JPH06295740A - Lithium solid electrolyte battery - Google Patents

Lithium solid electrolyte battery

Info

Publication number
JPH06295740A
JPH06295740A JP5100466A JP10046693A JPH06295740A JP H06295740 A JPH06295740 A JP H06295740A JP 5100466 A JP5100466 A JP 5100466A JP 10046693 A JP10046693 A JP 10046693A JP H06295740 A JPH06295740 A JP H06295740A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
solid electrolyte
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5100466A
Other languages
Japanese (ja)
Other versions
JP3103703B2 (en
Inventor
Koji Higashimoto
晃二 東本
Kenji Nakai
賢治 中井
Kensuke Hironaka
健介 弘中
Akio Komaki
昭夫 小牧
Takefumi Nakanaga
偉文 中長
Akiyoshi Inubushi
昭嘉 犬伏
Masatoshi Taniguchi
正俊 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Resonac Corp
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP05100466A priority Critical patent/JP3103703B2/en
Publication of JPH06295740A publication Critical patent/JPH06295740A/en
Application granted granted Critical
Publication of JP3103703B2 publication Critical patent/JP3103703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a lithium solid electrolyte battery having high performance and the long service life by forming the side where a positive electrode active material layer contacts with a current collecting body of a positive electrode active material reduced from the side contacting with solid electrolyte. CONSTITUTION:A lithium solid electrolyte battery is composed of a positive electrode active material layer 1 reduced partially, a positive electrode active material layer 2, high polymer solid electrolyte 3, a negative electrode material layer 4, current collecting bodies 5 and 6 and the like. The positive electrode active material layer 2 is formed of a vanadium pentoxide xerogel film, and contacts with a vanadium pentoxide xerogel film 1 reduced partially. These positive electrode active material layers are formed so as to leave an outer peripheral end surface 6b on a surface 6a of the positive electrode current collecting body 6. In this way, since a positive electrode active material contacting with the current collecting body 6 side is reduced already partially, an ion infiltrating quantity is little, and a volume change is also small. Thereby, separation between the current collecting body 6 and the positive electrode active material layer 2 is extremely rare.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高電圧、高エネルギー密
度を持ち、かつ液体を含まない全固体のリチウム固体電
解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid-free, all-solid-state lithium solid electrolyte battery having high voltage and high energy density.

【0002】[0002]

【従来の技術】近年、エレクトロニクス技術の発達は目
覚ましく、電気機器の小型化、軽量化、薄型化及び多機
能化が図られており、それにともない電気機器の電源で
ある電池の小型化、軽量化、薄型化、信頼性の向上が望
まれている。この要望に応じるため、正極活物質層と負
極活物質層とが固体電解質層を介して積層されたリチウ
ム固体電解質電池が提案された。このリチウム固体電解
質電池は各層が薄膜状のものを積層して組み立てられる
ため、電池の小型化、軽量化、薄型化が容易であり、ま
た電解液も使用していないため液漏れ、液の枯渇等の心
配がなく信頼性も高い。更にリチウムを用いているため
高い電圧と高エネルギー密度が得られるという点でまさ
に上記の要望に沿つたものである。
2. Description of the Related Art In recent years, the development of electronic technology has been remarkable, and electric appliances have been made smaller, lighter, thinner and more multifunctional, and accordingly, batteries, which are the power source of electric appliances, have been made smaller and lighter. It is desired to reduce the thickness and improve the reliability. To meet this demand, a lithium solid electrolyte battery has been proposed in which a positive electrode active material layer and a negative electrode active material layer are laminated with a solid electrolyte layer in between. Since this lithium solid electrolyte battery is assembled by stacking thin layers, it is easy to make the battery smaller, lighter and thinner, and since no electrolyte is used, liquid leakage and liquid depletion are possible. There is no worry about such problems and the reliability is high. Furthermore, since lithium is used, a high voltage and a high energy density can be obtained, which is exactly in accordance with the above demand.

【0003】このリチウム固体電解質電池の正極活物質
層としては、粉状のV613のような正極活剤粉体を結
着剤などで練り固めシート化したものと、集電体に直接
塗布して作成する五酸化バナジウムのキセロゲル膜、蒸
着やスパツタリングにより集電体に直接作成する二硫化
チタンなどの膜等が提案されている。しかし、これらの
うち粉状の正極活物質を用いる場合は、固体電解質電池
では次のような難点を持つ。第1点は、固体電解質が電
解液のように粉体の結合体に浸透しないため、個々の粉
体の電気化学的な接触が十分得られないという点であ
り、第2点は粉状の正極活物質を用いるためどうしても
凹凸が避けられず、固体電解質を貫通して短絡の原因と
なるという点である。
As the positive electrode active material layer of this lithium solid electrolyte battery, a positive electrode active material powder such as powdery V 6 O 13 is kneaded with a binder or the like to form a sheet, and is directly attached to the current collector. There have been proposed vanadium pentoxide xerogel films formed by coating, films of titanium disulfide, etc. formed directly on a current collector by vapor deposition or sputtering. However, when a powdery positive electrode active material is used, the solid electrolyte battery has the following problems. The first point is that the solid electrolyte does not permeate into the powder combination like the electrolytic solution, so that it is not possible to obtain sufficient electrochemical contact between the individual powders. not have absolutely uneven inevitable for using a cathode active material, it is that causing a short circuit through the solid electrolyte.

【0004】一方、集電体上に正極活物質の膜を直接形
成する方法は、正極活物質の滑らかで緻密な膜が形成で
きるためこれらの難点も克服でき、また薄型化も容易で
ある。しかし、蒸着やスパツタリングによる方法は大掛
かりな設備を必要とするため、工業的には極めて困難で
ある。このため、リチウム固体電解質電池の正極として
は容易に作製でき、かつ滑らかな正極活物質単独の緻密
な膜がどうしても必要となる。この点、V25、W
3、MoO3などのキセロゲル膜は、それぞれのゾルを
塗布して乾燥するだけで容易に滑らかで緻密な正極活物
質層となるため、リチウム固体電解質電池に極めて好適
な物質である。
On the other hand, the method of directly forming the film of the positive electrode active material on the current collector can overcome these difficulties and can be easily thinned because a smooth and dense film of the positive electrode active material can be formed. However, the method using vapor deposition or spattering requires large-scale equipment and is industrially extremely difficult. Therefore, as a positive electrode of a lithium solid electrolyte battery, a dense film that can be easily produced and is smooth and contains only a positive electrode active material is absolutely necessary. This point, V 2 O 5 , W
A xerogel film such as O 3 or MoO 3 is a substance that is extremely suitable for a lithium solid electrolyte battery because it can be easily formed into a smooth and dense positive electrode active material layer simply by coating and drying each sol.

【0005】V25キセロゲルを有機溶媒系のリチウム
電池に使用した例が、特開昭62−186466号に記
されている。しかし、これはV25キセロゲルを膜とし
て用いていないし、固体電解質で使用できることは具体
的に示されていない。一方、BAHIA ARAKIら
による報告(Solid State Ionics 9 & 10,1983)
には、V25キセロゲルを膜として用いた例が報告され
ている。また、特開平2−207454号にはV25
セロゲルを主体とした膜を固体電解質電池に用いてその
有用性が示されている。しかし、これらの正極活物質膜
ではまだ充放電の寿命が短く、実用的には不十分であ
る。これは主としてV25キセロゲル膜が、充放電の繰
り返しにより集電体より剥離することに起因している。
An example of using V 2 O 5 xerogel in an organic solvent type lithium battery is described in JP-A-62-186466. However, it does not use V 2 O 5 xerogel as a membrane and it has not been specifically shown that it can be used in a solid electrolyte. Meanwhile, a report by BAHIA ARAKI et al. (Solid State Ionics 9 & 10, 1983)
Reported an example using V 2 O 5 xerogel as a film. Further, JP-A-2-207454 discloses the usefulness of a membrane mainly composed of V 2 O 5 xerogel in a solid electrolyte battery. However, these positive electrode active material films have a short charge / discharge life, which is not practically sufficient. This is mainly due to the fact that the V 2 O 5 xerogel film peels off from the current collector due to repeated charging and discharging.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、上記
のリチウム固体電解質電池に最適の正極活物質を用いて
高性能かつ長寿命のリチウム固体電解質電池を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high performance and long-life lithium solid electrolyte battery using the positive electrode active material most suitable for the above lithium solid electrolyte battery.

【0007】[0007]

【課題を解決するための手段】本発明は負極活物質層
と、集電体上に形成された多層構造ないしは傾斜機能構
造を成す正極活物質層とが、固体電解質層を介して積層
されてなる固体電解質電池において、充電状態で電池を
組み立てる時、前記正極活物質層の集電体に接する側
が、固体電解質に接する側より還元された正極活物質で
あることを特徴とするリチウム固体電解質電池及びその
製造方法に係る。
According to the present invention, a negative electrode active material layer and a positive electrode active material layer having a multilayer structure or a functionally gradient structure formed on a current collector are laminated via a solid electrolyte layer. In the solid electrolyte battery, the lithium solid electrolyte battery is characterized in that, when the battery is assembled in a charged state, the side of the positive electrode active material layer in contact with the current collector is the positive electrode active material reduced from the side in contact with the solid electrolyte. And its manufacturing method.

【0008】以下に本発明について具体的に説明する。The present invention will be specifically described below.

【0009】正極活物質 本発明の正極活物質層の集電体に接する側が、固体電解
質に接する側より還元された正極活物質膜には種々のも
のが使用できる。またその製法も、蒸着法、CVD法、
スパツタリング法などを適用することも可能である。し
かし、これらの方法は大掛かりな装置と膜形成に長時間
を要するため極めて不利であり、五酸化バナジウム、三
酸化タングステン、三酸化モリブデン等のキセロゲルが
製造の容易さから考えて有利である。特に五酸化バナジ
ウムキセロゲル膜は、五酸化バナジウムのゾルを集電体
に塗布して乾燥するだけで容易に得られ、高い電位と大
きな比容量が得られるため好適に用いることができる。
そして、本発明の正極活物質層の集電体に接する側が、
固体電解質に接する側より還元された正極活物質膜も後
述する方法で容易に作製できる。
Positive Electrode Active Material Various materials can be used for the positive electrode active material film in which the side of the positive electrode active material layer of the present invention in contact with the current collector is reduced from the side in contact with the solid electrolyte. Moreover, the manufacturing method is also a vapor deposition method, a CVD method,
It is also possible to apply the spattering method or the like. However, these methods are extremely disadvantageous because they require a large-scale apparatus and a long time for film formation, and xerogels such as vanadium pentoxide, tungsten trioxide, molybdenum trioxide are advantageous in view of their ease of production. In particular, a vanadium pentoxide xerogel film can be easily obtained by simply applying a vanadium pentoxide sol to a current collector and drying it, and a high potential and a large specific capacity can be obtained, so that it can be preferably used.
And, the side of the positive electrode active material layer of the present invention in contact with the current collector is
The positive electrode active material film reduced from the side in contact with the solid electrolyte can also be easily produced by the method described below.

【0010】五酸化バナジウムのゾルの作製は、五酸化
バナジウムの非晶質物を水に溶解することにより重合反
応でゾルを生成させる方法や、イオン交換樹脂による方
法、アルコキシドを加水分解する方法など現在知られて
いるどの方法を用いてもかまわない。さらに、必要なら
ば電気伝導度や膜の機械的性質の改良、比容量や電位の
調整などのため種々の酸化物ないしは水酸化物を添加す
ることもできる。
The production of vanadium pentoxide sol is currently carried out by dissolving an amorphous substance of vanadium pentoxide in water to form a sol by a polymerization reaction, a method using an ion exchange resin, a method of hydrolyzing an alkoxide, etc. Any known method may be used. Further, if necessary, various oxides or hydroxides may be added to improve the electrical conductivity and mechanical properties of the film, adjust the specific capacity and the potential, and the like.

【0011】添加できる酸化物の例としては、酸化リチ
ウム、酸化マグネシウム、酸化アルミニウム、酸化カル
シウム、酸化亜鉛、酸化鉄、二酸化ゲルマニウム、二酸
化ケイ素、二酸化チタン、三酸化ホウ素、三酸化モリブ
デン、三酸化タングステン、五酸化二ニオブ、二酸化テ
ルル、三酸化二ビスマス、五酸化二クロム、二酸化ジル
コニウム、酸化銀などが挙げられる。これらの酸化物の
添加に際しては、五酸化バナジウム等のゾルに、シリカ
ゲル、アルミナゾル、三酸化タングステンゾル等の酸化
物ゾルとして直接添加するか、五酸化バナジウムと他の
酸化物とのアモルフアス複合酸化物をあらかじめ作製し
てから、それを水に溶解して作製すればよい。またアル
コラートの加水分解によるいわゆるゾルゲル法でも添加
できる。
Examples of oxides that can be added are lithium oxide, magnesium oxide, aluminum oxide, calcium oxide, zinc oxide, iron oxide, germanium dioxide, silicon dioxide, titanium dioxide, boron trioxide, molybdenum trioxide, tungsten trioxide. , Niobium pentoxide, tellurium dioxide, dibismuth trioxide, dichromium pentoxide, zirconium dioxide, silver oxide and the like. When adding these oxides, to the sol such as vanadium pentoxide, directly add as an oxide sol such as silica gel, alumina sol, tungsten trioxide sol, or an amorphous composite oxide of vanadium pentoxide and other oxides. May be prepared in advance and then dissolved in water. It can also be added by a so-called sol-gel method by hydrolysis of alcoholate.

【0012】水酸化物の例としては、水酸化リチウム、
水酸化バリウム、水酸化ゲルマニウムなどが挙げられ
る。これらの水酸化物の添加方法も種々の方法が考えら
れるが、五酸化バナジウム等のゾルに直接添加する方法
が簡便で良い。
Examples of hydroxides include lithium hydroxide,
Examples include barium hydroxide and germanium hydroxide. Although various methods can be considered for adding these hydroxides, the method of directly adding to the sol such as vanadium pentoxide is convenient and convenient.

【0013】これらのキセロゲルを使用して本発明の集
電体上に形成された多層構造ないしは傾斜機能構造を成
す正極活物質層を製造する方法は、例えば正極活物質の
ゾル、ゲルあるいは懸濁液に該正極活物質を還元する物
質を添加した溶液を集電体に塗布、乾燥する工程を1回
以上施し、さらにその上に、還元性の物質を添加してい
ない正極活物質のゾル、ゲルあるいは懸濁液を塗布、乾
燥する工程を経た後、添加した還元性の物質と正極活物
質が反応する温度より高い温度で加熱処理を行うことに
よつて行われる。
A method for producing a positive electrode active material layer having a multilayer structure or a functionally gradient structure formed on the current collector of the present invention using these xerogel is, for example, sol, gel or suspension of the positive electrode active material. A step in which a solution obtained by adding a substance that reduces the positive electrode active material to a liquid is applied to a current collector and dried at least once, and further, a sol of the positive electrode active material to which a reducing substance is not added, After applying a gel or a suspension and drying, a heat treatment is performed at a temperature higher than the temperature at which the added reducing substance reacts with the positive electrode active material.

【0014】ここで言う正極活物質を還元する物質とし
ては、加熱により正極活物質と反応する物であれば特に
限定されないが、例えば、ポリエチレングリコール、ポ
リビニルアルコール、メチルセルロース等の水溶性高分
子化合物、非イオン性あるいはイオン性界面活性剤、多
価アルコール類、アミン類、糖類などが好適に用いられ
る。また、添加量は還元の程度に応じて調整すれば良
い。
The substance for reducing the positive electrode active material referred to here is not particularly limited as long as it reacts with the positive electrode active material by heating, and for example, a water-soluble polymer compound such as polyethylene glycol, polyvinyl alcohol or methyl cellulose, Nonionic or ionic surfactants, polyhydric alcohols, amines, sugars and the like are preferably used. Further, the addition amount may be adjusted according to the degree of reduction.

【0015】これらの溶液を集電体に塗布、乾燥する工
程は、少なくとも1回は必須であり、必要に応じて2回
以上行つても良い。この時には、還元の程度を集電体の
側より少なくするため、還元する物質の添加量を第一層
より徐々に少なくすることが望ましい。
The step of applying and drying these solutions on the current collector is essential at least once, and may be performed twice or more as necessary. At this time, in order to reduce the degree of reduction less than that on the side of the current collector, it is desirable to gradually reduce the amount of the substance to be reduced added to the first layer.

【0016】ここで、正極活物質の還元の程度は、特に
限定されないが、各電池系での正極が放電された時に到
達する還元の程度以内であることが一応の目安となる。
また、還元の程度を膜の厚さ方向に傾斜機能構造を持た
せて徐々に変化させることが望ましい。そのためには第
二層以後の各層の乾燥時間を長くして乾燥中に成分の相
互の拡散を行わしめれば良い。しかし、この傾斜機能材
料的な組成の変化は必ずしも必要ではなく、明確な組成
変化でも何層かに分けて膜を形成し、組成を徐々に変化
させれば問題ない。
Here, the degree of reduction of the positive electrode active material is not particularly limited, but it is a tentative guide that it is within the degree of reduction reached when the positive electrode in each battery system is discharged.
Further, it is desirable to gradually change the degree of reduction by providing a functionally gradient structure in the film thickness direction. For that purpose, the drying time of each layer after the second layer may be lengthened to allow mutual diffusion of the components during the drying. However, this compositional change of the functionally gradient material is not always necessary, and even a clear compositional change does not pose a problem as long as the film is divided into several layers and the composition is gradually changed.

【0017】負極活物質 本発明で用いられる負極活物質としても種々の物が使用
できるが、リチウム及びその合金、あるいはリチウムイ
オンをインターカレートないしは吸着させた炭素材料、
電気化学的にリチウムイオンを放出できる酸化物などを
好適に用いることができる。
Negative Electrode Active Material Although various materials can be used as the negative electrode active material in the present invention, lithium and its alloys, or carbon materials in which lithium ions are intercalated or adsorbed,
An oxide or the like that can electrochemically release lithium ions can be preferably used.

【0018】固体電解質 固体電解質としてはメトキシオリゴエチレンオキシポリ
ホスフアゼン、ポリエチレンオキシド、ポリメタクリル
酸オリゴアルキレンオキシドなどの高分子化合物にLi
ClO4、CF3SO3Li、LiBF4、LiPF6等を溶解
した高分子固体電解質の他に、LiVO4−Li4SiO4
固溶体などの無機固体電解質等が用いられるが、柔軟性
と製造の容易さから高分子固体電解質がより好適に用い
られる。
Solid Electrolyte As the solid electrolyte, a high molecular compound such as methoxyoligoethyleneoxypolyphosphazene, polyethylene oxide, polymethacrylic acid oligoalkylene oxide, etc. is used.
In addition to polymer solid electrolytes in which ClO 4 , CF 3 SO 3 Li, LiBF 4 , LiPF 6 and the like are dissolved, inorganic solid electrolytes such as LiVO 4 -Li 4 SiO 4 based solid solutions are used, but flexibility and manufacturing A polymer solid electrolyte is more preferably used because of its ease of use.

【0019】集電体 正極活物質層を形成するための集電体は、正極活物質と
強固に接合する必要があるため、表面はできるだけ細か
な凹凸が多い方がアンカー効果が現れやすい。この目的
のために特に電着金属箔が適している。また、材質的に
は正極活物質との界面で電気化学的に安定であり、かつ
適度な電子伝導性が要求される。このような例として、
アルミニウム、ニツケル、ステンレス、鉄などの金属や
ITO膜などの酸化物導電体が挙げられる。
Current Collector Since the current collector for forming the positive electrode active material layer needs to be firmly bonded to the positive electrode active material, the anchor effect tends to appear when the surface has as many fine irregularities as possible. Electrodeposited metal foils are particularly suitable for this purpose. Further, in terms of material, it is required to be electrochemically stable at the interface with the positive electrode active material and have appropriate electron conductivity. As an example of this,
Examples thereof include metals such as aluminum, nickel, stainless steel and iron, and oxide conductors such as ITO film.

【0020】また、本発明に特に規定はしていないが、
通常正極活剤に添加されるグラフアイト、アセチレンブ
ラツク等の導電助剤、フツ素デイスパージヨン等の結着
剤等を必要に応じて少量添加することもできる。
Although not specifically defined in the present invention,
If necessary, a small amount of a graphite auxiliary, a conductive auxiliary agent such as acetylene black or the like, a binder such as fluorine dispersion, or the like, which is usually added to the positive electrode activator, may be added.

【0021】作用 通常リチウム電池は放電の過程において、リチウムイオ
ンが、正極層に侵入し正極活物質が電気化学的に還元さ
れる。本発明の固体電解質電池でも、固体電解質に接し
た側の正極活物質層では通常の量のイオンが侵入し還元
が進むが、集電体側に接した正極活物質は既に部分的に
還元されているためイオンの侵入量は少なく、体積変化
も小さい。このため集電体と正極活物質との剥離も極め
て少ない。
Action In a lithium battery, in the process of discharging, lithium ions generally penetrate into the positive electrode layer to electrochemically reduce the positive electrode active material. Also in the solid electrolyte battery of the present invention, in the positive electrode active material layer on the side in contact with the solid electrolyte, the normal amount of ions invades and the reduction proceeds, but the positive electrode active material in contact with the current collector side has already been partially reduced. Therefore, the ion penetration amount is small and the volume change is small. Therefore, peeling between the current collector and the positive electrode active material is extremely small.

【0022】つまり正極としての作用は固体電解質に接
した側の部分で担わせ、集電体側はイオンの侵入量を抑
制して体積変化を少なくし、集電体と正極活物質との放
電による歪みを吸収して剥離を防止する役目を担わせる
ことにより前記課題の克服を達成することができる。
That is, the function as the positive electrode is carried out by the portion in contact with the solid electrolyte, and the current collector side suppresses the amount of ions invading to reduce the volume change, and is caused by the discharge between the current collector and the positive electrode active material. By overcoming the above-mentioned problems by absorbing the strain and preventing peeling.

【0023】また、適当な正極活物質を還元する物質を
添加して塗布、乾燥、熱処理することにより、極めて容
易に本発明の部分的に還元した部分を持つ正極活物質膜
を作成できる。
Further, a positive electrode active material film of the present invention having a partially reduced portion can be prepared very easily by adding an appropriate substance for reducing a positive electrode active material, coating, drying and heat treatment.

【0024】以下、図面により本発明の固体電解質電池
をリチウム固体電解質電池に適用した例について詳しく
説明する。
Hereinafter, an example in which the solid electrolyte battery of the present invention is applied to a lithium solid electrolyte battery will be described in detail with reference to the drawings.

【0025】図1は、本発明のリチウム固体電解質電池
の概略断面図である。図1において、1は部分的に還元
された正極活物質層、2は正極活物質層、3は高分子固
体電解質層、4は負極活物質層、5,6は集電体、7は
ホツトメルト接着剤である。
FIG. 1 is a schematic sectional view of a lithium solid electrolyte battery of the present invention. In FIG. 1, 1 is a partially reduced positive electrode active material layer, 2 is a positive electrode active material layer, 3 is a solid polymer electrolyte layer, 4 is a negative electrode active material layer, 5 and 6 are current collectors, and 7 is hot melt. It is an adhesive.

【0026】正極活物質層2は、五酸化バナジウムキセ
ロゲル膜から形成されており、部分的に還元された五酸
化バナジウムキセロゲル膜1と接している。そして、そ
の界面は厚さ方向に傾斜機能材料のように組成を徐々に
変化させたものでも良い。これらの正極活物質層は、正
極集電体6の表面6a上に外周端面6bを残すように形
成されている。
The positive electrode active material layer 2 is formed of a vanadium pentoxide xerogel film and is in contact with the partially reduced vanadium pentoxide xerogel film 1. The interface may be one whose composition is gradually changed in the thickness direction like a functionally gradient material. These positive electrode active material layers are formed so as to leave the outer peripheral end surface 6b on the surface 6a of the positive electrode current collector 6.

【0027】負極活物質層4は金属リチウム箔により構
成されており、負極集電体5の表面5a上に外周端面5
bを残すように配置されている。
The negative electrode active material layer 4 is composed of metallic lithium foil, and the outer peripheral end surface 5 is formed on the surface 5a of the negative electrode current collector 5.
It is arranged so that b is left.

【0028】負極集電体5、正極集電体6はニツケル等
により形成されている金属箔であり、共に同じ寸法を有
している。両集電体5,6は、それぞれ電池の外装ケー
スの一部を構成し、且つ端子の機能を果たしている。
The negative electrode current collector 5 and the positive electrode current collector 6 are metal foils made of nickel or the like and have the same dimensions. Both current collectors 5 and 6 respectively form a part of the outer case of the battery and also function as terminals.

【0029】ホツトメルト7は加熱されると表面側が溶
融して接着性を示す枠部材であり、ポリオレフイン系樹
脂等から成つている。そして、このホツトメルト7は集
電体5,6の外周端面5b,6bに接続されて電池が組
み立てられている。
The hot melt 7 is a frame member which exhibits adhesiveness by melting on the surface side when heated, and is made of polyolefin resin or the like. The hot melt 7 is connected to the outer peripheral end surfaces 5b and 6b of the current collectors 5 and 6 to assemble the battery.

【0030】高分子固体電解質3は、具体的にはメトキ
シオリゴエチレンオキシポリホスフアゼン等からなる高
分子化合物に過塩素酸リチウム等を溶解したものであ
る。
The polymer solid electrolyte 3 is specifically a polymer compound composed of methoxyoligoethyleneoxypolyphosphazene dissolved in lithium perchlorate or the like.

【0031】[0031]

【実施例】以下、実施例により本発明について説明す
る。
The present invention will be described below with reference to examples.

【0032】実施例1 アモルフアスV25 3重量%、ポリエチレングリコー
ル(PEG)200 0.1重量%を含むゾルを厚み20μmの
ニツケル箔からなる正極集電体の表面にデイスペンサー
等で塗布した後、これを乾燥させて厚さ約2μmの膜を
正極集電体上に作つた。続いてこの上に、アモルフアス
25 3重量%、PEG200 0.05重量%含むゾルを塗
布して乾燥させ、厚さ約2μmの膜を作つた。更に続い
てこの膜の上にアモルフアスV25 3重量%を含むゾ
ルを塗布した後、これを乾燥して厚さ約10μmの正極活
物質層を形成した。これを160℃で約1時間加熱し、二
層からなる部分的に還元されたV25キセロゲル膜と、
還元されていないV25キセロゲル膜の合計三層の積層
膜を形成した。なお各層の乾燥は比較的速やか(約10
分)に行い、界面の厚さ方向の成分組成の変化は比較的
急峻になるようにした。
Example 1 A sol containing 3% by weight of amorphous V 2 O 5 and 0.1% by weight of polyethylene glycol (PEG) 200 was applied to the surface of a positive electrode current collector made of nickel foil having a thickness of 20 μm with a dispenser or the like. This was dried to form a film having a thickness of about 2 μm on the positive electrode current collector. Subsequently, a sol containing 3% by weight of amorphous V 2 O 5 and 0.05% by weight of PEG 200 was applied onto this and dried to form a film having a thickness of about 2 μm. Further, subsequently, a sol containing 3% by weight of amorphous V 2 O 5 was applied on the film, and then dried to form a positive electrode active material layer having a thickness of about 10 μm. This was heated at 160 ° C. for about 1 hour to form a partially reduced V 2 O 5 xerogel film consisting of two layers,
A total of three layers of unreduced V 2 O 5 xerogel film were formed. The drying of each layer is relatively quick (about 10
The change in the component composition in the thickness direction of the interface is made relatively steep.

【0033】固体電解質層の形成のため平均分子量150
万のメトキシオリゴエチレンオキシポリホスフアゼン
(MEP)20重量%と、このMEPに対して8重量%の
過塩素酸リチウムを含んだ1,2−ジメトキシエタン
(DME)の固体電解質溶液を作製した。そしてこの溶
液を正極活物質層2及び厚さ40μmのLi箔からなる負極
活物質層4の上に塗布した後、DMEを揮発し、各々厚
さ50μmの高分子固体電解質層3を形成した。次に正極
集電体の外周端部6bの上にホツトメルト接着剤7を載
置してから、片面に高分子固体電解質層を形成した負極
活物質層の固体電解質側と、正極活物質層上の高分子固
体電解質層が接するように密着させた。続いて負極活物
質層とホツトメルト接着剤を覆うように負極集電体5を
載置し、加熱によりホツトメルト7を負極集電体5b、
正極集電体6bに完全に接着させて固体電解質電池を完
成させた。
Average molecular weight of 150 for forming solid electrolyte layer
A solid electrolyte solution of 1,2-dimethoxyethane (DME) containing 20% by weight of methoxyoligoethyleneoxypolyphosphazene (MEP) and 8% by weight of this MEP was prepared. Then, this solution was applied onto the positive electrode active material layer 2 and the negative electrode active material layer 4 composed of a Li foil having a thickness of 40 μm, and then DME was volatilized to form a polymer solid electrolyte layer 3 having a thickness of 50 μm. Next, the hot melt adhesive 7 is placed on the outer peripheral end portion 6b of the positive electrode current collector, and then the solid electrolyte side of the negative electrode active material layer having the polymer solid electrolyte layer formed on one surface and the positive electrode active material layer The polymer solid electrolyte layer of was contacted with. Then, the negative electrode current collector 5 is placed so as to cover the negative electrode active material layer and the hot melt adhesive, and the hot melt 7 is heated to dispose the negative electrode current collector 5b.
The solid electrolyte battery was completed by completely adhering it to the positive electrode current collector 6b.

【0034】実施例2〜6 正極活物質を還元する物質として表1記載の還元性物質
を用いた以外は実施例1と同様の方法で5種類のリチウ
ム固体電解質電池を作製した。
Examples 2 to 6 Five kinds of lithium solid electrolyte batteries were produced in the same manner as in Example 1 except that the reducing substances shown in Table 1 were used as the substance for reducing the positive electrode active material.

【0035】[0035]

【表1】 [Table 1]

【0036】実施例7〜9 五酸化バナジウムゾルに表2記載の他の酸化物や水酸化
物を添加した以外は実施例1と同様の方法で3種類のリ
チウム固体電解質電池を作製した。実施例7,8は、各
酸化物をアモルフアス化の時点で添加したものを溶解し
て使用し、実施例9はV25ゾルに水酸化物水溶液を添
加したものを使用した。
Examples 7 to 9 Three kinds of lithium solid electrolyte batteries were prepared in the same manner as in Example 1 except that the other oxides and hydroxides shown in Table 2 were added to the vanadium pentoxide sol. In Examples 7 and 8, the oxides added at the time of amorphization were dissolved and used, and in Example 9, the V 2 O 5 sol to which an aqueous hydroxide solution was added was used.

【0037】比較例1〜3 還元性物質を添加しない五酸化バナジウムを主成分とす
るキセロゲル単独層を用いた以外は実施例1と同様の方
法で3種類のリチウム固体電解質電池を作製した。
Comparative Examples 1 to 3 Three types of lithium solid electrolyte batteries were prepared in the same manner as in Example 1 except that a single layer of xerogel containing vanadium pentoxide as the main component, to which no reducing substance was added, was used.

【0038】[0038]

【表2】 [Table 2]

【0039】これらの作製した電池を用いて次の条件で
充放電試験を行つた。 放電;50μA/cm2の電流密度で1Vまで放電 充電;50μA/cm2の電流密度で4.2Vまで充電
A charging / discharging test was conducted under the following conditions using the batteries thus produced. Discharge; charged to 4.2V at a current density of 50 .mu.A / cm 2; at a current density of 50 .mu.A / cm 2 discharging charged to 1V

【0040】表3に充放電試験の結果を示す。数値は容
量維持率=初回容量を100とした時の各サイクルでの容
量の比率を示す。表に示したように本発明の電池は充放
電の繰り返しによつても容量の低下が小さく、150サイ
クル以上に亘つて安定な性能を示す。比較例で示した従
来の電池と比較すればその差は歴然としている。
Table 3 shows the results of the charge / discharge test. The numerical value shows the capacity retention ratio = capacity ratio in each cycle when the initial capacity is 100. As shown in the table, the battery of the present invention shows a small decrease in capacity even after repeated charging and discharging, and exhibits stable performance over 150 cycles. The difference is clear when compared with the conventional battery shown in the comparative example.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【発明の効果】本発明によれば、小型、軽量、薄型で且
つ高性能、高信頼性のリチウム固体電解質電池が得られ
る。しかも、充放電によつても容量の低減が長期間起こ
らない長寿命のリチウム固体電解質電池であるため電気
機器等にとつて極めて有益である。
According to the present invention, a small, lightweight, thin, high-performance, highly reliable lithium solid electrolyte battery can be obtained. Moreover, since the lithium solid electrolyte battery has a long life in which the capacity does not decrease for a long time even by charging and discharging, it is extremely useful for electric equipment and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のリチウム固体電解質電池の概略断面図
である。
FIG. 1 is a schematic cross-sectional view of a lithium solid electrolyte battery of an example.

【符号の説明】[Explanation of symbols]

1 部分的に還元された正極活物質層 2 正極活物質層 3 高分子固体電解質層 4 負極活物質層 5 負極集電体 5a 負極集電体5の表面 5b 負極集電体5の外周端面 6 正極集電体 6a 正極集電体6の表面 6b 正極集電体6の外周端面 7 ホツトメルト接着剤 1 Partially Reduced Positive Electrode Active Material Layer 2 Positive Electrode Active Material Layer 3 Polymer Solid Electrolyte Layer 4 Negative Electrode Active Material Layer 5 Negative Electrode Current Collector 5a Surface of Negative Electrode Current Collector 5b Outer Perimeter End Face of Negative Current Collector 5 Positive electrode current collector 6a Surface of positive electrode current collector 6 6b Peripheral end face of positive electrode current collector 6 Hot melt adhesive

フロントページの続き (72)発明者 弘中 健介 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 犬伏 昭嘉 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 谷口 正俊 大阪府大阪市中央区大手通3丁目2番27号 大塚化学株式会社内Front page continued (72) Inventor Kensuke Hironaka 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo Shin-Kindo Electric Co., Ltd. (72) Inventor Akio Komaki 2-1-1, Nishishinjuku, Shinjuku-ku, Tokyo New Kamido Electric Co., Ltd. (72) Inventor Weibun Nakano 463, Kagasuno, Kawauchi-cho, Tokushima City, Tokushima Prefecture Otsuka Chemical Co., Ltd., Tokushima Laboratory (72) Inventor Akika Inubushi, 463, Kagasuno, Kawauchi-cho, Tokushima Prefecture Otsuka Chemical Co., Ltd. Tokushima Laboratory (72) Inventor Masatoshi Taniguchi 3-2 27 Otedori, Chuo-ku, Osaka City, Osaka Prefecture Otsuka Chemical Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 負極活物質層と、集電体上に形成された
多層構造ないしは傾斜機能構造を成す正極活物質層と
が、固体電解質層を介して積層されてなる固体電解質電
池において、充電状態で電池を組み立てる時、前記正極
活物質層の集電体に接する側が、固体電解質に接する側
より還元された正極活物質であることを特徴とするリチ
ウム固体電解質電池。
1. A solid electrolyte battery in which a negative electrode active material layer and a positive electrode active material layer formed on a current collector and having a multilayer structure or a functionally gradient structure are stacked with a solid electrolyte layer interposed between the negative electrode active material layer and the positive electrode active material layer. A lithium solid electrolyte battery, wherein a side of the positive electrode active material layer in contact with the current collector is a positive electrode active material reduced from a side in contact with the solid electrolyte when the battery is assembled in this state.
【請求項2】 正極活物質が、五酸化バナジウムを主体
とした正極活物質である請求項1のリチウム固体電解質
電池。
2. The lithium solid electrolyte battery according to claim 1, wherein the positive electrode active material is a positive electrode active material mainly containing vanadium pentoxide.
【請求項3】 負極活物質層と、集電体上に形成された
多層構造ないしは傾斜機能構造を成す正極活物質層と
が、固体電解質層を介して積層されてなる固体電解質電
池において、前記正極活物質層を集電体上に形成するに
あたり、正極活物質のゾル、ゲルあるいは懸濁液に該正
極活物質を還元する物質を添加した溶液を集電体に塗
布、乾燥する工程を1回以上施し、さらにその上に正極
活物質のゾル、ゲルあるいは懸濁液を塗布、乾燥する工
程を経た後、添加した還元性の物質と正極活物質が反応
する温度より高い温度で加熱処理を行うことを特徴とす
る請求項1のリチウム固体電解質電池の製造方法。
3. A solid electrolyte battery in which a negative electrode active material layer and a positive electrode active material layer formed on a current collector and having a multilayer structure or a gradient functional structure are stacked with a solid electrolyte layer interposed therebetween, In forming the positive electrode active material layer on the current collector, a step of applying a solution obtained by adding a substance for reducing the positive electrode active material to a sol, gel or suspension of the positive electrode active material to the current collector and drying it After more than once, after applying the sol, gel or suspension of the positive electrode active material on it and drying it, heat treatment at a temperature higher than the temperature at which the added reducing substance and the positive electrode active material react. The method for producing a lithium solid electrolyte battery according to claim 1, which is performed.
【請求項4】 正極活物質が、五酸化バナジウムを主体
とした正極活物質である請求項3のリチウム固体電解質
電池の製造方法。
4. The method for producing a lithium solid electrolyte battery according to claim 3, wherein the positive electrode active material is a positive electrode active material mainly containing vanadium pentoxide.
JP05100466A 1993-04-02 1993-04-02 Lithium solid electrolyte battery Expired - Fee Related JP3103703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05100466A JP3103703B2 (en) 1993-04-02 1993-04-02 Lithium solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05100466A JP3103703B2 (en) 1993-04-02 1993-04-02 Lithium solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPH06295740A true JPH06295740A (en) 1994-10-21
JP3103703B2 JP3103703B2 (en) 2000-10-30

Family

ID=14274691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05100466A Expired - Fee Related JP3103703B2 (en) 1993-04-02 1993-04-02 Lithium solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP3103703B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203541A (en) * 2000-12-14 2002-07-19 Korea Electronics Telecommun Organic-inorganic complex oxide for positive electrode of lithium secondary battery and its manufacturing method
WO2009069521A1 (en) * 2007-11-26 2009-06-04 Namics Corporation Lithium ion rechargeable battery and process for rpoducing the rechargeable battery
JP2011070788A (en) * 2009-09-24 2011-04-07 Dainippon Screen Mfg Co Ltd Method of manufacturing all-solid battery
JP2011198596A (en) * 2010-03-19 2011-10-06 Dainippon Screen Mfg Co Ltd Manufacturing method of all solid battery
WO2013011568A1 (en) * 2011-07-19 2013-01-24 株式会社日立製作所 Electrode for ion secondary batteries, method for producing electrode for ion secondary batteries, lithium ion secondary battery, and magnesium ion secondary battery
US8920522B2 (en) 2009-09-24 2014-12-30 Dainippon Screen Mfg. Co., Ltd. Battery manufacturing method and battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727804U (en) * 1993-10-26 1995-05-23 株式会社蔵王工務店 Dowel drilling jig

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203541A (en) * 2000-12-14 2002-07-19 Korea Electronics Telecommun Organic-inorganic complex oxide for positive electrode of lithium secondary battery and its manufacturing method
WO2009069521A1 (en) * 2007-11-26 2009-06-04 Namics Corporation Lithium ion rechargeable battery and process for rpoducing the rechargeable battery
JP2011070788A (en) * 2009-09-24 2011-04-07 Dainippon Screen Mfg Co Ltd Method of manufacturing all-solid battery
US8920522B2 (en) 2009-09-24 2014-12-30 Dainippon Screen Mfg. Co., Ltd. Battery manufacturing method and battery
JP2011198596A (en) * 2010-03-19 2011-10-06 Dainippon Screen Mfg Co Ltd Manufacturing method of all solid battery
WO2013011568A1 (en) * 2011-07-19 2013-01-24 株式会社日立製作所 Electrode for ion secondary batteries, method for producing electrode for ion secondary batteries, lithium ion secondary battery, and magnesium ion secondary battery
JPWO2013011568A1 (en) * 2011-07-19 2015-02-23 株式会社日立製作所 Electrode for ion secondary battery, method for producing electrode for ion secondary battery, lithium ion secondary battery, and magnesium ion secondary battery

Also Published As

Publication number Publication date
JP3103703B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
JP4777593B2 (en) Method for producing lithium ion secondary battery
JP4038699B2 (en) Lithium ion battery
WO2014058684A2 (en) Solid-state battery separators and methods of fabrication
KR20140010057A (en) Electrode foil, current collector, electrode, and energy storage element using same
JP4575487B2 (en) Lithium ion secondary battery and manufacturing method thereof
CN105470576A (en) High voltage lithium battery cell and preparation method therefor, and lithium ion battery
JP6127528B2 (en) Electrode, all-solid-state battery, and manufacturing method thereof
CN108232320A (en) The preparation method and solid-State Thin Film Li-Ion Batteries of solid-State Thin Film Li-Ion Batteries
WO2020105439A1 (en) Lithium secondary battery and manufacturing method thereof
JP2018181702A (en) Method for manufacturing all-solid lithium ion secondary battery
EP3327837A1 (en) Li-ion based electrochemical energy storage cell
CN112397722B (en) Composite base material, preparation method of composite base material, battery and electric vehicle
CN109216781A (en) Fluoride shuttle secondary cell
CN103855421B (en) Self-charging film lithium ion battery
WO2014170536A1 (en) Method and apparatus for energy storage
JP3103703B2 (en) Lithium solid electrolyte battery
JP2018181706A (en) Method for manufacturing all-solid lithium ion secondary battery
JP2018113220A (en) Method for manufacturing lithium ion secondary battery
JP3115448B2 (en) Lithium solid electrolyte battery
JP6855749B2 (en) Slurries, laminated green sheets, all-solid-state secondary batteries and their manufacturing methods
JP7188224B2 (en) All-solid battery
CN113991054A (en) Lithium-free negative plate for lithium battery and lithium battery
JP5845896B2 (en) Power storage device
JP3692735B2 (en) Current collector for electric double layer capacitor and electric double layer capacitor
JPH11283871A (en) Current collector for electric double layer capacitor and electric double layer capacitor provided with the current collector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees