example of the structure of an ink ejection portion of a conventional ink jet recording apparatus. In FIG. 16, the ink filled in the ink flow path including the ink chamber 2 communicating with the nozzle 1 and the ink supply path 3 is transferred to the piezoelectric element 4 connected to the pressure wall 2 p provided in a part of the ink chamber 2. By applying a voltage by the electrodes 4e on both surfaces, the piezoelectric element 4 is distorted as a change in the aspect ratio, and the ink chamber 2
Is applied to eject ink from the nozzle 1.
In FIG. 17, the ink flow path including the ink chamber 2 communicating with the nozzle 1 and the ink supply path 3 is filled with ink, and the pressure wall 2p provided in a part of the ink chamber 2 has electrodes 4e on both sides.
The piezoelectric element 4 is formed by laminating the piezoelectric ceramics having the above and the elastic plate 4t, the voltage is applied between the electrodes to bend the piezoelectric element 4, pressurize the ink chamber 2, and eject the ink from the nozzle 1. . FIG. 1 showing a conventional example
6 and 17 are common to the ink jet recording apparatus using the piezoelectric element in that the ink chamber is expanded or contracted by the voltage applied to the piezoelectric element.

【0007】図18は圧電素子を用いたインクジェット
記録装置の従来例における、圧電素子に印加する駆動電
圧波形と圧電素子の歪みを示すグラフである。図中実線
Vが印加する電圧波形であり、破線Pが圧電素子の歪み
である。グラフ横軸は時間であり、縦軸は電圧及び歪み
を示す。図の電圧波形Vは電圧値であり、圧電素子の歪
みPは変位値であるのでグラフの縦軸の単位は異なるが
本図では説明の為、重ねて標記している。グラフの上方
向が圧電素子の分極電圧と同方向の電圧を加えた場合
で、その時の圧電素子の歪みは電極間の距離が伸張する
方向である。グラフ水平軸0の状態が歪み0の状態であ
り、下方向が縮み方向の歪みである。
FIG. 18 is a graph showing a drive voltage waveform applied to a piezoelectric element and distortion of the piezoelectric element in a conventional example of an ink jet recording apparatus using a piezoelectric element. In the figure, the solid line V is the applied voltage waveform, and the broken line P is the distortion of the piezoelectric element. The horizontal axis of the graph represents time, and the vertical axis represents voltage and strain. Since the voltage waveform V in the figure is a voltage value and the strain P of the piezoelectric element is a displacement value, the unit of the vertical axis of the graph is different, but in this figure it is overlaid for the sake of explanation. When the voltage in the same direction as the polarization voltage of the piezoelectric element is applied in the upper direction of the graph, the strain of the piezoelectric element at that time is the direction in which the distance between the electrodes extends. The state of the graph horizontal axis 0 is the state of zero strain, and the downward direction is the strain in the contracting direction.

【0008】図18(a)は押し打ちと言われる駆動方
法で、圧電素子に電圧を加えて充電することでインク室
が縮小する構造とし、図中符号Iで示す様に圧電素子に
パルス状の電圧を印加し圧電素子を急激に充電し歪ませ
てインク室の容積を縮小させることでノズルからインク
を吐出させる方式である。インク吐出後は図中符号Rで
示す様に圧電素子を放電し圧電素子の歪みを0の状態に
しインク室を吐出前の状態に戻す。図16(a)の構造
で圧電素子に分極時と同方向の電圧を印加すると圧電素
子は電極面4eの間隔が拡張する方向に歪むので、片側
の電極面をインク室の壁面に接合しているのでインク室
を圧縮する事ができる。同様に図18(a)の駆動方法
で図17(a)の構造の圧電素子を駆動する場合は、符
号Iで示す様に圧電素子に電圧を印加して急激に充電す
ることで圧電素子4が厚み方向に拡張すると同時に長さ
方向に収縮するので圧電素子に張り合わされている弾性
板4tとの歪みの差が生じインク室を加圧する方向に振
動板が反り、インクを吐出させる。インク吐出後は図中
符号Rで示す様に圧電素子を放電することで圧電素子の
歪みを0の状態にし、インク室を吐出前の状態に戻す。
FIG. 18 (a) shows a driving method called pushing, which has a structure in which the ink chamber is contracted by applying a voltage to the piezoelectric element to charge the piezoelectric element. Is applied to rapidly charge the piezoelectric element to distort it and reduce the volume of the ink chamber, thereby ejecting ink from the nozzle. After the ink is ejected, the piezoelectric element is discharged as indicated by the symbol R in the figure to set the strain of the piezoelectric element to 0 and the ink chamber is returned to the state before the ejection. In the structure of FIG. 16A, when voltage is applied to the piezoelectric element in the same direction as during polarization, the piezoelectric element is distorted in the direction in which the distance between the electrode surfaces 4e expands. Therefore, one electrode surface is bonded to the wall surface of the ink chamber. The ink chamber can be compressed because it is present. Similarly, when the piezoelectric element having the structure of FIG. 17A is driven by the driving method of FIG. 18A, a voltage is applied to the piezoelectric element to rapidly charge the piezoelectric element 4 as indicated by reference numeral I. Expands in the thickness direction and at the same time contracts in the length direction, a difference in strain from the elastic plate 4t attached to the piezoelectric element occurs, and the vibrating plate warps in the direction of pressurizing the ink chamber to eject ink. After the ink is ejected, the piezoelectric element is discharged as indicated by a symbol R in the figure, so that the distortion of the piezoelectric element is set to 0 and the ink chamber is returned to the state before the ejection.

【0009】図18(b)は引き打ちと言われる駆動方
法で、圧電素子を充電することでインク室が拡張する構
造とし、インク吐出の準備として図中符号Rで示す様に
圧電素子に電圧を印加し圧電素子を充電し歪ませること
でインク室を拡張しておき、インク吐出のタイミングで
図中符号Iで示す様に充電されている圧電素子を急激に
放電し振動子の歪みを元の状態に解放することでインク
室を加圧しインクを吐出させる方式である。図16
(b)の構造では圧電素子は電圧の印加でインク室2を
拡張する方向に歪むので図17の駆動方法でインク吐出
ができる。同様に図17(b)の構造では圧電素子の反
りは電圧の印加でインク室2を拡張する方向に生じるの
で図17の駆動方法でインク吐出ができる。
FIG. 18 (b) shows a driving method called pulling-out, which has a structure in which the ink chamber is expanded by charging the piezoelectric element, and a voltage is applied to the piezoelectric element as indicated by symbol R in the drawing in preparation for ink ejection. Is applied to charge and distort the piezoelectric element to expand the ink chamber, and at the timing of ink ejection, the charged piezoelectric element is rapidly discharged as indicated by reference numeral I in the drawing to reduce the distortion of the vibrator. It is a method of pressurizing the ink chamber and ejecting ink by releasing it to the state. FIG.
In the structure of (b), the piezoelectric element is distorted in the direction in which the ink chamber 2 is expanded by the application of voltage, so that ink can be ejected by the driving method of FIG. Similarly, in the structure of FIG. 17B, the warp of the piezoelectric element occurs in the direction in which the ink chamber 2 is expanded by the application of voltage, so that the ink can be ejected by the driving method of FIG.

【0010】従来の圧電素子を用いたインクジェット記
録装置は米国特許第4471363号明細書などに述べ
られているように、図18で示した例またはそのタイミ
ングを改善した例、それらを組み合せて圧電素子に印加
する電圧を反転可能にした例などが見られる。しかしな
がら、これら、従来の方法で記録速度を高速化していく
と圧電素子の疲労破壊による不良や寿命の著しい低下が
発生するために実用的でなくなるという問題点を有して
いた。図19に従来の圧電素子を用いたインクジェット
記録装置における圧電素子の破壊部位を断面図で示す。
図中符号4は圧電性セラミクスであり、符号4eは圧電
性セラミクスに電圧を印加する電極である。図19
(a)、(b)、(c)は厚み方向の歪み変位でインク
室を拡張または縮小する圧電素子の例である。図19
(d)、(e)、(f)は圧電素子に弾性板4tを張り
合わせることで圧電性セラミクス4の厚み及び広がり方
向の歪みを屈曲変位に変換しインク室を拡張または縮小
する圧電素子の例である。これらの圧電素子を図18で
示す従来の方法で長時間インク吐出の為の駆動を行なう
と、図19において符号Kで例示する部分にクラックが
入り、圧電素子の駆動動作が行なわれなくなったり、著
しく特性を損ねてインク吐出が不可能になる。図19
(a)及び(d)は圧電セラミクス4と電極4eの接合
部付近にクラックKが生じた例であり、同様に図19
(b)及び(e)の符号Kで示すクラックは圧電セラミ
クスの表面付近に生じた例であり、図19(c)及び
(f)の符号Kで示すクラックは圧電性セラミクスの内
部に生じた例である。いずれも接合部の組成の変化部や
微小な欠陥や異物など応力の集中しやすい部分に圧電素
子の伸張の繰返しによる疲労破壊が発生したものと考え
られる。また、従来の圧電素子を用いたインクジェット
記録装置で記録速度を高速化していくと圧電素子の疲労
破壊の顕在化とともに、圧電素子の電気機械変換特性の
素子間ばらつきが著しくなり実用的でなくなるという問
題点も有していた。
As described in US Pat. No. 4,471,363, an ink jet recording apparatus using a conventional piezoelectric element has an example shown in FIG. 18 or an example in which its timing is improved, and a combination of them is used as a piezoelectric element. There is an example in which the voltage applied to is reversible. However, if the recording speed is increased by these conventional methods, there is a problem that the piezoelectric element becomes impractical due to fatigue failure and the life of the piezoelectric element is remarkably shortened. FIG. 19 is a sectional view showing a broken portion of a piezoelectric element in an ink jet recording apparatus using a conventional piezoelectric element.
In the figure, reference numeral 4 is piezoelectric ceramics, and reference numeral 4e is an electrode for applying a voltage to the piezoelectric ceramics. FIG. 19
(A), (b) and (c) are examples of piezoelectric elements that expand or contract the ink chamber by strain displacement in the thickness direction. FIG. 19
(D), (e), and (f) of the piezoelectric element that expands or contracts the ink chamber by converting strain in the thickness and spreading direction of the piezoelectric ceramics 4 into bending displacement by attaching the elastic plate 4t to the piezoelectric element. Here is an example. When these piezoelectric elements are driven for ink ejection for a long time by the conventional method shown in FIG. 18, a crack is generated at a portion illustrated by reference numeral K in FIG. 19, and the driving operation of the piezoelectric element is not performed. The characteristics are significantly impaired, and ink cannot be ejected. FIG. 19
19A and 19D are examples in which a crack K is generated near the joint between the piezoelectric ceramics 4 and the electrode 4e, and FIG.
The cracks indicated by K in (b) and (e) are examples generated near the surface of the piezoelectric ceramics, and the cracks indicated by K in FIGS. 19 (c) and (f) occurred inside the piezoelectric ceramics. Here is an example. In all cases, it is considered that fatigue fracture occurred due to repeated stretching of the piezoelectric element in the portion where the composition of the joint changed and the portion where stress such as minute defects or foreign matters was likely to concentrate. In addition, when the recording speed is increased in the ink jet recording apparatus using the conventional piezoelectric element, the fatigue breakdown of the piezoelectric element becomes apparent, and the element-to-element variation of the electromechanical conversion characteristics of the piezoelectric element becomes significant, which is not practical. There were also problems.

【0011】[0011]

【発明が解決しようとする課題】従って、本発明が解決
しようとする課題は、圧電素子を用いたインクジェット
記録装置の記録速度を高速化するための課題である圧電
素子の疲労破壊の防止と圧電素子の電気機械変換特性の
素子間バラツキを極小にすることである。
Therefore, the problem to be solved by the present invention is to prevent the fatigue destruction of the piezoelectric element and to prevent the piezoelectric element from being broken, which is an object to increase the recording speed of the ink jet recording apparatus using the piezoelectric element. This is to minimize the inter-element variation in the electromechanical conversion characteristics of the elements.

【0012】[0012]

【課題を解決するための手段】このような課題を解決す
るために本発明においては、インクを吐出するノズル
と、前記ノズルに連通したインク室と、前記インク室の
一部に設けられたインク室の容積を変化させる圧力壁
と、前記インク室にインクを供給する供給路と、電圧の
印加によって形状を変化させる圧電素子とを備え、前記
圧力壁と前記圧電素子が機械的に接続されており、前記
圧電素子に印加する電圧の変化で前記インク室の容積を
拡張及び縮小、または、縮小及び拡張させ前記ノズルよ
りインクを吐出させるインクジェット記録装置におい
て、前記圧力室の拡張時または縮小時またはその前後の
いずれにおいても前記圧電素子に常に一方向の歪みを加
える機構を備えるようにした。
In order to solve such a problem, in the present invention, a nozzle for ejecting ink, an ink chamber communicating with the nozzle, and an ink provided in a part of the ink chamber A pressure wall that changes the volume of the chamber, a supply path that supplies ink to the ink chamber, and a piezoelectric element that changes its shape by the application of a voltage are provided, and the pressure wall and the piezoelectric element are mechanically connected. In the ink jet recording apparatus that expands and contracts the volume of the ink chamber by changing the voltage applied to the piezoelectric element, or contracts and expands and ejects ink from the nozzle, when expanding or contracting the pressure chamber, or Before and after that, a mechanism for constantly applying a unidirectional strain to the piezoelectric element was provided.

【0013】また、インクを吐出するノズルと、前記ノ
ズルに連通したインク室と、前記インク室の一部に設け
られたインク室の容積を変化させる圧力壁と、前記イン
ク室にインクを供給する供給路と、電圧の印加によって
形状を変化させる圧電素子とを備え、前記圧力壁と前記
圧電素子が機械的に接続されており、前記圧電素子に印
加する電圧の変化で前記インク室の容積を拡張及び縮
小、または、縮小及び拡張させ前記ノズルよりインクを
吐出させるインクジェット記録装置において、前記圧電
素子の電圧印加部に印加する電界を、分極時と同方向と
し、かつ、常に50kV/m以上の電界強度で駆動する
機構を備えるようにした。
Further, a nozzle for ejecting ink, an ink chamber communicating with the nozzle, a pressure wall for changing the volume of the ink chamber provided in a part of the ink chamber, and ink are supplied to the ink chamber. A supply path and a piezoelectric element whose shape is changed by applying a voltage are provided, the pressure wall and the piezoelectric element are mechanically connected, and the volume of the ink chamber is changed by a change in the voltage applied to the piezoelectric element. In an ink jet recording apparatus that expands and contracts, or contracts and expands and ejects ink from the nozzles, the electric field applied to the voltage application unit of the piezoelectric element is in the same direction as during polarization and is always 50 kV / m or more. A mechanism driven by electric field strength was provided.

【0014】[0014]

【作用】圧電素子の充電または放電またはその前後に生
じる圧電素子の歪みが0の状態あるいは0の状態を越え
て圧縮と伸張の両方の状態を繰り返すことがなく、常に
一方向の歪みで圧電素子が動作するために圧電素子の疲
労破壊が著しく低減される。また、圧電素子を常に一定
電圧以上が印加された状態で使用するので圧電素子の素
子間で電気機械変換特性のばらつきが激しい電圧0付近
の状態を避けられるために素子間の特性ばらつきを極小
にできる。
The piezoelectric element is always charged or discharged, or the distortion of the piezoelectric element that occurs before or after the discharge is 0 or does not repeat both compression and expansion beyond 0, and the piezoelectric element is always strained in one direction. The fatigue failure of the piezoelectric element is significantly reduced due to the operation of the. In addition, since the piezoelectric element is always used in a state where a certain voltage or more is applied, it is possible to avoid a state in which the electromechanical conversion characteristics vary greatly between the elements of the piezoelectric element in the vicinity of voltage 0, so that the characteristic variation between elements is minimized. it can.

【0015】[0015]

【実施例】そこで以下に本発明の詳細を図示した実施例
に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments.

【0016】本発明を用いた第1の実施例を図1、図2
図3、図4、及び図5を用いて説明する。本実施例は
A4大シート状の記録媒体に1分当り12枚の記録を可
能とするインクジェット記録装置である。本実施例では
高速記録を可能とするためにインクノズルとそれに連通
するインク室、インク室を加圧する圧電素子で1組を成
すインクジェット素子を640素子用い、それぞれの素
子の繰返し駆動周波数を24kHzとしている。また、
印字密度は600ドット/インチとし高速でありながら
高精細な画質で記録が可能である。
A first embodiment using the present invention is shown in FIGS.
This will be described with reference to FIGS. 3, 4, and 5. The present embodiment is an inkjet recording apparatus capable of recording 12 sheets per minute on a recording medium having a large A4 sheet shape. In this embodiment, in order to enable high-speed recording, an ink nozzle, an ink chamber that communicates with the ink nozzle, and a piezoelectric element that pressurizes the ink chamber are used as a set of 640 inkjet elements, and the repetition drive frequency of each element is set to 24 kHz. There is. Also,
The printing density is 600 dots / inch, and it is possible to record with high-definition image quality at high speed.

【0017】図2は本実施例の構成要素外観を示す斜視
図であり、図中符号10は記録ヘッド、図中符号11は
ヘッド駆動回路、図中符号12は記録用紙、図中符号1
3はヘッド支持機構、図中符号14はヘッド移動機構、
図中符号15は印字ドラム、図中符号16は記録用紙ク
ランプ機構、図中符号17はドラム駆動機構、図中符号
18はインクタンクである。記録用紙12は図示しない
用紙カセットから給紙され、印字ドラム15に巻き付け
られ記録用紙クランプ機構16により固定される。記録
ヘッド10はインクを吐出させるノズル及びそれに連通
したインク室及びインクを加圧する圧電素子よる1組を
成すインクジェット素子をライン状に640素子備えて
いる。それぞれのノズル間隔は8/600インチ間隔で
あり、印字ドラム15が1回転する毎にヘッド移動機構
14により1/600インチずつ印字ドラム軸に平行な
方向に沿って移動する。記録ヘッド10は印字ドラム1
5の回転に同期して駆動される。記録ヘッド10の1素
子の繰返し駆動周波数は24kHzであるので印字ドラ
ムは1回転1秒以下で記録が可能であり、紙面全面の記
録を印字ドラム8回転で終了する。従って本実施例の記
録装置はインクジェット方式でありながら駆動周波数の
高速化と圧電素子の多ノズル化を図ったことで高速記録
を可能としている。
FIG. 2 is a perspective view showing the external appearance of the components of this embodiment. In the figure, reference numeral 10 is a recording head, reference numeral 11 is a head drive circuit, reference numeral 12 is recording paper, and reference numeral 1 is shown.
3 is a head support mechanism, reference numeral 14 is a head moving mechanism,
In the figure, reference numeral 15 is a print drum, reference numeral 16 is a recording paper clamp mechanism, reference numeral 17 is a drum drive mechanism, and reference numeral 18 is an ink tank. The recording paper 12 is fed from a paper cassette (not shown), wound around the print drum 15, and fixed by the recording paper clamp mechanism 16. The recording head 10 is provided with 640 line-shaped ink jet elements which form a set of a nozzle for ejecting ink, an ink chamber communicating with the nozzle, and a piezoelectric element for pressurizing the ink. The nozzle intervals are 8/600 inch intervals, and each time the print drum 15 makes one rotation, the head moving mechanism 14 moves 1/600 inch in a direction parallel to the print drum axis. The recording head 10 is the print drum 1
It is driven in synchronization with the rotation of 5. Since the repetitive driving frequency of one element of the recording head 10 is 24 kHz, the recording of the print drum is possible within 1 second per rotation, and the recording on the entire surface of the paper is completed by 8 rotations of the print drum. Therefore, the recording apparatus of the present embodiment is capable of high-speed recording by increasing the driving frequency and increasing the number of nozzles of the piezoelectric element, even though it is an inkjet method.

【0018】図1は図2で示した実施例の記録ヘッドの
1素子のノズル及びインク室及び圧電素子の構成と、圧
電素子を駆動する装置の構成を示した図である。図中符
号1はノズル、図中符号2はインク室であり、インクは
図中符号3のインク供給路を通じてインクタンクから供
給されインク室2を満たしている。インク室2の一部に
は図中符号2pで示す圧力壁が設けられており圧電素子
4と接合されている。本実施例で用いた圧電素子は板状
の圧電性セラミクスを膜状の電極4eを挟んで複数枚積
層した積層タイプ圧電素子と言われるもので、交互に接
続される電極間に電圧を加えて分極されている。図15
(a)に本実施例で用いた積層タイプ圧電素子の電極構
造とそれぞれの圧電セラミクス層の分極状態を示す。図
15(b)は最も基本的な圧電素子で、両面に電極を形
成した1層のものである。ここで圧電セラミクス4は分
極の為の電源Eによって図上側の電極4eがプラス、下
側の電極4eがマイナスとなる様電圧を印加している。
圧電素子中の電荷は図中符号4cで示す方向に向きをそ
ろえ分極される。本実施例ではこの場合の分極方向をプ
ラスからマイナスに向かう矢印4aで示し、この状態で
分極された圧電素子の端子の極性をそれぞれ分極時のプ
ラス側を+、マイナス側を−と記述する。本実施例で用
いている積層タイプ圧電素子を示す図15(a)は、電
極4eが櫛歯状に交互に圧電性セラミクス層4をはさん
で形成されており、電源Eによって分極することでそれ
ぞれの圧電層4は図中矢印4aで示す様に交互に方向を
換えて分極されている。第1の実施例の図1において図
中記号tcが複数の素子で共通して接続するコモン電極
端子で、図中記号tsが各素子それぞれでスイッチング
されるセグメント電極端子である。本実施例ではコモン
電極端子tc側をマイナス、セグメント電極端子ts側
をプラスにして圧電素子4は分極されている。従ってコ
モン電極端子tc側をマイナスとしてセグメント電極端
子ts間に電圧を印加すると圧電素子4は電極間の距離
を拡張する方向に歪みを生じ、同時にそれに直行する方
向に縮小する歪みを生じる。本実施例では図1で示すよ
うに、電極4eに直行する面を厚力壁2pと接続してい
るので、圧電素子4の端子間に分極時と同方向の電圧を
印加することでインク室を拡張することができる。本実
施例では圧電素子4のコモン電極端子tcを充放電装置
5に接続し、セグメント電極端子tsをそれぞれの素子
のスイッチング装置7に接続している。充放電装置5は
バイアス電圧Vbのマイナス電源と、バイアス電圧Vb
にドライブ電圧VDを加えた電圧のマイナス電源−(V
b+VD)に接続されており、充電制御信号、放電制御
信号の入力によってコモン電極端子tcの電位を制御し
圧電素子4の充電動作、放電動作を行なうことができ
る。また、それぞれの圧電素子のセグメント電極端子に
接続されているスイッチング装置は印字データに従って
それぞれの圧電素子の放電動作をON/OFFすること
ができる。ここで充放電装置5はバイアス電圧印加装置
6を備えており圧電素子4は分極電圧と同方向のバイア
ス電圧Vbを印加された状態で、インク吐出動作のため
のインク室の拡張及び縮小の為の充電、放電が行なわれ
る。
FIG. 1 is a diagram showing the configuration of a nozzle, ink chamber, and piezoelectric element of one element of the recording head of the embodiment shown in FIG. 2 and the configuration of an apparatus for driving the piezoelectric element. Reference numeral 1 in the drawing is a nozzle, reference numeral 2 in the drawing is an ink chamber, and ink is supplied from an ink tank through an ink supply path 3 in the drawing to fill the ink chamber 2. A pressure wall 2p in the drawing is provided in a part of the ink chamber 2 and is joined to the piezoelectric element 4. The piezoelectric element used in this example is called a laminated type piezoelectric element in which a plurality of plate-shaped piezoelectric ceramics are laminated with the film-shaped electrode 4e interposed therebetween, and a voltage is applied between the electrodes that are alternately connected. It is polarized. Figure 15
(A) shows the electrode structure of the laminated piezoelectric element used in this example and the polarization state of each piezoelectric ceramic layer. FIG. 15B shows the most basic piezoelectric element, which has a single layer with electrodes formed on both sides. Here, a voltage is applied to the piezoelectric ceramics 4 by a power source E for polarization so that the upper electrode 4e of the drawing is positive and the lower electrode 4e thereof is negative.
The charges in the piezoelectric element are polarized in the direction indicated by reference numeral 4c in the figure. In this embodiment, the polarization direction in this case is indicated by an arrow 4a from positive to negative, and the polarities of the terminals of the piezoelectric element polarized in this state are described as + on the plus side and − on the minus side. In FIG. 15A showing the laminated type piezoelectric element used in this example, the electrodes 4e are alternately formed in a comb-like shape with the piezoelectric ceramic layers 4 sandwiched therebetween, and are polarized by the power source E. Each piezoelectric layer 4 is polarized by alternately changing directions as shown by an arrow 4a in the figure. In FIG. 1 of the first embodiment, a symbol tc in the figure is a common electrode terminal commonly connected to a plurality of elements, and a symbol ts in the figure is a segment electrode terminal switched in each element. In this embodiment, the piezoelectric element 4 is polarized with the common electrode terminal tc side being negative and the segment electrode terminal ts side being positive. Therefore, when a voltage is applied between the segment electrode terminals ts with the common electrode terminal tc side being negative, the piezoelectric element 4 is distorted in the direction of expanding the distance between the electrodes, and at the same time, it is distorted in the direction orthogonal thereto. In this embodiment, as shown in FIG. 1, the surface orthogonal to the electrode 4e is connected to the thick wall 2p, so that a voltage in the same direction as when polarization is applied between the terminals of the piezoelectric element 4 causes the ink chamber to move. Can be extended. In this embodiment, the common electrode terminal tc of the piezoelectric element 4 is connected to the charging / discharging device 5, and the segment electrode terminal ts is connected to the switching device 7 of each element. The charging / discharging device 5 uses a minus power source of the bias voltage Vb and the bias voltage Vb.
Minus voltage of drive voltage VD added to-(V
b + VD), the potential of the common electrode terminal tc can be controlled by the input of the charge control signal and the discharge control signal to perform the charging operation and the discharging operation of the piezoelectric element 4. Further, the switching device connected to the segment electrode terminal of each piezoelectric element can turn on / off the discharge operation of each piezoelectric element according to the print data. Here, the charging / discharging device 5 is provided with a bias voltage applying device 6, and the piezoelectric element 4 is for applying the bias voltage Vb in the same direction as the polarization voltage to expand and contract the ink chamber for the ink ejection operation. Is charged and discharged.

【0019】次に本実施例のインク吐出動作について説
明する。図3は図2で示した圧電素子の電極間の駆動電
圧とその時の圧電素子の歪みを示すグラフである。本実
施例では図中Bで示す様に、記録装置の電源が入った状
態で記録信号が入力され記録動作が開始されると同時に
圧電素子に分極電圧と同方向のバイアス電圧Vbを印加
する。これにより圧電素子は印字動作時の基底歪み状態
となる。本実施例では従来例で説明したいわゆる引き打
ち動作を行なうので図3符号Rで示す様に、印字動作の
前状態として更に図2で示した駆動電圧発生装置5で圧
電素子4に更に電圧VDを加え、圧電素子を充電してイ
ンク室を拡張する方向の歪みを生じさせる。駆動タイミ
ングで放電制御信号が充放電装置に入力されると図3符
号Iで示す様に、駆動電圧発生装置は駆動電圧VDを急
激に放電するよう回路動作を行ない圧電素子間の電圧は
バイアス電圧Vbまで放電され、圧電素子の歪みが基底
歪み状態まで解放され、インク室が圧縮されてノズルよ
りインクが吐出する。インク吐出後、次回のインク吐出
動作に備えて駆動電圧発生装置は圧電素子に電圧VDを
除々に印加しインク室を拡張しておく。
Next, the ink ejection operation of this embodiment will be described. FIG. 3 is a graph showing the driving voltage between the electrodes of the piezoelectric element shown in FIG. 2 and the distortion of the piezoelectric element at that time. In the present embodiment, as indicated by B in the figure, a recording signal is input while the recording apparatus is powered on and a recording operation is started, and at the same time, a bias voltage Vb in the same direction as the polarization voltage is applied to the piezoelectric element. This causes the piezoelectric element to be in a base strain state during the printing operation. In this embodiment, since the so-called pulling-out operation described in the conventional example is performed, the voltage VD is further applied to the piezoelectric element 4 by the drive voltage generator 5 shown in FIG. Then, the piezoelectric element is charged to cause distortion in the direction of expanding the ink chamber. When the discharge control signal is input to the charging / discharging device at the driving timing, the driving voltage generator performs a circuit operation so as to rapidly discharge the driving voltage VD, and the voltage between the piezoelectric elements is a bias voltage, as shown by reference numeral I in FIG. Discharge to Vb, the strain of the piezoelectric element is released to the base strain state, the ink chamber is compressed, and the ink is ejected from the nozzle. After the ink is ejected, the drive voltage generator gradually applies the voltage VD to the piezoelectric element to expand the ink chamber in preparation for the next ink ejection operation.

【0020】本動作において圧電素子は常に一方向の歪
み状態にある。従来の方式では図18(b)符号Oで示
す様に、インク吐出時の急激な放電で圧電素子はオーバ
ーシュートで一時的に反対方向の歪みを生じることは避
けられず、この歪み方向の反転の繰返しが圧電素子の疲
労破壊を招く原因となっていた。本発明によれば圧電素
子の分極時と同方向のバイアス電圧Vbを常に圧電素子
に印加することで、図3符号Oで示す様に、駆動電圧の
変動、またはその前後のオーバーシュートなどによって
も圧電素子の歪み方向が0を越えて反転しないために、
高速の繰返し動作を長時間行なっても圧電素子が疲労破
壊しない。本実施例のバイアス電圧Vbは図15(a)
で示す圧電素子の隣り合う電極間の距離hと、圧電素子
の電圧印加部の層厚みHと、実際に測定された圧電素子
の放電動作時における残留振動の振幅の最大値ΔDと、
圧電素子の圧電常数dから規定される値(ΔD×h)/
(d×H)の約2倍の電圧とした。本実施例でΔDは、
図1で示す圧電素子とインク室の構造を持った系におい
て圧力版2pの表面の速度変化を実際の駆動条件に近い
条件でレーザードップラー速度測定器を用いて測定し、
その結果を積分して圧電素子の変位量を求め、圧電素子
の放電動作時におけるオーバーシュート時の最大変位と
収束した変位との差として求めた。また、本実施例にお
いて圧電常数dは圧電素子の物性値であるd31を用い
た。
In this operation, the piezoelectric element is always in a unidirectional strain state. In the conventional method, as indicated by symbol O in FIG. 18B, it is inevitable that the piezoelectric element is temporarily distorted due to overshoot due to abrupt discharge at the time of ink ejection. The repetition of the above causes a fatigue failure of the piezoelectric element. According to the present invention, the bias voltage Vb in the same direction as when the piezoelectric element is polarized is always applied to the piezoelectric element, so that as shown by reference numeral O in FIG. Since the strain direction of the piezoelectric element does not exceed 0 and does not reverse,
Even if the high-speed repeated operation is performed for a long time, the piezoelectric element does not fatigue damage. The bias voltage Vb of this embodiment is shown in FIG.
, The distance h between adjacent electrodes of the piezoelectric element, the layer thickness H of the voltage applying portion of the piezoelectric element, the maximum value ΔD of the amplitude of the residual vibration actually measured during the discharge operation of the piezoelectric element,
A value (ΔD × h) / specified from the piezoelectric constant d of the piezoelectric element
The voltage was set to about twice as high as (d × H). In this embodiment, ΔD is
In the system having the structure of the piezoelectric element and the ink chamber shown in FIG. 1, the velocity change of the surface of the pressure plate 2p is measured under the condition close to the actual driving condition by using the laser Doppler velocity measuring device,
The result was integrated to obtain the displacement amount of the piezoelectric element, which was obtained as the difference between the maximum displacement at the time of overshoot during the discharge operation of the piezoelectric element and the converged displacement. In this embodiment, the piezoelectric constant d used is d31 which is a physical property value of the piezoelectric element.

【0021】図20は一般的な圧電素子の歪み変位状態
を示すもので、圧電素子の電極間の電位を0にした状態
から分極時と同方向のある電圧まで定電流で充電し、充
電が終了したら電圧を一定時間保持し、次に充電時と同
じ定電流で電極間の電位が0になるまで放電させた時の
圧電素子の歪み変位を示している。図中細線Piは理想
的な変位状態であり、図中太線Prは実際の変位状態で
ある。図20(a)で示す様に比較的ゆっくりと圧電素
子の充放電を行ない変位させると圧電素子の歪み変位の
オーバーシュート量は少なく、図20(b)で示す様に
高速で圧電素子の充放電を行ない動作させようとすると
圧電素子の歪み変位のオーバーシュートが激しくなるこ
とがわかる。本発明で述べている圧電素子の放電動作時
における残留振動の振幅の最大値ΔDは図20のPoで
示す部分のオーバーシュート量のことを示す。
FIG. 20 shows a strain displacement state of a general piezoelectric element, which is charged by a constant current from a state in which the potential between electrodes of the piezoelectric element is set to 0 to a certain voltage in the same direction as during polarization. The figure shows the strain displacement of the piezoelectric element when the voltage is held for a certain period of time after the end and then discharged with the same constant current as during charging until the potential between the electrodes becomes zero. The thin line Pi in the figure is an ideal displacement state, and the thick line Pr in the figure is an actual displacement state. When the piezoelectric element is charged and discharged relatively slowly as shown in FIG. 20A to displace it, the overshoot amount of strain displacement of the piezoelectric element is small, and the piezoelectric element is charged at high speed as shown in FIG. 20B. It can be seen that the overshoot of the strain displacement of the piezoelectric element becomes severe when it is attempted to operate by discharging. The maximum value ΔD of the amplitude of the residual vibration during the discharge operation of the piezoelectric element described in the present invention indicates the overshoot amount of the portion indicated by Po in FIG.

【0022】図4は一般的な圧電素子の電気機械変換特
性を示すグラフであり、横軸に圧電素子に印加する電
圧、縦軸に歪率を示している。一般に圧電素子の歪みは
印加された電圧に比例せず、0からある電圧まではグラ
フの傾きが緩やかな部分があり途中からほぼ一定のグラ
フの傾きを示す。本発明によれば、図中符号VDoで示
す電圧0からの部分で電圧を変動させて圧電素子を駆動
する従来の方法に比べ、図4で示すVbのバイアス電圧
を印加することで、最も電気機械変換効率の良いVDの
部分で圧電素子を駆動するので電気機械変換効率に優れ
る利点がある。また、本発明に当って調査した結果、複
数の圧電素子を用いる場合に避けられない素子間の電気
機械特性のばらつきは、そのほとんどが電圧0付近の電
気機械変換効率のばらつきとして現われ、ある一定電圧
以上では電気機械変換効率はばらつかずほぼ一定値を示
すことが判明した。更に、ほとんどの圧電素子で、駆動
部分の電界強度を50kV/m以上にすることで複数の
圧電素子間で特性のばらつきが激しく、また電気機械変
換効率の低い領域を避けられることが判明した。図4で
示す実線a及び破線b、c、dは同様の製造方法で製作
した複数の圧電素子の電気機械変換特性を測定した例で
あるが、電圧が0からVbの範囲ではグラフの形や傾き
が様々に異なるのに対して、電圧Vb以上のVDの範囲
では電気機械変換率を示すグラフの傾きがほぼ同一であ
ることがわかる。従って、本発明によれば、圧電素子の
最も電気機械変換効率の高い部分で駆動ができることに
加えて、複数の圧電素子の電気機械変換効率のばらつき
を駆動時に無視できるので、圧電素子の高速駆動が可能
であり、また、駆動特性を一定に保つことができる。
FIG. 4 is a graph showing the electromechanical conversion characteristics of a general piezoelectric element, in which the horizontal axis represents the voltage applied to the piezoelectric element and the vertical axis represents the distortion rate. Generally, the strain of the piezoelectric element is not proportional to the applied voltage, and there is a portion where the slope of the graph is gentle from 0 to a certain voltage, and the slope of the graph is almost constant from the middle. According to the present invention, by applying the bias voltage of Vb shown in FIG. 4, the most electric voltage can be obtained by applying the bias voltage of Vb shown in FIG. Since the piezoelectric element is driven in the VD portion having a high mechanical conversion efficiency, there is an advantage that the electromechanical conversion efficiency is excellent. In addition, as a result of investigation according to the present invention, most of the variations in the electromechanical characteristics that cannot be avoided when a plurality of piezoelectric elements are used appear as variations in the electromechanical conversion efficiency near a voltage of 0, and are constant. It was found that the electromechanical conversion efficiency does not vary above a voltage and exhibits a substantially constant value. Furthermore, it has been found that, in most piezoelectric elements, by setting the electric field strength of the driving portion to 50 kV / m or more, the characteristics vary greatly among a plurality of piezoelectric elements, and a region with low electromechanical conversion efficiency can be avoided. The solid line a and the broken lines b, c, and d shown in FIG. 4 are examples of measuring the electromechanical conversion characteristics of a plurality of piezoelectric elements manufactured by the same manufacturing method, but in the range of voltage from 0 to Vb, the graph shape and It can be seen that the slopes of the graph showing the electromechanical conversion rate are almost the same in the range of VD equal to or higher than the voltage Vb, while the slopes are variously different. Therefore, according to the present invention, it is possible to drive the piezoelectric element in a portion having the highest electromechanical conversion efficiency and, in addition, it is possible to ignore variations in the electromechanical conversion efficiency of a plurality of piezoelectric elements during driving. It is also possible to keep the drive characteristics constant.

【0023】図5は本実施例の圧電素子の駆動回路を示
すものである。図中符号CGで示す破線で囲まれた部分
が圧電素子の充電及び放電を行なう充放電回路であり、
図中符号C1、C2、・・・はそれぞれのインク室に設
けられた複数の圧電素子を示し、分極時の印加電圧の極
性を+、−で示す。本実施例では充放電回路CGの端子
tp3を複数の圧電素子のマイナス電極に共通に接続
し、充電及び放電を行なう。複数の圧電素子C1、C
2、・・・のプラス側の電極はそれぞれのスイッチング
回路S1、S2、・・・に接続されておりそれぞれの制
御端子tpS1、tpS2に制御電圧を印加して各素子
の放電のON/OFFを制御する。充放電回路CGは−
(Vb+VD)及び−Vbの電位の異なる2つのマイナ
ス電源に接続されており、充電制御端子tp1と放電制
御端子tp2は初期状態で5Vの電位にされている。回
路は充電制御端子tp1の電位を0Vにすることで図中
符号M1で示す部分がONの状態になりコンデンサC0
が定電流で放電されトランジスタTr1がONの状態に
なり充放電端子tp3が−(Vb+VD)の電位になる
まで圧電素子C1、C2、・・・を充電する。従って圧
電素子C1、C2、・・・は電位Vb+VDまで充電さ
れそれぞれのインク室を拡張する方向に歪む。次にイン
クを吐出させるための圧電素子の放電動作について説明
する。ここでインク吐出させる素子をC1としインク吐
出させない素子をC2とする。充放電回路CGの充電制
御端子tp1を元の状態である5Vに戻し、放電制御端
子tp2を0Vにすることで図中符号M2の部分がON
になりコンデンサC0に充電が開始され、トランジスタ
Tr2がONの状態になり充放電端子tp3の電位が上
がる。ここで吐出させる圧電素子に接続されたスイッチ
ング回路のスイッチング端子tpS1を5Vにしておく
ことで圧電素子C1はスイッチング回路S1を通して放
電される。一方、吐出させない圧電素子C2に接続され
たスイッチング回路S2のスイッチング端子tpS2を
0Vにしてスイッチング回路S2をOFFの状態にして
おくことで圧電素子C2はtp3の電位が上がっても放
電されない。圧電素子の放電はコンデンサC0の図中上
側の電位がダイオードを通して接続されているバイアス
電源の電位である−Vbになるまで行なわれるので圧電
素子C1は電圧Vbまで放電される。従って本実施例の
回路を用いて駆動すれば圧電素子に分極電圧と同方向の
バイアス電圧Vbを常に印加しながら引き打ち駆動動作
をすることができる。
FIG. 5 shows a drive circuit for the piezoelectric element of this embodiment. A portion surrounded by a broken line indicated by reference numeral CG in the drawing is a charging / discharging circuit for charging and discharging the piezoelectric element,
Symbols C1, C2, ... In the drawing indicate a plurality of piezoelectric elements provided in the respective ink chambers, and the polarities of the applied voltage during polarization are indicated by + and −. In the present embodiment, the terminal tp3 of the charging / discharging circuit CG is commonly connected to the negative electrodes of the plurality of piezoelectric elements for charging and discharging. A plurality of piezoelectric elements C1, C
The electrodes on the positive side of 2, ... Are connected to the respective switching circuits S1, S2, ..., and a control voltage is applied to the respective control terminals tpS1, tpS2 to turn ON / OFF the discharge of each element. Control. Charge / discharge circuit CG is-
It is connected to two negative power sources having different potentials of (Vb + VD) and -Vb, and the charge control terminal tp1 and the discharge control terminal tp2 are set to the potential of 5V in the initial state. In the circuit, when the potential of the charge control terminal tp1 is set to 0V, the portion indicated by the symbol M1 in the figure is turned on and the capacitor C0 is turned on.
Are discharged by a constant current, the transistor Tr1 is turned on, and the piezoelectric elements C1, C2, ... Are charged until the charging / discharging terminal tp3 has a potential of − (Vb + VD). Therefore, the piezoelectric elements C1, C2, ... Are charged to the potential Vb + VD and distorted in the direction of expanding the respective ink chambers. Next, the discharge operation of the piezoelectric element for ejecting ink will be described. Here, the element that ejects ink is C1 and the element that does not eject ink is C2. By returning the charge control terminal tp1 of the charge / discharge circuit CG to the original state of 5V and setting the discharge control terminal tp2 to 0V, the portion M2 in the figure is turned on.
Then, charging of the capacitor C0 is started, the transistor Tr2 is turned on, and the potential of the charging / discharging terminal tp3 rises. By setting the switching terminal tpS1 of the switching circuit connected to the piezoelectric element to be ejected here to 5V, the piezoelectric element C1 is discharged through the switching circuit S1. On the other hand, the piezoelectric element C2 is not discharged even if the potential of tp3 rises by setting the switching terminal tpS2 of the switching circuit S2 connected to the piezoelectric element C2 not to be discharged to 0V and keeping the switching circuit S2 in the OFF state. The piezoelectric element is discharged until the electric potential on the upper side of the capacitor C0 in the figure reaches −Vb which is the electric potential of the bias power source connected through the diode. Therefore, the piezoelectric element C1 is discharged to the voltage Vb. Therefore, if the circuit of this embodiment is used for driving, it is possible to perform the pull-out driving operation while always applying the bias voltage Vb in the same direction as the polarization voltage to the piezoelectric element.

【0024】以上、第1の実施例は本発明により、64
0素子という多数のノズルを用いてそれぞれのノズルを
最高24kHzで繰返し駆動させるにもかかわらず圧電
素子の特性が均一で、かつ、疲労破壊などの不良をほぼ
皆無にすることが可能と成った為に実用的に高速記録が
可能となった。
As described above, the first embodiment is 64
Even though each nozzle is repeatedly driven at a maximum of 24 kHz using a large number of 0 elements, the characteristics of the piezoelectric element are uniform and it is possible to eliminate defects such as fatigue damage. High-speed recording is now practically possible.

【0025】本実施例の実験によれば圧電素子の疲労破
壊による平均寿命は従来の方法と比較して2倍以上延長
し、複数の素子間の特性ばらつきは実質的に無視できる
程度に低下した。
According to the experiment of this embodiment, the average life due to fatigue failure of the piezoelectric element is extended more than twice as compared with the conventional method, and the characteristic variation among the plurality of elements is reduced to a substantially negligible level. .

【0026】本発明を用いた第2の実施例を図6、図
7、図8及び図9を用いて説明する。図6は記録装置の
構成要素を示す斜視図でA4記録用紙に120素子の記
録ヘッドをシリアルスキャンし300dpiの記録密度
で記録する記録装置である。図中符号20は記録ヘッド
であり、ノズルとそれに連通するインク室とインク室の
それぞれに配置された圧電素子で1組を成すインクジェ
ット素子を120素子備える。図中符号21は交換可能
なインクタンクであり記録ヘッド20に連結されインク
を供給する。図中符号22の記録用紙は図中符号23の
給紙ローラによりヘッド下まで供給される。記録ヘッド
20はヘッド移動機構24によりスライド軸25に沿っ
て記録用紙22上をシリアルスキャンする構造となって
いる。
A second embodiment of the present invention will be described with reference to FIGS. 6, 7, 8 and 9. FIG. 6 is a perspective view showing the components of the recording apparatus. The recording apparatus records serially on a recording sheet of A4 size with a 120-element recording head at a recording density of 300 dpi. Reference numeral 20 in the drawing denotes a recording head, which is provided with 120 elements of ink jet elements forming a set of nozzles, ink chambers communicating with the nozzles, and piezoelectric elements arranged in the ink chambers. Reference numeral 21 in the drawing denotes a replaceable ink tank, which is connected to the recording head 20 and supplies ink. The recording paper denoted by reference numeral 22 in the figure is supplied to the bottom of the head by a paper feed roller denoted by reference numeral 23 in the figure. The recording head 20 has a structure in which the head moving mechanism 24 serially scans the recording paper 22 along the slide shaft 25.

【0027】図7に記録ヘッドの1素子の圧電素子及び
インク吐出機構と圧電素子の駆動機構を示す。ノズル1
に連通するインク室2はインク供給路3よりインクが供
給されている。インク室の壁面の一部が圧力壁2pとな
っており、両面に電極4eを備える圧電セラミクス4か
ら成る圧電素子が張り合わされている。圧力壁2pは圧
電セラミクス4の歪み変位を屈曲変位に換える為の弾性
板4tの機能も併用している。電極4eに分極時の印加
電圧と同方向の電圧を印加すると圧電性セラミクス4は
厚み方向に拡張歪みを生じると同時に広がり方向に縮む
ので、張り合わされている弾性板4tとの弾性率の差で
弾性板を外側に反りを生じる。本実施例では弾性板4t
がインク室の圧力壁4pを兼ねているので圧電素子4に
分極時の印加電圧と同方向に電圧を印加するとインク室
は縮小する。本実施例では圧電素子4の分極時のプラス
側の電極はコモン電極端子tcとして複数の圧電素子と
共通して充放電装置5に接続され、マイナス側の電極は
セグメント電極端子tsとしてそれぞれの素子で独立し
てスイッチング装置7に接続されている。充放電装置5
はバイアス電圧Vbの電源と、バイアス電圧Vbにドラ
イブ電圧VDを加えた電圧の電源に接続されており、バ
イアス電圧印加装置6を備えている。
FIG. 7 shows a piezoelectric element, an ink ejection mechanism, and a piezoelectric element driving mechanism of the recording head. Nozzle 1
Ink is supplied from the ink supply path 3 to the ink chamber 2 communicating with the. A part of the wall surface of the ink chamber is a pressure wall 2p, and a piezoelectric element composed of the piezoelectric ceramics 4 having electrodes 4e on both sides is attached. The pressure wall 2p also uses the function of the elastic plate 4t for converting the strain displacement of the piezoelectric ceramics 4 into the bending displacement. When a voltage in the same direction as the applied voltage at the time of polarization is applied to the electrode 4e, the piezoelectric ceramics 4 causes expansion strain in the thickness direction and at the same time contracts in the spreading direction. The elastic plate warps outward. In this embodiment, the elastic plate 4t
Also serves as the pressure wall 4p of the ink chamber, so that the ink chamber shrinks when a voltage is applied to the piezoelectric element 4 in the same direction as the applied voltage during polarization. In the present embodiment, the positive electrode at the time of polarization of the piezoelectric element 4 is connected as a common electrode terminal tc to the charging / discharging device 5 in common with a plurality of piezoelectric elements, and the negative electrode is a segment electrode terminal ts for each element. Independently connected to the switching device 7. Charge / discharge device 5
Is connected to a power supply of a bias voltage Vb and a power supply of a voltage obtained by adding a drive voltage VD to the bias voltage Vb, and includes a bias voltage applying device 6.

【0028】図8に本実施例の圧電素子の電極間電圧と
その屈曲変位を示す。本実施例では記録装置の電源を入
れると図中符号Bで示す様に圧電素子に分極時の印加電
圧と同方向のバイアス電圧Vbを印加する。この電圧が
印加された状態を圧電素子の基底状態として従来例で説
明した押し打ちと呼ばれる方法でインク吐出の為の駆動
動作が行なわれる。すなわち、図中符号Iで示す様に、
駆動信号によって圧電素子に電圧VDを印加し急速に充
電することでインク室を加圧する方向に圧電素子が屈曲
運動し、ノズルからインクが吐出される。インクの吐出
が終了すると、図中符号Rで示す様に、電圧VDを電圧
Vbまで下げて放電させ、圧電素子を電圧Vbで圧電素
子の歪みがインク吐出前の基底状態までもどし、インク
室を拡張する。本実施例ではオーバーシュートの比較的
大きな板状の圧電素子を用いているにもかかわらず、そ
れぞれの圧電素子を最高12kHzという高速で繰返し
駆動するが、本発明に分極時の電圧方向と同方向のバイ
アス電圧が圧電素子に加えられた状態を基底状態として
いるために、図中符号Oで示す様に、オーバーシュート
時に圧電素子の歪み方向が0を越えて逆転することなく
常に同方向に収まるために圧電素子の疲労破壊が防止さ
れる。また、オーバーシュート時の歪みが歪み0付近の
不安定な状態にならないので、オーバーシュートの収縮
時間が従来の方式に比較して早く、また、素子間でばら
つかないので、高速繰返し駆動の周波数を実用的に高め
ることが可能となった。また、本発明による本実施例で
は、実施例1で述べたのと同様に圧電素子の電気機械変
換効率が高く、また、素子間で一定の領域を用いること
ができるので、電気機械変換効率の改善と素子間ばらつ
きの低減の効果が実効的に得られ、高速駆動、多素子化
が実用的に可能になっている。
FIG. 8 shows the inter-electrode voltage and the bending displacement of the piezoelectric element of this embodiment. In this embodiment, when the power of the recording apparatus is turned on, a bias voltage Vb in the same direction as the applied voltage at the time of polarization is applied to the piezoelectric element as indicated by reference numeral B in the figure. The driving operation for ejecting ink is performed by the method called push-out described in the conventional example, with the state where this voltage is applied as the base state of the piezoelectric element. That is, as indicated by reference numeral I in the figure,
By applying a voltage VD to the piezoelectric element by a drive signal and rapidly charging the piezoelectric element, the piezoelectric element bends in a direction of pressurizing the ink chamber, and ink is ejected from the nozzle. When the ejection of the ink is completed, the voltage VD is lowered to the voltage Vb to be discharged as indicated by a symbol R in the figure, and the piezoelectric element is returned to the base state before the ink ejection by the voltage Vb, and the ink chamber is opened. Expand. In this embodiment, each piezoelectric element is repeatedly driven at a high speed of up to 12 kHz, even though a plate-shaped piezoelectric element having a relatively large overshoot is used. However, according to the present invention, the same voltage direction as polarization is applied. Since the state in which the bias voltage is applied to the piezoelectric element is the ground state, as shown by the symbol O in the figure, the strain direction of the piezoelectric element exceeds 0 at the time of overshoot and does not reverse and always stays in the same direction. Therefore, fatigue failure of the piezoelectric element is prevented. In addition, since the distortion at the time of overshoot does not become an unstable state around 0, the contraction time of overshoot is faster than that of the conventional method, and since it does not vary between elements, the frequency of high-speed repetitive driving is high. It has become possible to practically increase. In addition, in the present embodiment according to the present invention, the electromechanical conversion efficiency of the piezoelectric element is high as in the first embodiment, and since a constant region can be used between the elements, the electromechanical conversion efficiency can be improved. The effects of improvement and reduction of variation between elements are effectively obtained, and high-speed driving and multi-elementization are practically possible.

【0029】図9は本実施例の圧電素子の駆動回路を示
すものである。図中符号CGで示す破線で囲まれた部分
が圧電素子の充電及び放電を行なう充放電回路であり、
図中符号C1、C2、・・・はそれぞれのインク室に設
けられた複数の圧電素子を示す。圧電素子の分極時の印
加電圧極性を記号+、−で示す。本実施例では充放電回
路CGの端子tp3を複数の圧電素子のプラス電極に共
通に接続し充電及び放電動作時の電圧印加を行なう。複
数の圧電素子C1、C2、・・・のマイナス側の電極は
それぞれのスイッチング回路S1、S2、・・・に接続
されておりそれぞれの制御端子tpS1、tpS2に制
御電圧を印加して各素子の充電のON/OFFを制御す
る。充放電回路CGはVb+VD及びVbの電位の異な
る2つの電源に接続されており、充電制御端子tp1と
放電制御端子tp2は初期状態で0Vの電位にされてい
る。回路は充電制御端子tp1の電位を5Vにすること
で図中M1で示す部分がONの状態となりコンデンサC
0に定電流で充電が開始され、Tr1がONの状態とな
り充放電端子Tp3の電位がVb+VDまで上昇する。
ここで吐出動作をさせる圧電素子をC1とすると圧電素
子C1のマイナス端子に接続されているスイッチング回
路S1のスイッチング制御端子tpS1を5Vとするこ
とによって圧電素子C1に電流が流れ電位Vb+VDま
で充電される。一方、吐出動作をさせない圧電素子をC
2とすると圧電素子C2のマイナス端子に接続されてい
るスイッチング回路S2のスイッチング制御回路tpS
2を0Vにしておくことで充放電回路CGの充放電端子
tp3の電位が上がっても圧電素子C2に電流が流れな
いので充電動作が行なわれない。以上の動作で吐出させ
る圧電素子の充電を行ないインク室を加圧してインク吐
出を行なう。次に圧電素子を元の状態に戻す為に全ての
圧電素子をVbの電位まで放電させる動作について説明
する。充電制御端子tp1を0Vに戻し、放電制御端子
tp2を5Vにすることで図中M2で示す部分がONの
状態になりコンデンサC0の電荷が定電流で放電され、
トランジスタTr2がONの状態になり充放電端子tp
3の電位が下がり接続されている圧電素子C1、C2、
・・・を放電する。ここでコンデンサC0はダイオード
Dを通してバイアス電源Vbに接続されているのでCO
の電圧が概ねVbとなった状態でTr2がOFFの状態
となり充放電端子tp3の電位が概ねVbとなった状態
で圧電素子の放電は停止する。従って本実施例の回路を
用いて駆動すれば圧電素子に分極電圧と同方向のバイア
ス電圧Vbを常に印加して複数の圧電素子を押し打ち駆
動することができる。
FIG. 9 shows a drive circuit for the piezoelectric element of this embodiment. A portion surrounded by a broken line indicated by reference numeral CG in the drawing is a charging / discharging circuit for charging and discharging the piezoelectric element,
Reference numerals C1, C2, ... In the drawing indicate a plurality of piezoelectric elements provided in the respective ink chambers. The polarities of the applied voltage when the piezoelectric element is polarized are indicated by the symbols + and −. In this embodiment, the terminal tp3 of the charging / discharging circuit CG is commonly connected to the plus electrodes of the plurality of piezoelectric elements, and voltage is applied during charging and discharging operations. The negative electrodes of the plurality of piezoelectric elements C1, C2, ... Are connected to the respective switching circuits S1, S2, ..., and a control voltage is applied to the respective control terminals tpS1, tpS2 of each element. Controls charging ON / OFF. The charge / discharge circuit CG is connected to two power sources having different potentials of Vb + VD and Vb, and the charge control terminal tp1 and the discharge control terminal tp2 are set to the potential of 0 V in the initial state. In the circuit, when the potential of the charge control terminal tp1 is set to 5V, the portion indicated by M1 in the figure is turned on and the capacitor C
Charging is started at a constant current of 0, Tr1 is turned on, and the potential of the charging / discharging terminal Tp3 rises to Vb + VD.
Here, if the piezoelectric element that performs the ejection operation is C1, the switching control terminal tpS1 of the switching circuit S1 connected to the negative terminal of the piezoelectric element C1 is set to 5V, and a current flows through the piezoelectric element C1 to be charged to the potential Vb + VD. . On the other hand, if the piezoelectric element that does not discharge is C
2, the switching control circuit tpS of the switching circuit S2 connected to the negative terminal of the piezoelectric element C2.
By setting 2 to 0V, no current flows in the piezoelectric element C2 even if the potential of the charging / discharging terminal tp3 of the charging / discharging circuit CG rises, so that the charging operation is not performed. By the above operation, the piezoelectric element to be ejected is charged and the ink chamber is pressurized to eject the ink. Next, the operation of discharging all the piezoelectric elements to the potential of Vb in order to return the piezoelectric elements to the original state will be described. By returning the charge control terminal tp1 to 0V and setting the discharge control terminal tp2 to 5V, the portion indicated by M2 in the figure is turned on, and the electric charge of the capacitor C0 is discharged by a constant current,
The transistor Tr2 is turned on and the charging / discharging terminal tp
The piezoelectric elements C1, C2, to which the potential of 3 is lowered and connected,
Discharge ... Here, since the capacitor C0 is connected to the bias power source Vb through the diode D, CO
When the voltage of 2 is approximately Vb, Tr2 is in the OFF state, and the potential of the charging / discharging terminal tp3 is approximately Vb, the discharge of the piezoelectric element is stopped. Therefore, if the circuit of this embodiment is used for driving, a bias voltage Vb in the same direction as the polarization voltage is always applied to the piezoelectric element, and the plurality of piezoelectric elements can be pushed and driven.

【0030】本発明を用いた第3の実施例を図10、図
11、図12及び図13により説明する。本実施例はイ
エロー、マゼンタ、シアン、ブラック色のインクを吐出
できる素子をそれぞれ1素子ずつ合計4素子備えたカラ
ー記録装置である。記録密度は300dpiで記録面積
はA6相当からA4相当で家庭用のテレビ画像のプリン
トや写真データの記録を目的としたものである。それぞ
れの素子は厚み振動タイプの圧電素子でインク室の拡張
及び縮小を行ない、引き打ちと言われる駆動動作を行な
うが、カラー記録の為に駆動波形を変調することで1回
当りのインク吐出量を変調することが可能な構成となっ
ている。
A third embodiment using the present invention will be described with reference to FIGS. 10, 11, 12 and 13. The present embodiment is a color recording apparatus having a total of four elements, one element each capable of ejecting yellow, magenta, cyan, and black inks. The recording density is 300 dpi, and the recording area is equivalent to A6 to A4 for the purpose of printing television images for home use and recording photographic data. Each element is a thickness vibration type piezoelectric element that expands and contracts the ink chamber and performs a driving operation called pulling. However, by modulating the driving waveform for color recording, the ink ejection amount per stroke is increased. Is capable of being modulated.

【0031】図10に本実施例のカラー記録装置の要素
構成を示す。本実施例は低価格でカラー記録を実現する
ために各色1ノズルの素子構成となっている。従来の方
式では少ない素子数で記録装置を構成すると、1素子当
りの駆動回数が記録媒体枚数に対して非常に多くなり、
寿命の点で実用化が困難であったが本発明を用いること
により、圧電素子の寿命が著しく改善されたために本実
施例の記録装置が実現された。また、本実施例では本発
明によって素子の駆動繰返し周波数を28kHzと高速
化することができたために少ない記録素子数でも実用的
な記録速度が可能となった。図中符号34は記録用紙3
3を巻き付けるドラムであり、図中符号30はノズルと
インク室及び圧電素子よりなるインク吐出素子をもった
ヘッドで各色1ノズル合計4ノズルの素子を内蔵してお
り交換可能なインクカートリッジ31から4色のインク
を供給されている。ヘッド30は図中符号32のキャリ
ッジに固定され、キャリッジ32はねじ状のヘッド移動
軸35によってドラム軸方向に駆動される構造となって
いる。ドラム34は紙を巻き付け後、DCモーター36
によって高速回転し、ヘッド移動軸はステッピングモー
タ37によってドラム1周に付き1/300インチずつ
移動する構造になっている。本実施例では非常に低コス
トで製造可能な構造にもかかわらずフルカラーのA5相
当画面を約2分で印字できる。
FIG. 10 shows an element structure of the color recording apparatus of this embodiment. This embodiment has an element structure of one nozzle for each color in order to realize color recording at a low price. In the conventional method, if the recording apparatus is configured with a small number of elements, the number of driving times per element becomes extremely large with respect to the number of recording media,
Although it was difficult to put into practical use in terms of life, the recording apparatus of this example was realized by using the present invention because the life of the piezoelectric element was remarkably improved. Further, in the present embodiment, since the drive repetition frequency of the element can be increased to 28 kHz by the present invention, a practical recording speed can be achieved even with a small number of recording elements. Reference numeral 34 in the drawing denotes recording sheet 3
3 is a drum around which reference numeral 30 in the drawing is a head having nozzles, ink chambers, and ink ejection elements composed of piezoelectric elements. Each head has one nozzle for each color and a total of four nozzles. Colored ink is supplied. The head 30 is fixed to a carriage denoted by reference numeral 32 in the figure, and the carriage 32 is structured to be driven in the drum axis direction by a screw-shaped head moving shaft 35. After winding the paper on the drum 34, the DC motor 36
The head is rotated at a high speed, and the head moving shaft is moved by 1/300 inch per one rotation of the drum by the stepping motor 37. In this embodiment, a full-color A5 equivalent screen can be printed in about 2 minutes despite the structure that can be manufactured at a very low cost.

【0032】図11は本実施例の1素子のインク吐出機
構と圧電素子の駆動機構を示す図である。図中符号1で
示すノズルとそれに連通するインク室2とインク室にイ
ンクを供給するインク供給路3そして、インク室2の一
部を圧力壁2pとし圧電素子4と接合されている。圧電
素子4は両面に電極4eを形成した圧電性セラミクスか
ら成っており圧力壁2pに接合された面と直行する面に
電極4eを形成し厚み振動させるので、第1の実施例と
同様に圧電素子の電圧を印加することでインク室を拡張
する動作を行なうことができる。本実施例では、図中符
号5で示す充放電装置により、いわゆる引き打ちと言わ
れる方式で圧電素子を駆動してインクを吐出させるが、
図中符号6で示すバイアス電圧印加装置によりインク室
の拡張時または縮小時またはその前後のいずれにおいて
も前記圧電素子に前記圧電素子の分極電圧と同方向の電
圧を印加する構造となっている。これにより第1の実施
例と第2の実施例で述べた駆動速度の高速化と圧電素子
の疲労破壊の防止による寿命の著しい長期化が可能とな
った。
FIG. 11 is a diagram showing a one-element ink ejection mechanism and a piezoelectric element driving mechanism of this embodiment. A nozzle indicated by reference numeral 1 in the drawing, an ink chamber 2 communicating with the nozzle, an ink supply path 3 for supplying ink to the ink chamber, and a part of the ink chamber 2 are used as pressure walls 2p and are joined to the piezoelectric element 4. The piezoelectric element 4 is composed of piezoelectric ceramics in which electrodes 4e are formed on both sides, and the electrodes 4e are formed on the surface orthogonal to the surface joined to the pressure wall 2p to vibrate the thickness. The operation of expanding the ink chamber can be performed by applying the voltage of the element. In this embodiment, the charging / discharging device indicated by reference numeral 5 in the drawing drives the piezoelectric element by a so-called so-called ejection method to eject ink.
A bias voltage applying device indicated by reference numeral 6 in the drawing has a structure in which a voltage in the same direction as the polarization voltage of the piezoelectric element is applied to the piezoelectric element when the ink chamber is expanded, contracted, or before or after the expansion. As a result, the driving speed as described in the first and second embodiments can be increased, and fatigue life of the piezoelectric element can be prevented to prolong the life significantly.

【0033】更に本実施例では、階調記録性を向上させ
るために、圧電素子の駆動電圧を8段階に変調させ、1
回のインク吐出量を通常の吐出量を100%とした場
合、90%、80%、70%、・・・、30%と、10
%間隔で30%までのインク吐出量の変調を可能として
いる。すなわち、インク量の100%を吐出させる時は
図12で示すようにバイアス電圧Vbに対して充電電圧
をVD1とし圧電素子をインク室を拡張する方向に歪ま
せ、吐出タイミングでVbまで放電することでインクを
吐出させ、例えば60%及び30%吐出の場合はそれぞ
れ図12VD2及びVD3で示す電圧で圧電素子を充電
しインク室の拡張量を少なくし、吐出タイミングでVb
まで放電することでそれぞれ求められる量のインクを吐
出させている。従来の方法で、本実施例の様に電圧を変
調して圧電素子を駆動し、インクの吐出量を変調しよう
とすると圧電素子の電圧0付近で電気機械変換効率がば
らつき、駆動電圧を変調しても吐出量の定量管理が不可
能であった。本発明によれば、常に電圧Vb以上の電圧
を圧電素子に加えて駆動するので、図4のグラフで見ら
れる様に電気機械変換効率が一定の領域VDで圧電素子
を駆動でき、電気機械変換効率が一定でない歪み0付近
の特性に影響されないので、吐出インク量の変調が設計
値どうり可能となった。
Further, in this embodiment, in order to improve the gradation recording property, the driving voltage of the piezoelectric element is modulated in eight steps, and
When the normal ink discharge amount is 100%, the ink discharge amount per time is 90%, 80%, 70%, ..., 30%, and 10%.
It is possible to modulate the ink discharge amount up to 30% at a% interval. That is, when ejecting 100% of the ink amount, as shown in FIG. 12, the charging voltage is set to VD1 with respect to the bias voltage Vb to distort the piezoelectric element in the direction of expanding the ink chamber, and discharge to Vb at the ejection timing. In the case of 60% and 30% ejection, for example, the piezoelectric element is charged by the voltages shown by VD2 and VD3 in FIG. 12 to reduce the expansion amount of the ink chamber and Vb at the ejection timing.
The required amount of ink is ejected by discharging the ink. When the piezoelectric element is driven by modulating the voltage as in this embodiment by the conventional method and the amount of ink ejection is attempted to be modulated, the electromechanical conversion efficiency varies near the voltage 0 of the piezoelectric element, and the driving voltage is modulated. However, it was impossible to quantitatively control the discharge amount. According to the present invention, since a voltage higher than the voltage Vb is constantly applied to the piezoelectric element for driving, the piezoelectric element can be driven in the region VD where the electromechanical conversion efficiency is constant as shown in the graph of FIG. Since the efficiency is not constant and the characteristics near distortion 0 are not affected, the ejection amount can be modulated according to the design value.

【0034】図13は本実施例の圧電素子の駆動回路を
示すもので、充放電回路CGは先に示した実施例2と同
様の構成となっており圧電素子Cは充電制御端子tp1
に5Vの制御電圧を印加することで充電され、放電制御
端子tp2に5Vの制御電圧を印加することで放電され
る。また図中BCで示す部分でバイアス電圧が決定され
ているので圧電素子Cの充放電は常にバイアス電圧Vb
以上で行なわれる。また、図12で示した様に充電電位
を変調するために本実施例では充電制御端子tp1に印
加する充電制御信号を印字データの濃度に従ってパルス
巾変調することで充電時間を変調し充電量を制御してい
る。0Vから充電を行なう従来の方法では充電時間を制
御しても充電電位が充電時間に比例しないことに加え圧
電素子の特性ばらつきで設計値とことなる充電電位にな
ってしまったが、本発明による本実施例では充電時間で
圧電素子の充電電位が設計値どうり規定することが可能
となった。
FIG. 13 shows a drive circuit for the piezoelectric element of this embodiment. The charging / discharging circuit CG has the same structure as that of the second embodiment described above, and the piezoelectric element C has a charge control terminal tp1.
Is charged by applying a control voltage of 5 V to the discharge control terminal and discharged by applying a control voltage of 5 V to the discharge control terminal tp2. Further, since the bias voltage is determined in the portion indicated by BC in the figure, the charging / discharging of the piezoelectric element C is always the bias voltage Vb.
This is done. Further, as shown in FIG. 12, in order to modulate the charge potential, in this embodiment, the charge control signal applied to the charge control terminal tp1 is pulse-width modulated in accordance with the density of the print data to modulate the charge time and change the charge amount. Have control. In the conventional method of charging from 0V, the charging potential is not proportional to the charging time even if the charging time is controlled, and the charging potential becomes different from the design value due to the characteristic variation of the piezoelectric element. In this embodiment, the charging potential of the piezoelectric element can be regulated according to the design value by the charging time.

【0035】図14は本発明による第4、第5の実施例
を示す断面図で、圧電素子を圧縮状態に保持する構造材
を設けた例ある。図14(a)は両面に電極4eを備え
た圧電素子4をスペーサ8sを介して加圧部材8で圧縮
状態に保持している。本実施例において圧縮部材8はジ
ルコニア系セラミクス、スペーサ8sは樹脂からできて
おり、圧縮部材8は圧電素子4を挟んだ後に、図示しな
い調整ネジによって圧電素子4を圧縮する方向に圧力を
与えられている。図14(b)はノズル1とインク室2
とインク供給路3とからなるインク流路とインク室2の
一部に設けられた圧力壁2pと圧力壁2pに接続された
圧電素子4からなる実施例であるが、圧電素子4は形状
記憶合金からなる圧縮部材8により図の縦方向にあらか
じめ圧縮されている。図14で示す実施例はいずれも構
造的に圧電素子を圧縮状態にしている。こうすることで
駆動時にバイアス電圧を印加しなくても圧電素子の放電
時のオーバーシュートによって圧電素子の歪みが0をこ
えて反転せず、圧電素子の疲労破壊を防止することがで
きる。
FIG. 14 is a sectional view showing the fourth and fifth embodiments of the present invention, which is an example in which a structural material for holding the piezoelectric element in a compressed state is provided. In FIG. 14A, the piezoelectric element 4 having the electrodes 4e on both sides is held in a compressed state by the pressing member 8 via the spacer 8s. In this embodiment, the compression member 8 is made of zirconia ceramics, and the spacers 8s are made of resin. The compression member 8 sandwiches the piezoelectric element 4 and is then given a pressure in a direction to compress the piezoelectric element 4 by an adjusting screw (not shown). ing. FIG. 14B shows the nozzle 1 and the ink chamber 2.
In this embodiment, the ink flow path including the ink supply path 3 and the pressure wall 2p provided in a part of the ink chamber 2 and the piezoelectric element 4 connected to the pressure wall 2p are used. It is pre-compressed in the vertical direction of the figure by the compression member 8 made of an alloy. In all the examples shown in FIG. 14, the piezoelectric element is structurally in a compressed state. By doing so, even if the bias voltage is not applied during driving, the strain of the piezoelectric element does not exceed 0 and does not reverse due to overshoot during discharging of the piezoelectric element, and it is possible to prevent fatigue breakdown of the piezoelectric element.

【0036】以上、本実施例で述べたとうり本発明はい
わゆる押し打ち駆動方式でも引き打ち駆動方式でも同様
に効果がある。また本実施例で述べた圧電素子は圧電セ
ラミクス、あるいは、積層された圧電セラミクスの厚み
方向の変位を利用してインクを吐出させる方式、また
は、厚み方向の歪みを屈曲変位に変換してインクを吐出
させる方式であったが、本発明は圧電素子の変位がずり
変位であっても同様の効果がある。また、本実施例では
いずれも圧電素子がインク室の壁面を変位させる構造と
なっていたが、本発明は圧電素子がインク室内に設けら
れ、インクに直接圧力を加える方式であっても同様の効
果を持つ。更に、本実施例では圧電素子にバイアス電圧
を印加する方法として充放電回路の放電電位を規定する
方法を用いたが、本発明は圧電素子の放電時間を制限し
て圧電素子の電位を保持する方法など、バイアス電圧の
印加方法によらず同様の効果を持つ。
As described above, the present invention as described in the present embodiment has the same effect in the so-called push driving method and pulling driving method. The piezoelectric element described in this embodiment ejects ink by utilizing piezoelectric ceramics, or displacement of the laminated piezoelectric ceramics in the thickness direction, or converts strain in the thickness direction into bending displacement to generate ink. Although the discharge method is used, the present invention has the same effect even if the displacement of the piezoelectric element is a shear displacement. In addition, in each of the present embodiments, the piezoelectric element has a structure that displaces the wall surface of the ink chamber, but the present invention also applies to a system in which the piezoelectric element is provided in the ink chamber and pressure is directly applied to the ink. Have an effect. Furthermore, in the present embodiment, the method of defining the discharge potential of the charge / discharge circuit is used as the method of applying the bias voltage to the piezoelectric element, but the present invention limits the discharge time of the piezoelectric element and holds the potential of the piezoelectric element. The same effect can be obtained regardless of the bias voltage application method.

【0037】[0037]

【発明の効果】本発明によれば、圧電素子の歪みが0を
越えて反転することなく常に同方向の歪み状態で駆動動
作される。従って圧電素子の疲労破壊が防止され寿命が
著しく改善される。また、圧電素子は電気機械変換効率
の高い部分で駆動動作されるので高速、高能率の駆動動
作が可能となる。また、複数の圧電素子を用いる場合に
おいて電気機械変換特性のばらつきが激しい歪み0付近
でなく特性の均一な領域で駆動動作されるので、簡単な
構造で実質的に素子間の特性ばらつきを軽減できる。従
って、多数の圧電素子を用いて高速繰返し駆動をするこ
とが実質的に可能となり、高速なインクジェット記録装
置が実現できる。
According to the present invention, the piezoelectric element is always driven in a strain state in the same direction without exceeding 0 and being inverted. Therefore, fatigue failure of the piezoelectric element is prevented and the life is remarkably improved. Further, since the piezoelectric element is driven and operated in a portion having high electromechanical conversion efficiency, high speed and high efficiency driving operation is possible. Further, when a plurality of piezoelectric elements are used, the driving operation is performed not in the vicinity of strain 0 where the variation of electromechanical conversion characteristics is severe but in a region of uniform characteristics, so that characteristic variations between elements can be substantially reduced with a simple structure. . Therefore, high-speed repetitive driving can be substantially performed using a large number of piezoelectric elements, and a high-speed inkjet recording device can be realized.

【0038】更に本発明によれば、実施例に述べた効果
に加えて、圧電素子を常に歪んだ状態に保つことで圧電
素子の剛性が増し、インク室の圧力壁の不要な振動が抑
制されるので素子間の伝播振動によるクロストークを軽
減できる効果もある。また、圧電素子に分極時と同方向
の電圧を常に印加しているので、長期の繰返し駆動にお
いても分極状態が安定して維持される効果もある。
Further, according to the present invention, in addition to the effect described in the embodiment, by keeping the piezoelectric element always in a distorted state, the rigidity of the piezoelectric element is increased and unnecessary vibration of the pressure wall of the ink chamber is suppressed. Therefore, there is also an effect that crosstalk due to propagation vibration between elements can be reduced. Further, since the voltage in the same direction as that at the time of polarization is constantly applied to the piezoelectric element, there is also an effect that the polarization state is stably maintained even during long-term repeated driving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す装置の断面図及び
構成図である。
FIG. 1 is a sectional view and a configuration diagram of an apparatus showing a first embodiment of the present invention.

【図2】本発明の第1の実施例を示す装置の斜視図であ
る。
FIG. 2 is a perspective view of an apparatus showing a first embodiment of the present invention.

【図3】本発明の第1の実施例の駆動波形と変位を示す
図である。
FIG. 3 is a diagram showing drive waveforms and displacement according to the first embodiment of the present invention.

【図4】圧電素子の電気機械変換特性を示す図である。FIG. 4 is a diagram showing electromechanical conversion characteristics of a piezoelectric element.

【図5】本発明の第1の実施例の回路図である。FIG. 5 is a circuit diagram of a first embodiment of the present invention.

【図6】本発明の第2の実施例を示す装置の斜視図であ
る。
FIG. 6 is a perspective view of an apparatus showing a second embodiment of the present invention.

【図7】本発明の第2の実施例を示す装置の断面図及び
構成図である。
FIG. 7 is a sectional view and a configuration diagram of an apparatus showing a second embodiment of the present invention.

【図8】本発明の第2の実施例の駆動波形と変位を示す
図である。
FIG. 8 is a diagram showing a drive waveform and a displacement according to a second embodiment of the present invention.

【図9】本発明の第2の実施例を示す装置の回路図であ
る。
FIG. 9 is a circuit diagram of an apparatus showing a second embodiment of the present invention.

【図10】本発明の第3の実施例を示す装置の斜視図で
ある。
FIG. 10 is a perspective view of an apparatus showing a third embodiment of the present invention.

【図11】本発明の第3の実施例を示す装置の断面図及
び構成図である。
FIG. 11 is a sectional view and a configuration diagram of an apparatus showing a third embodiment of the present invention.

【図12】本発明の第3の実施例の駆動波形と変位を示
す図である。
FIG. 12 is a diagram showing drive waveforms and displacement according to the third embodiment of the present invention.

【図13】本発明の第3の実施例の回路図である。FIG. 13 is a circuit diagram of a third embodiment of the present invention.

【図14】本発明の第4、第5の実施例を示す断面図で
ある。
FIG. 14 is a sectional view showing the fourth and fifth embodiments of the present invention.

【図15】圧電素子の構造と分極方向を示す図である。FIG. 15 is a diagram showing the structure and polarization direction of a piezoelectric element.

【図16】従来例を示す装置の断面図である。FIG. 16 is a sectional view of a device showing a conventional example.

【図17】従来例を示す装置の断面図である。FIG. 17 is a sectional view of an apparatus showing a conventional example.

【図18】従来例の駆動波形と変位を示すである。FIG. 18 is a diagram showing a drive waveform and displacement of a conventional example.

【図19】従来例の圧電素子の破壊例を示す断面図であ
る。
FIG. 19 is a cross-sectional view showing a destruction example of a conventional piezoelectric element.

【図20】圧電素子の駆動変位を示す図である。FIG. 20 is a diagram showing driving displacement of a piezoelectric element.

【符号の説明】[Explanation of symbols]

1:ノズル 2:インク室 2p:圧力壁 3:インク供給路 4:圧電素子 5:充放電装置 6:バイアス電圧印加装置 7:スイッチング装置 8:圧縮部材 1: Nozzle 2: Ink chamber 2p: Pressure wall 3: Ink supply path 4: Piezoelectric element 5: Charge / discharge device 6: Bias voltage application device 7: Switching device 8: Compression member

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 インクを吐出するノズルと、前記ノズル
に連通したインク室と、前記インク室の一部に設けられ
たインク室の容積を変化させる圧力壁と、前記インク室
にインクを供給する供給路と、電圧の印加によって形状
を変化させる圧電素子とを備え、前記圧力壁と前記圧電
素子が機械的に接続されており、前記圧電素子に印加す
る電圧の変化で前記インク室の容積を拡張及び縮小、ま
たは、縮小及び拡張させ前記ノズルよりインクを吐出さ
せるインクジェット記録装置において、 前記圧力室の拡張時または縮小時またはその前後のいず
れにおいても前記圧電素子に常に一方向の歪みを加える
機構を備えたことを特徴とするインクジェット記録装
置。
1. A nozzle for ejecting ink, an ink chamber communicating with the nozzle, a pressure wall for changing the volume of the ink chamber provided in a part of the ink chamber, and supplying ink to the ink chamber. A supply path and a piezoelectric element whose shape is changed by applying a voltage are provided, the pressure wall and the piezoelectric element are mechanically connected, and the volume of the ink chamber is changed by a change in the voltage applied to the piezoelectric element. In an inkjet recording apparatus that expands and contracts, or contracts and expands and ejects ink from the nozzles, a mechanism that constantly applies unidirectional strain to the piezoelectric element when the pressure chamber is expanded, contracted, or before or after expansion. An inkjet recording apparatus comprising:
【請求項2】 前記圧力室の拡張時または縮小時または
その前後のいずれにおいても前記圧電素子に前記圧電素
子の分極電圧と同方向のバイアス電圧を印加する機構を
備えたことを特徴とする請求項1記載のインクジェット
記録装置。
2. A mechanism for applying a bias voltage in the same direction as the polarization voltage of the piezoelectric element to the piezoelectric element when the pressure chamber is expanded, contracted, or before or after the expansion. Item 2. The inkjet recording device according to item 1.
【請求項3】 前記バイアス電圧が、前記圧電素子の放
電動作時における残留振動の振幅の最大値ΔDと、前記
圧電素子の電圧印加部の総厚みHと、前記圧電素子の隣
り合う電極間の距離hと、圧電常数dと、によって規定
される値(ΔD×h)/(d×H)以上であることを特
徴とする請求項2記載のインクジェット記録装置。
3. The bias voltage has a maximum value ΔD of an amplitude of residual vibration during a discharge operation of the piezoelectric element, a total thickness H of a voltage applying portion of the piezoelectric element, and a distance between adjacent electrodes of the piezoelectric element. 3. The ink jet recording apparatus according to claim 2, wherein the distance is equal to or more than a value (ΔD × h) / (d × H) defined by the distance h and the piezoelectric constant d.
【請求項4】 前記圧電素子を圧縮状態に保持する構造
材、または、加圧機構を備えたことを特徴とする請求項
1記載のインクジェット記録装置。
4. The ink jet recording apparatus according to claim 1, further comprising a structural member that holds the piezoelectric element in a compressed state, or a pressure mechanism.
【請求項5】 インクを吐出するノズルと、前記ノズル
に連通したインク室と、前記インク室の一部に設けられ
たインク室の容積を変化させる圧力壁と、前記インク室
にインクを供給する供給路と、電圧の印加によって形状
を変化させる圧電素子とを備え、前記圧力壁と前記圧電
素子が機械的に接続されており、前記圧電素子に印加す
る電圧の変化で前記インク室の容積を拡張及び縮小、ま
たは、縮小及び拡張させ前記ノズルよりインクを吐出さ
せるインクジェット記録装置において、前記圧電素子の
電圧印加部に印加する電界を、分極時と同方向とし、か
つ、常に50kV/m以上の電界強度で駆動する機構を
備えたことを特徴とするインクジェット記録装置。
5. A nozzle for ejecting ink, an ink chamber communicating with the nozzle, a pressure wall for changing the volume of the ink chamber provided in a part of the ink chamber, and supplying ink to the ink chamber. A supply path and a piezoelectric element whose shape is changed by applying a voltage are provided, the pressure wall and the piezoelectric element are mechanically connected, and the volume of the ink chamber is changed by a change in the voltage applied to the piezoelectric element. In an ink jet recording apparatus that expands and contracts, or contracts and expands and ejects ink from the nozzles, the electric field applied to the voltage application unit of the piezoelectric element is in the same direction as during polarization and is always 50 kV / m or more. An inkjet recording apparatus comprising a mechanism driven by electric field strength.
JP9139393A 1993-04-19 1993-04-19 Ink jet recording device Expired - Fee Related JP3594628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9139393A JP3594628B2 (en) 1993-04-19 1993-04-19 Ink jet recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9139393A JP3594628B2 (en) 1993-04-19 1993-04-19 Ink jet recording device

Publications (2)

Publication Number Publication Date
JPH06297709A true JPH06297709A (en) 1994-10-25
JP3594628B2 JP3594628B2 (en) 2004-12-02

Family

ID=14025144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9139393A Expired - Fee Related JP3594628B2 (en) 1993-04-19 1993-04-19 Ink jet recording device

Country Status (1)

Country Link
JP (1) JP3594628B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104622B2 (en) 2002-02-01 2006-09-12 Seiko Epson Corporation Device and method for driving jetting head
JP2006256189A (en) * 2005-03-18 2006-09-28 Seiko Epson Corp Circuit for driving liquid jetting head, and liquid jetting apparatus equipped with circuit for driving liquid jetting head
JP2007131009A (en) * 2007-01-18 2007-05-31 Seiko Epson Corp Drive method of inkjet recording head and inkjet recording apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7104622B2 (en) 2002-02-01 2006-09-12 Seiko Epson Corporation Device and method for driving jetting head
US7625056B2 (en) 2002-02-01 2009-12-01 Seiko Epson Corporation Device and method for driving jetting head
JP2006256189A (en) * 2005-03-18 2006-09-28 Seiko Epson Corp Circuit for driving liquid jetting head, and liquid jetting apparatus equipped with circuit for driving liquid jetting head
JP4582322B2 (en) * 2005-03-18 2010-11-17 セイコーエプソン株式会社 Liquid ejecting head driving circuit and liquid ejecting apparatus including the liquid ejecting head driving circuit
JP2007131009A (en) * 2007-01-18 2007-05-31 Seiko Epson Corp Drive method of inkjet recording head and inkjet recording apparatus
JP4497163B2 (en) * 2007-01-18 2010-07-07 セイコーエプソン株式会社 Inkjet recording device

Also Published As

Publication number Publication date
JP3594628B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US6106091A (en) Method of driving ink-jet head by selective voltage application
JP4251912B2 (en) Image forming apparatus
US5359350A (en) Method of driving ink jet printing head
EP1902841B1 (en) Method for driving liquid ejector
JP5024589B2 (en) Droplet discharge device, droplet discharge characteristic correction method, and ink jet recording apparatus
JP4631506B2 (en) Liquid ejector
JP2000141647A (en) Ink-jet recording apparatus
JP2003237066A (en) Head driving control device and image recorder
EP1193064A1 (en) An electrostatically switched ink jet device and method of operating the same
JP3594628B2 (en) Ink jet recording device
JP4494880B2 (en) Driving method of piezoelectric ink jet head
JP2004249686A (en) Liquid jet device and liquid droplet discharge control method therefor
JP4187150B2 (en) Droplet discharge head and image forming apparatus
JP2003182075A (en) Ink jet recorder
JP3006577B2 (en) Inkjet head
JP3717101B2 (en) Inkjet recording head drive apparatus and drive method
JP3419372B2 (en) Ink jet recording device
JP4102511B2 (en) Ink jet recording head driving method and ink jet recording apparatus
JP7192547B2 (en) Droplet ejection device and droplet ejection method
JPH1191113A (en) Ink-jet recording apparatus
JP2010194834A (en) Liquid discharge head, liquid discharge device, method for setting bias voltage of liquid discharge head, method for driving liquid discharge head
JP4583888B2 (en) Droplet discharge head, head driving device, liquid cartridge, and image forming apparatus
JPH1110866A (en) Ink jet recording device
JP2846539B2 (en) Method of bonding piezoelectric element in ink jet print head
JP3213126B2 (en) Print head of inkjet recording device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Effective date: 20040901

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080910

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100910

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees