JPH06293715A - Method for aminating and cyanating aromatic compound - Google Patents

Method for aminating and cyanating aromatic compound

Info

Publication number
JPH06293715A
JPH06293715A JP5077916A JP7791693A JPH06293715A JP H06293715 A JPH06293715 A JP H06293715A JP 5077916 A JP5077916 A JP 5077916A JP 7791693 A JP7791693 A JP 7791693A JP H06293715 A JPH06293715 A JP H06293715A
Authority
JP
Japan
Prior art keywords
cyanation
reaction
ammonia
amination
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5077916A
Other languages
Japanese (ja)
Inventor
Yasushi Hara
靖 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP5077916A priority Critical patent/JPH06293715A/en
Publication of JPH06293715A publication Critical patent/JPH06293715A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a method for directly and selectively aminating and/or cyanating an aromatic ring. CONSTITUTION:An aromatic compound is aminated and/or cyanated at 200-500 deg.C temperature in the presence of ammonia by using a catalyst supporting a group VIII element of the periodic table on a carrier. The selectivity for the amination and cyanation varies with the kind of the group VIII element. Co and Fe are suitable for the amination and Pd and Rh are suitable for the cyanation. Ni, Ru, Ir and Pt are suitable for the simultaneous progress of the amination and cyanation. A compound of an alkaline metal, an alkaline earth metal or a rare earth metal can be added to improve the performance of the catalyst. The ratio of the cyanation can be reduced by carrying out the reaction in the presence of water and hydrogen and the ratio of the cyanation can be enhanced by carrying out the reaction in the presence of air and oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は芳香族アミン及び芳香族
ニトリルの製造法に関する。
FIELD OF THE INVENTION The present invention relates to a process for producing aromatic amines and nitriles.

【0002】[0002]

【従来の技術】アニリンに代表される芳香族アミンの製
造法として、ニトロ基の還元による方法、フェノール性
水酸基,ハロゲンのアミノ基への置換による方法などが
知られている。これらの方法は広く実施されているが、
いずれも芳香環についた官能基を変換する必要があるた
め、芳香族アミンを得るまで多段階を要するという問題
点があった。
2. Description of the Related Art As a method for producing an aromatic amine represented by aniline, a method of reducing a nitro group, a method of substituting a phenolic hydroxyl group or a halogen with an amino group are known. Although these methods are widely practiced,
In both cases, it is necessary to convert the functional group attached to the aromatic ring, so that there is a problem that multiple steps are required until an aromatic amine is obtained.

【0003】芳香環を直接アミノ化する方法として、燐
酸塩及び水存在下でアンモニアとベンゼンを反応させる
方法(特開平2−115138号公報)が知られてい
る。この方法ではベンゼンはフェノールとなり、フェノ
ールがアミノ化される。したがって、大量のフェノール
が副生し、アニリンの選択率は低い。
As a method of directly aminating an aromatic ring, a method of reacting ammonia and benzene in the presence of a phosphate and water (Japanese Patent Laid-Open No. 2-115138) is known. In this method, benzene becomes phenol and phenol is aminated. Therefore, a large amount of phenol is produced as a by-product, and the selectivity of aniline is low.

【0004】また、酸化ニッケルなどの還元されやすい
金属酸化物を脱水素剤として使用し、ベンゼンとアンモ
ニアを反応させる方法も知られている(USP3,91
9,155)。この方法は触媒反応ではなく、酸化ニッ
ケルなどの金属酸化物は副生する水素で還元されて金属
になり、活性がなくなる。反応を進めるためには、ニッ
ケル金属を酸化し、酸化ニッケルに再生する操作が必要
となる。
Also known is a method of reacting benzene with ammonia by using a metal oxide such as nickel oxide, which is easily reduced, as a dehydrogenating agent (USP 3,91).
9, 155). This method is not a catalytic reaction, and metal oxides such as nickel oxide are reduced to hydrogen by by-product hydrogen and become inactive. In order to proceed the reaction, it is necessary to oxidize nickel metal and regenerate it into nickel oxide.

【0005】触媒を使用して芳香環をアミノ化する方法
として、黒鉛上にアルカリ金属及び周期表第8族元素の
化合物、例えば酸化物、ハロゲン化物、硫化物を使用す
る方法(特開昭49−52790号公報)が知られてい
る。しかし、この方法は芳香族アミンの選択率が低い。
As a method of aminating an aromatic ring using a catalyst, a method of using a compound of an alkali metal and an element of Group 8 of the periodic table, such as an oxide, a halide or a sulfide, on graphite (Japanese Patent Laid-Open No. Sho 49-49). No. 52,790) is known. However, this method has a low selectivity for aromatic amines.

【0006】さらに還元されたニッケル、鉄及びアスベ
ストを使用して550〜600℃でベンゼンをアミノ化
する方法(Berichte,50,541−6(19
17))が知られているが、反応温度が高すぎるため、
工業的に不利である。
Further, a method of aminating benzene at 550 to 600 ° C. using reduced nickel, iron and asbestos (Berichte, 50, 541-6 (19)
17)) is known, but because the reaction temperature is too high,
It is industrially disadvantageous.

【0007】一方、ベンゾニトリルに代表される芳香族
ニトリルの製造方法として、メチル基のアンモ酸化によ
る方法、カルボキシル基の変換による方法、ハロゲンの
シアノ基への置換反応などが知られているが、直接、芳
香環にシアノ基を導入する方法は知られていない。
On the other hand, as a method for producing an aromatic nitrile represented by benzonitrile, a method by ammoxidation of a methyl group, a method by conversion of a carboxyl group, a substitution reaction of halogen with a cyano group, etc. are known. There is no known method for directly introducing a cyano group into an aromatic ring.

【0008】[0008]

【発明が解決しようとする課題】以上のように、芳香環
にアミノ基及び/又はシアノ基を導入する従来の方法は
問題が多く、直接かつ選択的に、芳香環をアミノ化及び
/又はシアノ化する方法の開発が望まれていた。
As described above, the conventional method for introducing an amino group and / or a cyano group into an aromatic ring has many problems, and the direct and selective amination of the aromatic ring and / or cyano group is involved. It was desired to develop a method to realize this.

【0009】[0009]

【課題を解決するための手段】本発明者は、この現状に
鑑み、芳香族アミン、芳香族ニトリルの製造法について
鋭意検討した結果、芳香族化合物をアンモニア存在下、
周期表第8族元素を担体に担持した触媒の存在下で反応
させると500℃以下の温度で芳香環が直接アミノ化及
び/又はシアノ化されるという新規な事実を見出し、本
発明を完成させるに至った。
In view of this situation, the present inventor has diligently studied a method for producing an aromatic amine or an aromatic nitrile, and as a result,
The present invention has been completed by discovering the novel fact that an aromatic ring is directly aminated and / or cyanated at a temperature of 500 ° C. or lower when the reaction is carried out in the presence of a catalyst in which a Group 8 element of the periodic table is supported. Came to.

【0010】すなわち本発明は、アンモニア存在下、周
期表第8族元素を担体に担持した触媒を使用して、芳香
族化合物をアミノ化及び/又はシアノ化する方法を提供
するものである。
That is, the present invention provides a method for aminating and / or cyanating an aromatic compound by using a catalyst in which a Group 8 element of the periodic table is supported on a carrier in the presence of ammonia.

【0011】以下に本発明をさらに詳細に説明する。The present invention will be described in more detail below.

【0012】本発明の方法では、触媒として担体に担持
した周期表第8族元素を使用する。周期表第8族元素と
は、金属状のFe,Co,Ni,Ru,Rh,Pd,O
s,Ir,Ptをいう。同じ第8族元素でも、元素の種
類によってアミノ化とシアノ化の選択率が異なる。
In the method of the present invention, a Group 8 element of the periodic table supported on a carrier is used as a catalyst. Group 8 element of the periodic table means metallic Fe, Co, Ni, Ru, Rh, Pd, O.
s, Ir, Pt. Even with the same Group 8 element, the selectivity of amination and cyanation differs depending on the type of element.

【0013】以下にアミノ化、シアノ化に適した元素を
記す。
The elements suitable for amination and cyanation are described below.

【0014】1.アミノ化に適した元素:Co,Fe 2.シアノ化に適した元素:Pd,Rh 3.アミノ化とシアノ化が同時に進行する元素:Ni,
Ru,Ir,Pt 本発明の方法においては、これらの元素を金属状で担体
に担持して使用する。担体に担持することによって、低
温で反応が進行するようになる。使用できる担体を例示
すると、アルミナ、シリカ、チタニア、ジルコニアなど
の金属酸化物、シリカ−アルミナ、シリカ−チタニア、
シリカ−カルシアなどの複合酸化物、ゼオライト、シリ
コンカーバイト、多孔質ガラス、活性炭などがあげられ
る。
1. Elements suitable for amination: Co, Fe 2. Elements suitable for cyanation: Pd, Rh 3. Elements in which amination and cyanation proceed simultaneously: Ni,
Ru, Ir, Pt In the method of the present invention, these elements are used in the form of metal supported on a carrier. By supporting it on a carrier, the reaction proceeds at a low temperature. Examples of carriers that can be used include alumina, silica, titania, metal oxides such as zirconia, silica-alumina, silica-titania,
Examples thereof include complex oxides such as silica-calcia, zeolite, silicon carbide, porous glass and activated carbon.

【0015】周期表第8族元素を担体に担持する方法に
特に制限はないが、あえて例示すると、含浸法、共沈
法、沈着法、混練法、イオン交換法、CVD法などがあ
る。
The method of supporting the Group 8 element of the periodic table on the carrier is not particularly limited, but examples thereof include an impregnation method, a coprecipitation method, a deposition method, a kneading method, an ion exchange method and a CVD method.

【0016】周期表第8族元素を担体に担持した後、第
8族元素が金属状態でない場合はこれを金属状態にまで
還元する必要がある。還元の方法としては、水素、ヒド
ラジン、アンモニア、アルコールなどの還元剤を使用す
るのが一般的である。
After the Group 8 element of the periodic table is supported on the carrier, if the Group 8 element is not in the metallic state, it must be reduced to the metallic state. As a reduction method, it is common to use a reducing agent such as hydrogen, hydrazine, ammonia, or alcohol.

【0017】本発明の方法においては、触媒の性能を向
上させるため、周期表第8族元素にアルカリ金属、アル
カリ土類金属、希土類金属の化合物を添加することもで
きる。また、周期表第8族金属中に窒素、炭素原子が入
っていても差支えない。
In the method of the present invention, in order to improve the performance of the catalyst, a compound of an alkali metal, an alkaline earth metal or a rare earth metal may be added to the Group 8 element of the periodic table. Further, it does not matter if nitrogen or carbon atom is contained in Group 8 metal of the periodic table.

【0018】本発明の方法において使用される原料は芳
香族化合物とアンモニアである。シアノ基は窒素及び炭
素原子からなっているが、窒素源はアンモニアである。
また炭素源については断定できないが、芳香族化合物な
どの有機物であると思われる。
The raw materials used in the process of the present invention are aromatic compounds and ammonia. The cyano group consists of nitrogen and carbon atoms, but the nitrogen source is ammonia.
Although the carbon source cannot be determined, it is considered to be an organic substance such as an aromatic compound.

【0019】芳香族化合物としてはベンゼン、トルエ
ン、キシレン、ナフタレン、アントラセンなどの炭化水
素化合物だけではなく、酸素、窒素などのヘテロ原子を
含んだものも使用できる。
As the aromatic compound, not only a hydrocarbon compound such as benzene, toluene, xylene, naphthalene and anthracene but also a compound containing a hetero atom such as oxygen and nitrogen can be used.

【0020】窒素源としてはアンモニアの代わりに、ア
ミン類を使用することもできる。その際、アミン類に含
まれる炭素を炭素源とすることもできる。
As the nitrogen source, amines can be used instead of ammonia. At that time, carbon contained in the amines can be used as a carbon source.

【0021】芳香族化合物及びアンモニア以外に炭素源
として脂肪族有機化合物を使用することもできる。また
一酸化炭素などの無機物を炭素源とすることもできる。
Besides the aromatic compounds and ammonia, it is also possible to use aliphatic organic compounds as carbon sources. Further, an inorganic substance such as carbon monoxide can be used as the carbon source.

【0022】本発明の方法において、窒素、酸素、空気
などをアンモニアと同時に流してもよい。なお、酸素、
空気などは気体の状態で供給しても良いし、原料の芳香
族化合物に溶解させた状態で供給しても良い。
In the method of the present invention, nitrogen, oxygen, air and the like may be flowed simultaneously with ammonia. Note that oxygen,
Air or the like may be supplied in a gas state or may be supplied in a state of being dissolved in an aromatic compound as a raw material.

【0023】本発明の方法において、水及び水素の存在
はシアノ化を抑制するため、水及び水素存在下で反応さ
せることによって、シアノ化の比を低下させることがで
きる。また、酸素、空気存在下ではシアノ化が促進され
るため、酸素、空気存在下で反応させて、シアノ化の比
率を高めることができる。
In the method of the present invention, the presence of water and hydrogen suppresses cyanation. Therefore, the ratio of cyanation can be lowered by reacting in the presence of water and hydrogen. Further, since cyanation is promoted in the presence of oxygen and air, it is possible to increase the cyanation ratio by reacting in the presence of oxygen and air.

【0024】本発明の方法において、反応温度は200
℃以上500℃以下である。反応温度が前記範囲より低
いと反応速度が遅く、前記範囲より高いと、副反応が多
く起こり、選択率が低下する。特に500℃を越える温
度で反応した場合は、芳香族化合物の分解が起こり、ア
ミノ化、シアノ化よりもメチル化など工業的に価値の低
い反応が生じるし、金属成分の凝集、炭素質の析出のた
め触媒活性も低下するため好ましくない。
In the method of the present invention, the reaction temperature is 200.
The temperature is in the range of ℃ to 500 ℃. When the reaction temperature is lower than the above range, the reaction rate is slow, and when the reaction temperature is higher than the above range, side reactions often occur and the selectivity decreases. In particular, when the reaction is carried out at a temperature higher than 500 ° C., the aromatic compound is decomposed to cause industrially low value reactions such as methylation rather than amination and cyanation, and aggregation of metal components and deposition of carbonaceous matter. Therefore, the catalytic activity also decreases, which is not preferable.

【0025】本発明の方法において、反応は加圧して実
施しても良いし、加圧しなくても良い。
In the method of the present invention, the reaction may or may not be carried out under pressure.

【0026】[0026]

【発明の効果】本発明は芳香環を直接アミノ化及び/又
はシアノ化する方法を提供するものであり、極めて有意
義である。
INDUSTRIAL APPLICABILITY The present invention provides a method for directly aminating and / or cyanating an aromatic ring, and is extremely significant.

【0027】[0027]

【実施例】以下、本発明を実施例にて説明するが、本発
明はこれらに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0028】実施例1〜8 耐熱ガラス製の管状反応器に表1記載の触媒を10g充
填し、窒素及び水素を100ml/分の速度で流しなが
ら、400℃に加熱した。400℃で1時間維持した
後、窒素、水素を止め、アンモニアを110ml/分の
速度で流した。2時間後、ベンゼンを1.2g/分の速
度で供給した。ベンゼン供給開始後1時間目から2時間
目の間の反応液をトラップし、これをガスクロマトグラ
フィーで分析した。結果を表1に示す。なお、触媒の表
記として、例えば1%Feシリカとあるのは、1%のF
eを担持したシリカを意味し、以下、同様に表記する。
Examples 1 to 8 A heat-resistant glass tubular reactor was charged with 10 g of the catalyst shown in Table 1 and heated to 400 ° C. while flowing nitrogen and hydrogen at a rate of 100 ml / min. After maintaining at 400 ° C. for 1 hour, nitrogen and hydrogen were stopped, and ammonia was flown at a rate of 110 ml / min. After 2 hours, benzene was fed at a rate of 1.2 g / min. The reaction liquid was trapped between 1 hour and 2 hours after the start of benzene supply, and this was analyzed by gas chromatography. The results are shown in Table 1. As a notation of the catalyst, for example, 1% Fe silica means 1% F
It means a silica carrying e, and the same notation will be used hereinafter.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例9,10,比較例1,2 耐熱ガラス製の管状反応器に1%Feシリカを18g充
填し、窒素及び水素を100ml/分の速度で流しなが
ら、450℃に加熱した。450℃で1時間維持した
後、窒素、水素を止め、アンモニアを110ml/分の
速度で流した。2時間後、表2記載の温度にし、ベンゼ
ンを1.2g/分の速度で供給した。ベンゼン供給開始
後1時間目から2時間目の間の反応液をトラップし、こ
れをガスクロマトグラフィーで分析した。結果を表2に
示す。
Examples 9 and 10 and Comparative Examples 1 and 2 18 g of 1% Fe silica was filled in a tubular reactor made of heat-resistant glass and heated to 450 ° C. while flowing nitrogen and hydrogen at a rate of 100 ml / min. After maintaining at 450 ° C. for 1 hour, nitrogen and hydrogen were stopped, and ammonia was flown at a rate of 110 ml / min. After 2 hours, the temperature was changed to that shown in Table 2 and benzene was fed at a rate of 1.2 g / min. The reaction liquid was trapped between 1 hour and 2 hours after the start of benzene supply, and this was analyzed by gas chromatography. The results are shown in Table 2.

【0031】なお、比較例1は反応温度を550℃とし
た以外は実施例9と同じ方法で反応させた。結果は表2
に示したが、アニリンの選択率が大幅に低下し、望まし
くないメチル化が主に生じた。比較例2は比較例1の反
応を実施後、温度を400℃に下げて反応させた例であ
る。結果は表2に示したが、550℃という高温で反応
させた後は、触媒の活性が低下した。
Comparative Example 1 was reacted in the same manner as in Example 9 except that the reaction temperature was 550 ° C. The results are shown in Table 2.
However, the selectivity of aniline was significantly reduced, and undesired methylation mainly occurred. Comparative Example 2 is an example in which after the reaction of Comparative Example 1 was carried out, the temperature was lowered to 400 ° C. to carry out the reaction. The results are shown in Table 2, but the catalyst activity decreased after the reaction at a high temperature of 550 ° C.

【0032】[0032]

【表2】 [Table 2]

【0033】実施例11,12 耐熱ガラス製の管状反応器に1%Coアルミナを10g
充填し、窒素及び水素を100ml/分の速度で流しな
がら、450℃に加熱した。450℃で2時間維持した
後、窒素、水素を止め、アンモニアを110ml/分の
速度で流した。2時間後、表3記載の温度にし、ベンゼ
ンを1.2g/分の速度で供給した。ベンゼン供給開始
後1時間目から2時間目の間の反応液をトラップし、こ
れをガスクロマトグラフィーで分析した。結果を表3に
示す。
Examples 11 and 12 10 g of 1% Co alumina was added to a tubular reactor made of heat-resistant glass.
It was filled and heated to 450 ° C. with flowing nitrogen and hydrogen at a rate of 100 ml / min. After maintaining at 450 ° C. for 2 hours, nitrogen and hydrogen were stopped, and ammonia was caused to flow at a rate of 110 ml / min. After 2 hours, the temperature was set as shown in Table 3 and benzene was fed at a rate of 1.2 g / min. The reaction liquid was trapped between 1 hour and 2 hours after the start of benzene supply, and this was analyzed by gas chromatography. The results are shown in Table 3.

【0034】[0034]

【表3】 [Table 3]

【0035】実施例13〜16 耐熱ガラス製の管状反応器に1%Pdカーボンを15g
充填し、窒素を90ml/分で流しながら表4記載の温
度に加熱した。触媒層が所定の温度になった後、窒素を
止めアンモニアを80ml/分の速度で流した。30分
後、ベンゼンを12.3g/時で供給した。ベンゼン供
給開始後1時間目から2時間目の間の反応液をトラップ
し、これをガスクロマトグラフィーで分析した。結果を
表4に示す。
Examples 13 to 16 In a tubular reactor made of heat-resistant glass, 15 g of 1% Pd carbon was used.
It was filled and heated to the temperature shown in Table 4 while flowing nitrogen at 90 ml / min. After the catalyst layer reached a predetermined temperature, nitrogen was stopped and ammonia was flowed at a rate of 80 ml / min. After 30 minutes, benzene was fed at 12.3 g / hour. The reaction liquid was trapped between 1 hour and 2 hours after the start of benzene supply, and this was analyzed by gas chromatography. The results are shown in Table 4.

【0036】[0036]

【表4】 [Table 4]

【0037】実施例17 耐熱ガラス製の管状反応器に0.5%Pdカーボンを1
5g充填した。窒素を90ml/分で流しながら反応器
を加熱した。触媒層の温度が450℃になった時、窒素
を止め、アンモニアを40ml/分で流し、水を9ml
/時で供給した。触媒層の温度が安定した後、ベンゼン
を17.7g/時の速度で供給した。反応1時間目のベ
ンゼン転化率は0.20%であり、ベンゾニトリル選択
率は40.5%であった。水の供給を止め、アンモニア
を80ml/分で流したところ、ベンゼン転化率は2.
30%になり、ベンゾニトリル選択率は95.0%とな
った。さらに水素を40ml/分の速度で加えたところ
ベンゼン転化率は0.46%となり、ベンゾニトリル選
択率は64.0%となった。
Example 17 1% 0.5% Pd carbon was added to a tubular reactor made of heat-resistant glass.
5 g was filled. The reactor was heated while flowing nitrogen at 90 ml / min. When the temperature of the catalyst layer reached 450 ° C, the nitrogen was stopped, ammonia was flown at 40 ml / min, and water was 9 ml.
/ Hour. After the temperature of the catalyst layer was stabilized, benzene was supplied at a rate of 17.7 g / hour. The benzene conversion rate in the first hour of the reaction was 0.20%, and the benzonitrile selectivity was 40.5%. When the water supply was stopped and ammonia was flowed at 80 ml / min, the benzene conversion rate was 2.
It was 30% and the benzonitrile selectivity was 95.0%. When hydrogen was added at a rate of 40 ml / min, the benzene conversion rate was 0.46% and the benzonitrile selectivity was 64.0%.

【0038】実施例18 耐熱ガラス製の管状反応器に0.5%Pdアルミナを1
5g充填した。空気を15ml/分で、アンモニアを9
0ml/分で流しながら反応器を加熱した。触媒層の温
度が200℃になった時、ベンゼンを14g/時で供給
しながら反応温度を400℃にした。反応1時間目から
2時間目のベンゼン転化率は1.88%であり、ベンゾ
ニトリル選択率は92.4%であった。
Example 18 1% of 0.5% Pd alumina was added to a tubular reactor made of heat-resistant glass.
5 g was filled. Air at 15 ml / min and ammonia 9
The reactor was heated while flowing at 0 ml / min. When the temperature of the catalyst layer reached 200 ° C., the reaction temperature was adjusted to 400 ° C. while supplying benzene at 14 g / hour. The benzene conversion rate from the 1st hour to the 2nd hour of the reaction was 1.88%, and the benzonitrile selectivity was 92.4%.

【0039】実施例19 耐熱ガラス製の管状反応器に1%Coシリカを10g充
填し、窒素及び水素を100ml/分の速度で流しなが
ら、450℃に加熱した。450℃で1時間維持した
後、窒素、水素を止め、アンモニアを110ml/分の
速度で流した。2時間後、400℃にし、トルエンを
1.2g/分の速度で供給した。ベンゼン供給開始後1
時間目から2時間目の間の反応液をトラップし、これを
ガスクロマトグラフィーで分析した。その結果、トルエ
ン転化率は2.34%であり、選択率はo−トルイジ
ン:0.48%,m−トルイジン:0.96%,o−ト
ルニトリル:0.80%,m−トルニトリル:2.50
%,p−トルニトリル:1.29%,ベンゼン:30.
34%,アニリン:7.92%,ベンゾニトリル:4
9.01%であった。
Example 19 A tubular reactor made of heat-resistant glass was charged with 10 g of 1% Co silica, and heated to 450 ° C. while flowing nitrogen and hydrogen at a rate of 100 ml / min. After maintaining at 450 ° C. for 1 hour, nitrogen and hydrogen were stopped, and ammonia was flown at a rate of 110 ml / min. After 2 hours, the temperature was raised to 400 ° C., and toluene was supplied at a rate of 1.2 g / min. After starting benzene supply 1
The reaction solution was trapped between the second hour and the second hour, and this was analyzed by gas chromatography. As a result, the toluene conversion was 2.34%, and the selectivities were o-toluidine: 0.48%, m-toluidine: 0.96%, o-tolunitrile: 0.80%, m-tolunitrile: 2. Fifty
%, P-tolunitrile: 1.29%, benzene: 30.
34%, aniline: 7.92%, benzonitrile: 4
It was 9.01%.

【0040】実施例20 耐熱ガラス製の管状反応器に0.5%Pdカーボンを1
0g充填した。アンモニアを90ml/分の速度で流し
ながら反応器を加熱した。触媒層の温度が400℃にな
った時、トルエンを11.0g/時で供給した。反応1
時間目から2時間目の反応液を分析したところ、ベンゾ
ニトリル選択率は47.0%,トルニトリル選択率は2
4.8%(異性体合計値)であった。
Example 20 1% of 0.5% Pd carbon was added to a tubular reactor made of heat-resistant glass.
0 g was filled. The reactor was heated while flowing ammonia at a rate of 90 ml / min. When the temperature of the catalyst layer reached 400 ° C., toluene was supplied at 11.0 g / hour. Reaction 1
When the reaction solution from the second hour to the second hour was analyzed, the benzonitrile selectivity was 47.0% and the tolunitrile selectivity was 2
It was 4.8% (total value of isomers).

【0041】[0041]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 253/28 255/50 9357−4H // C07B 43/04 7419−4H 43/08 7419−4H 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C07C 253/28 255/50 9357-4H // C07B 43/04 7419-4H 43/08 7419-4H 61/00 300

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アンモニア存在下、周期表第8族元素を担
体に担持した触媒を使用して、芳香族化合物をアミノ化
及び/又はシアノ化する方法。
1. A method of aminating and / or cyanating an aromatic compound using a catalyst in which a Group 8 element of the periodic table is supported on a carrier in the presence of ammonia.
【請求項2】アミノ化の触媒が担体に担持したコバルト
又は鉄である請求項1に記載の方法。
2. The method according to claim 1, wherein the amination catalyst is cobalt or iron supported on a carrier.
【請求項3】シアノ化の触媒が担体に担持したパラジウ
ム又はロジウムである請求項1に記載の方法。
3. The method according to claim 1, wherein the cyanation catalyst is palladium or rhodium supported on a carrier.
【請求項4】アミノ化及びシアノ化の触媒が担体に担持
したニッケル,ルテニウム,イリジウム又は白金である
請求項1に記載の方法。
4. The method according to claim 1, wherein the amination and cyanation catalyst is nickel, ruthenium, iridium or platinum supported on a carrier.
JP5077916A 1993-04-05 1993-04-05 Method for aminating and cyanating aromatic compound Pending JPH06293715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5077916A JPH06293715A (en) 1993-04-05 1993-04-05 Method for aminating and cyanating aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5077916A JPH06293715A (en) 1993-04-05 1993-04-05 Method for aminating and cyanating aromatic compound

Publications (1)

Publication Number Publication Date
JPH06293715A true JPH06293715A (en) 1994-10-21

Family

ID=13647406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5077916A Pending JPH06293715A (en) 1993-04-05 1993-04-05 Method for aminating and cyanating aromatic compound

Country Status (1)

Country Link
JP (1) JPH06293715A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204411B1 (en) * 1997-08-21 2001-03-20 Imperial Chemical Industries Plc Process for the production of aromatic amines
US6933409B1 (en) 1999-05-13 2005-08-23 Symyx Technologies, Inc. Amination of aromatic hydrocarbons and heterocyclic analogs thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204411B1 (en) * 1997-08-21 2001-03-20 Imperial Chemical Industries Plc Process for the production of aromatic amines
US6933409B1 (en) 1999-05-13 2005-08-23 Symyx Technologies, Inc. Amination of aromatic hydrocarbons and heterocyclic analogs thereof

Similar Documents

Publication Publication Date Title
TW518252B (en) A material useful as catalyst and its use in a process for hydrogenation of Α,ω-dinitriles
Figueras et al. Hydrogenation and hydrogenolysis of nitro-, nitroso-, azo-, azoxy-and other nitrogen-containing compounds on palladium
JP4316803B2 (en) Method for purifying aliphatic aminonitrile
JP5124486B2 (en) Process for producing ethyleneamine and ethanolamine by hydroamination of monoethylene glycol and ammonia in the presence of a catalyst
US6762324B2 (en) Metal modified Pd/Ni catalysts
KR20090031623A (en) Direct amination of hydrocarbons
CN100479916C (en) Supported hydrogenating catalyst for hydrogenation of nitroaromatics
KR100502606B1 (en) Catalysts Suitable for Preparing Aliphatic Alpha-, Omega-aminonitriles by Partial Hydrogenation of Aliphatic Dinitriles
US4185036A (en) Hydrogenation of mixed aromatic nitrobodies
JP2001514161A (en) Method for producing aromatic amines
WO2000046179A1 (en) Process for producing aromatic primary amine by low-pressure hydrogenation of aromatic nitrile
JPH10511371A (en) Process for producing aliphatic alpha, omega-aminonitrile
TW200948757A (en) Process for preparing nitrile compounds
JPH06293715A (en) Method for aminating and cyanating aromatic compound
JP5076344B2 (en) Method for producing aromatic diamino compound
US6114277A (en) Process for preparing cyano group-containing aromatic methylamines
JP2003327563A (en) Method for producing aromatic dimethylamine
EP0698009B1 (en) Method for the selective hydrogenation of a dinitrile compound
JP2003200064A (en) Process for regenerating monolith hydrogenation catalytic reactor
US4136156A (en) Production of hcn from organic nitriles
KR101988374B1 (en) Method of preparation of ethylamine or acetonitrile by reductive amination of ethanol
JPH05271105A (en) Method for hydrogenation of aromatic nitro or nitroso compound, and catalyst therefor
US4387247A (en) Catalytic reduction of nitro aromatic compounds with hydrogen sulfide and carbon monoxide
JP3317060B2 (en) Production method of aromatic amine
JP4561963B2 (en) Highly selective production method of di (aminomethyl) -substituted aromatic compound