JPH06293528A - In-mold heating and cooling device for glass lens forming device - Google Patents

In-mold heating and cooling device for glass lens forming device

Info

Publication number
JPH06293528A
JPH06293528A JP10040093A JP10040093A JPH06293528A JP H06293528 A JPH06293528 A JP H06293528A JP 10040093 A JP10040093 A JP 10040093A JP 10040093 A JP10040093 A JP 10040093A JP H06293528 A JPH06293528 A JP H06293528A
Authority
JP
Japan
Prior art keywords
heating
cooling
mold
heat conducting
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10040093A
Other languages
Japanese (ja)
Inventor
Motosuke Mitsusaka
元右 三坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10040093A priority Critical patent/JPH06293528A/en
Publication of JPH06293528A publication Critical patent/JPH06293528A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve surface precision by press molding the glass cob heated and softened by the forming molds which are provided with heating means and cooling means outside the forming molds and heat and cool the inside of the molds via the heat conducting members. CONSTITUTION:The upper mold 5 and the lower mold 6 are uniformly heated to a prescribed temp. by means of circular cylinder-shaped heat conducting members 13, 14 which are made of BN, etc., and are inserted and mounted at one end into the heating and cooling members 22, 23 having a doughnut shape and constituted of heating parts, such as electromagnetic heating, and cooling parts and are inserted at the other end into blind holes at the centers of the non-forming surfaces of the upper mold 5 and the lower mold 6. The in-mold temps. are measured and controlled by thermocouples 8, 9 which are embedded in parallel near these heat conducting members 13, 14. The glass cob softened by heating is then held between the forming surfaces of the upper mold 5 and the lower mold 6 and is press molded. The forming molds are uniformly cooled via the heat conducting members 13, 14 from the heating and cooling means 22, 23 after the end of the molding, by which the glass lens 12 having the improved surface precision is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラスを加熱軟化した
のち、一対の成形型にてガラスレンズをプレス成形する
装置における型の加熱と冷却とを行う型内加熱冷却装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-mold heating / cooling device for heating and cooling a glass in a device for press-molding a glass lens with a pair of molding dies after heating and softening the glass.

【0002】[0002]

【従来の技術】従来における上記成形型の加熱と冷却を
行う技術としては、特開平4−46024号公報、特開
平4−154631号公報がある。前者の公報に開示さ
れている技術を図6に基づいて説明する。図6は、前者
(特開平4−46024号公報)に記載されている第4
図に示したガラス光学部品の成形型を示す正面よりの断
面図である。図に示すように、上型5,下型6の内部に
ヒータユニット10,11を埋設し、ユニットの加熱に
よって上型5、下型6の型内加熱を行い熱電対8,9に
より温度測定して加熱の温度制御を行っている。
2. Description of the Related Art As conventional techniques for heating and cooling the above-mentioned forming die, there are JP-A-4-46024 and JP-A-4-154631. The technique disclosed in the former publication will be described with reference to FIG. FIG. 6 shows a fourth example described in the former (Japanese Patent Laid-Open No. 4-46024).
It is sectional drawing from the front which shows the shaping | molding die of the glass optical component shown in the figure. As shown in the figure, heater units 10 and 11 are embedded in the upper mold 5 and the lower mold 6, and the heating of the units heats the upper mold 5 and the lower mold 6 in the mold to measure the temperature with thermocouples 8 and 9. The heating temperature is controlled.

【0003】また、上記後者の公報に開示されている技
術を図7に基づいて説明する。図7は後者(特開平4−
154631号公報)に記載されている第6図に示した
光学素子の製造方法に用いられたガラス成形装置の正面
よりの断面図である。上型外周に設定されたヒータ7よ
り加熱されたあとの型冷却において、上軸1および下軸
2の内部および上型5、下型6内部に各々冷却流路3,
4が設けられ、この流路に冷媒を通すことによって上型
5、下型6の型内冷却を行い熱伝対8,9により温度測
定して冷却の温度制御を行っている。
The technique disclosed in the latter publication will be described with reference to FIG. FIG. 7 shows the latter (JP-A-4-
FIG. 1 is a cross-sectional view from the front of a glass molding apparatus used in the method for manufacturing the optical element shown in FIG. In the mold cooling after being heated by the heater 7 set on the outer periphery of the upper mold, the cooling passages 3, 3 are respectively provided inside the upper shaft 1 and the lower shaft 2 and inside the upper mold 5 and the lower mold 6.
4 is provided, and the cooling of the upper mold 5 and the lower mold 6 is performed by passing the refrigerant through this channel, and the temperature is measured by the thermocouples 8 and 9 to control the cooling temperature.

【0004】[0004]

【発明が解決しようとする課題】一般に、成形レンズの
2つの光束有効面の面精度を両面とも良好に得るために
は、成形品全体の平均温度化が必要であり、凸レンズの
場合には、レンズの中心部に熱だまりができので型内部
冷却(外周部加熱)を、凹レンズの場合には、レンズ外
周縁部に熱だまりができるので、型内部加熱(外周部冷
却)を成形レンズの形状保熱性上望まれている。しかし
ながら、上記した従来の技術による前者の公報記載の技
術、即ち加熱装置は、上型5、下型6内にヒータユニッ
ト10,11を設けなければならないため、型のスペー
ス上小型のヒータユニットの埋設となる。そのため必要
とする大型のヒータを用いる(配設)ことができないの
で、加熱の能力に制限が生じるという問題がある。
Generally, in order to obtain good surface accuracy of the two light flux effective surfaces of the molded lens, it is necessary to make the average temperature of the entire molded product, and in the case of a convex lens, Heat build-up in the center of the lens for cooling inside the mold (outer peripheral heating), and in the case of a concave lens, heat build-up in the lens outer peripheral edge for heating inside the mold (cooling outside) forming the shape of the lens It is desired for heat retention. However, in the technique described in the former publication, that is, in the heating device, the heater units 10 and 11 have to be provided in the upper mold 5 and the lower mold 6 in the above-described conventional technique. It will be buried. Therefore, the required large heater cannot be used (arranged), and there is a problem that the heating capacity is limited.

【0005】また、上記した後者の公報に記載された技
術の冷却装置は、上型5、下型6内に冷媒流路3,4を
設けなければならないため、スペース上大きな流路を構
成することが困難であり、従って、大きな流量を得るこ
とが不可能である。そのために冷却能力がどうしても小
型に構成しなければならないという問題があった。従っ
て、上記各公報による従来の加熱,冷却装置において
は、その型内の加熱と冷却とを行う能力が不十分であ
り、成形品全体を均等な温度とすることが難しく、成形
されるレンズの両面の面精度を高品質に生産性よく成形
することが困難であった。
In the cooling device of the technique described in the latter publication mentioned above, since the refrigerant flow paths 3 and 4 must be provided in the upper mold 5 and the lower mold 6, a large flow path is formed in terms of space. It is difficult to obtain a large flow rate. Therefore, there is a problem that the cooling capacity must be small. Therefore, in the conventional heating and cooling devices according to the above publications, the ability to perform heating and cooling within the mold is insufficient, and it is difficult to make the temperature of the entire molded product uniform, and It was difficult to mold the surface precision of both sides with high quality and high productivity.

【0006】本発明は、上記問題点に鑑みてなされたも
ので、成形型内に加熱と冷却とを行う装置のサイズの制
限をなくし、その能力に充分に満足するように構成し
て、型内の加熱と冷却の温調を容易とし、成形レンズの
面精度を高品質に、かつ、生産性のよいガラスレンズ成
形型の型内の加熱,冷却装置を提供することを目的とす
る。
The present invention has been made in view of the above problems, and is configured so as to eliminate the size limitation of a device for heating and cooling in a molding die and to sufficiently satisfy the capability of the die. It is an object of the present invention to provide a heating / cooling device for the inside of a glass lens molding die that facilitates temperature control of heating and cooling of the inside, improves the surface accuracy of the formed lens, and has good productivity.

【0007】[0007]

【課題を解決するための手段】本発明の概念を図に基づ
いて説明する。図1は本発明のガラスレンズ成形装置の
型内加熱冷却装置の概念を示す正面よりの断面図であ
る。図に示す符号12は、前工程にて予め加熱軟化され
たガラスゴブを上型5の成形面と下型6の成形面間に載
置挟持されて押圧成形されたガラスレンズである。上記
円盤形状の上型5の上端面中央位置には、有底の孔が穿
設されており、その孔内に円柱形状の熱伝導部材13の
一端部が挿入装着されている。更に熱伝導部材13の他
端部には、ドーナツ形状の加熱冷却部材22の孔に挿入
装着されて、その温度を熱伝導部材13を介して上型5
に伝導するよう構成されている。
The concept of the present invention will be described with reference to the drawings. FIG. 1 is a front sectional view showing the concept of an in-mold heating / cooling device of a glass lens molding device of the present invention. Reference numeral 12 shown in the drawing is a glass lens that is press-molded by placing and sandwiching a glass gob that has been heated and softened in the previous step between the molding surfaces of the upper die 5 and the lower die 6. A hole having a bottom is formed at the center of the upper end surface of the disk-shaped upper die 5, and one end of a columnar heat conducting member 13 is inserted and mounted in the hole. Further, the other end of the heat conducting member 13 is inserted and mounted in a hole of a doughnut-shaped heating / cooling member 22, and the temperature of the upper die 5 is adjusted by the heat conducting member 13.
It is configured to conduct to.

【0008】上記した上型5の成形面と対向した下方位
置には、成形面を上方に配した下型6が上下動自在に構
成されており、上型5と同様に、その円盤状の下面中央
位置には、有底の孔が穿設されて、その孔内に円柱形状
の熱伝導部材14の一端部が挿入装着されている。更
に、熱伝導部材14の他端部には、ドーナツ形状の加熱
冷却部材23が挿入装着されており、加熱または冷却温
度を熱伝導部材14を介して下型6内に伝導するよう構
成されている。また、上型5と下型6のそれぞれの軸線
方向、即ち熱伝導部材13,14の近傍に並列にて熱電
対8,9がそれぞれ埋設されて型内の温度測定するよう
に構成されている。
At the lower position facing the molding surface of the above-mentioned upper mold 5, a lower mold 6 having a molding surface arranged above is constructed so as to be vertically movable, and like the upper mold 5, it has a disc shape. A bottomed hole is formed at the center position of the lower surface, and one end of the columnar heat conducting member 14 is inserted and mounted in the hole. Further, a donut-shaped heating / cooling member 23 is inserted and attached to the other end of the heat conducting member 14, and is configured to conduct heating or cooling temperature into the lower mold 6 through the heat conducting member 14. There is. Further, thermocouples 8 and 9 are embedded in parallel in the respective axial directions of the upper die 5 and the lower die 6, that is, in the vicinity of the heat conducting members 13 and 14, and the temperature inside the die is measured. .

【0009】[0009]

【作用】上記構成による本発明の概念の作用を説明す
る。加熱冷却部22,23により加熱または冷却された
熱は、熱伝導部材13,14の一端部から他端部に伝達
され、更に、他端部と連設装着した上型5、下型6の中
心に伝達供給されて上型5、下型6は中心より所望の均
一温度にて加熱される。また、上記上型5と下型6は、
熱電対8,9により常に温度測定され、その値に基づい
てその出力を調整して温度制御が行われる。上記構成と
作用によるなる本発明は、型の外に加熱冷却部を設けた
ので、加熱冷却部の装置のサイズなどの制限を必要とし
ないため、能力の大きい加熱冷却手段にて加熱または冷
却をすることができる。従って、幅の広い温調が可能と
なり、成形品の均温化が容易となることなどにより品質
の優れた高精度のガラスレンズが生産性よく製造でき
る。
The operation of the concept of the present invention having the above configuration will be described. The heat that is heated or cooled by the heating / cooling units 22 and 23 is transmitted from one end of the heat conduction members 13 and 14 to the other end, and further, the upper mold 5 and the lower mold 6 that are continuously mounted to the other ends. By being supplied to the center, the upper mold 5 and the lower mold 6 are heated from the center at a desired uniform temperature. The upper mold 5 and the lower mold 6 are
The temperature is constantly measured by the thermocouples 8 and 9, and the output is adjusted based on the value to control the temperature. According to the present invention having the above-mentioned configuration and action, since the heating / cooling unit is provided outside the mold, there is no need to limit the size of the device of the heating / cooling unit. can do. Therefore, a wide range of temperature control is possible, and the temperature of the molded product can be easily equalized, so that a highly accurate glass lens with excellent quality can be manufactured with high productivity.

【0010】[0010]

【実施例1】本発明のガラスレンズ成形型の型内加熱冷
却装置の具体例を図面に基づいて説明する。図2は、本
発明のガラスレンズ成形装置の型内の加熱冷却装置の実
施例1に係わる要部を示す正面図よりの断面図である。
図3は、実施例1の冷却部の変形例を示す正面よりの断
面図である。なお、図中において上記した本発明の概念
に用いた図1と同一部材、同一形状、同一構成について
は、同一符号を付し、その説明は省略する。
Embodiment 1 A specific example of the in-mold heating and cooling device for a glass lens molding die of the present invention will be described with reference to the drawings. FIG. 2 is a cross-sectional view from a front view showing a main part of the heating and cooling device in the mold of the glass lens molding apparatus of the present invention according to the first embodiment.
FIG. 3 is a sectional view from the front showing a modification of the cooling unit of the first embodiment. In the drawings, the same members, shapes and configurations as those in FIG. 1 used for the above-described concept of the present invention are designated by the same reference numerals, and the description thereof will be omitted.

【0011】図2は、予め前工程にて所定温度に加熱軟
化されたガラスゴブを円盤状の上型5と、下型6のそれ
ぞれの成形面にて挟持され、下型6の上昇移動により押
圧成形されたガラスレンズ12が配設されている。上記
一対の成形型5,6の非成形面側の中央位置には有底孔
が所望の深さに穿設され、その孔内に孔径と対応寸法に
形成された円柱形状の熱伝導部材13,14の一端がそ
れぞれ挿入装着されている。上記熱伝導部材13,14
の他端の外周面には、冷却部17,18が巻装着されて
いる。また、上型5と上記冷却部17との間の熱伝導部
材13と、下型6と上記冷却部18との間の熱伝導部材
14のそれぞれの外径周面には、加熱部15,16が配
設されている。
In FIG. 2, a glass gob that has been heated and softened to a predetermined temperature in the previous step is sandwiched between the molding surfaces of a disk-shaped upper die 5 and a lower die 6 and pressed by the upward movement of the lower die 6. A molded glass lens 12 is provided. A bottomed hole is bored at a desired depth at the center position on the non-molding surface side of the pair of molding dies 5 and 6, and the columnar heat conduction member 13 is formed in the hole to have a dimension corresponding to the hole diameter. , 14 are inserted and mounted at their respective ends. The heat conducting members 13 and 14
The cooling parts 17 and 18 are wound around the outer peripheral surface of the other end of the. Further, the heat conducting member 13 between the upper mold 5 and the cooling unit 17 and the heat conducting member 14 between the lower mold 6 and the cooling unit 18 have heating portions 15, 16 are provided.

【0012】また、上型5と下型6の非成形面側、即ち
上型5の上面側と下型6の下面側の熱伝導部材13と1
4のそれぞれの近傍には上型5と下型6の温度測定する
熱電対8と9が並列にて埋設されている。更に、成形型
5,6のそれぞれの外径周面近傍には、上型5、下型6
および成形するガラスゴブを補熱するための外周加熱部
19と20が配設されている。また、上記上型5と下型
6の外周加熱部19と20の中間位置、即ちガラスゴブ
の外径周面近傍には、上型5、下型6およびガラスレン
ズ12を冷却する外周冷却ブロー21が配設されてい
る。
Further, the heat transfer members 13 and 1 on the non-molding surface side of the upper mold 5 and the lower mold 6, that is, on the upper surface side of the upper mold 5 and the lower surface side of the lower mold 6.
Thermocouples 8 and 9 for measuring the temperatures of the upper die 5 and the lower die 6 are embedded in parallel in the vicinity of each of the four. Further, in the vicinity of the outer peripheral surface of each of the molding dies 5 and 6, an upper mold 5 and a lower mold 6 are formed.
Further, peripheral heating portions 19 and 20 are provided to supplement the heat of the glass gob to be molded. An outer peripheral cooling blow 21 for cooling the upper mold 5, the lower mold 6 and the glass lens 12 is provided at an intermediate position between the outer peripheral heating portions 19 and 20 of the upper mold 5 and the lower mold 6, that is, in the vicinity of the outer peripheral surface of the glass gob. Is provided.

【0013】次に、上記構成よりなる本実施例の作用を
説明する。まず、凸レンズのように中心部に熱だまりが
発生する成形品の成形には、加熱部15,16の熱を熱
伝導部材13,14を介してそれぞれ上型5、下型6の
中心部に供給すると共に上型5、下型6の外径周面に配
設した外周加熱部19,20の熱を、上型5、下型6の
外周面に供給する。即ち内外の両方面よりそれぞれ供給
するか、若しくはいずれか一方のみの熱量の供給のみに
て成形する。この場合、予めガラス材料の転移点温度T
g以下の温度に型全体を均一に加熱しておき、既に前工
程にて転移点温度に加熱軟化されたガラスゴブを図示さ
れない搬送手段によって、上型5と下型6間に搬送載置
し、下型6を上昇移動させて上型5と挟持し押圧にてプ
レス成形する。
Next, the operation of this embodiment having the above structure will be described. First, in the molding of a molded product such as a convex lens in which a heat pool is generated in the central portion, the heat of the heating portions 15 and 16 is transferred to the central portions of the upper mold 5 and the lower mold 6 via the heat conducting members 13 and 14, respectively. The heat of the outer peripheral heating portions 19 and 20 arranged on the outer peripheral surfaces of the upper mold 5 and the lower mold 6 is supplied to the outer peripheral surfaces of the upper mold 5 and the lower mold 6 while being supplied. That is, the molding is performed by supplying the heat from both the inner and outer surfaces, or by supplying only one of the heat amounts. In this case, the transition temperature T of the glass material is previously set.
The entire mold is uniformly heated to a temperature of g or less, and the glass gob that has been heated and softened to the transition point temperature in the previous step is transferred and placed between the upper mold 5 and the lower mold 6 by a transfer means (not shown). The lower die 6 is moved upward to be sandwiched with the upper die 5 and press-formed by pressing.

【0014】上記成形終了により、成形品(ガラスレン
ズ12)の中心部の冷却を促進するために、外周加熱部
19,20により上型5、下型6とガラスレンズ12の
外周を補熱しつつ加熱部15,16の出力を下げた冷却
部17,18により熱伝導部材13,14の温度を下げ
ることによって上型5と下型6の中心部の温度を相対的
に下げられる。即ち、ガラスレンズ12の熱だまりの発
生する恐れのある中心部を冷却してガラスレンズ12を
均等に冷却する。これによって両面の光束有効面が高精
度で品質の良好なガラスレンズが得られる。上記の場
合、上型5、下型6の中央部の冷却を行う冷却部を成形
型5,6の外部に設けた熱伝導部材13,14を介して
行うため、高能力な冷却部を設けることができるので冷
却のスピードと出力をガラスレンズ12の形状に対応し
て選択することができる。
After completion of the above molding, in order to accelerate the cooling of the central portion of the molded product (glass lens 12), the outer peripheral heating portions 19 and 20 supplement the heat of the upper mold 5, the lower mold 6 and the outer periphery of the glass lens 12. By lowering the temperatures of the heat conducting members 13 and 14 by the cooling units 17 and 18 in which the outputs of the heating units 15 and 16 are lowered, the temperatures of the central portions of the upper mold 5 and the lower mold 6 can be relatively lowered. That is, the central portion of the glass lens 12 where heat accumulation may occur is cooled to uniformly cool the glass lens 12. This makes it possible to obtain a glass lens of which the light flux effective surfaces on both sides are highly accurate and of good quality. In the above case, since the cooling part for cooling the central part of the upper mold 5 and the lower mold 6 is performed via the heat conduction members 13 and 14 provided outside the molding dies 5 and 6, a high-performance cooling part is provided. Therefore, the cooling speed and output can be selected according to the shape of the glass lens 12.

【0015】また、凹レンズのように、外周縁部に熱だ
まりが発生する成形品の成形には、予め加熱部15,1
6の熱を熱伝導部材13,14を介してそれぞれ上型
5、下型6の型全体を成形材料の転移点温度Tg以下に
均一に加熱した後、予め前工程にて加熱軟化したガラス
ゴブを上型5と下型6間に搬送し挟持する。この場合、
成形型5,6の加熱温度を均一化するために、上型5、
下型6の外周部の冷却を促進する。即ち外周冷却ブロー
21を作動させて成形型5,6およびガラスゴブ12
に、N2 冷却ガラスを噴射して型5,6およびガラスゴ
ブの外周を冷却すると共に、成形型5,6の中央部を補
熱する。この補熱を行うために、加熱部15,16の出
力を上げ熱伝導部材13,14の温度を上昇させること
によって成形型5,6の中心部の温度を相対的に上げ
る。上記のような作用を行うことで、上型5、下型6の
温度とガラスゴブの温度とを均一化することができる。
続いて、ガラスレンズ12の熱だまりのある外周を外周
冷却ブロー21にて冷却してガラスレンズ12を均等冷
却すると、両面とも面精度のよいガラスレンズ12が品
質よく成形される。
Further, when molding a molded product such as a concave lens in which heat buildup occurs at the outer peripheral edge, the heating parts 15, 1 are preliminarily formed.
After uniformly heating the heat of 6 through the heat-conducting members 13 and 14 to the upper mold 5 and the lower mold 6, respectively, to the transition temperature Tg of the molding material or less, the glass gob that has been heat-softened in the previous step in advance is used. It is conveyed and clamped between the upper mold 5 and the lower mold 6. in this case,
In order to make the heating temperatures of the molds 5 and 6 uniform, the upper mold 5,
The cooling of the outer peripheral portion of the lower mold 6 is promoted. That is, the outer peripheral cooling blow 21 is actuated to operate the molding dies 5, 6 and the glass gob 12.
Then, N 2 cooling glass is sprayed to cool the outer peripheries of the molds 5 and 6 and the glass gob, and the central portions of the molding molds 5 and 6 are supplemented. In order to perform this supplementary heat, the outputs of the heating units 15 and 16 are increased to raise the temperatures of the heat conducting members 13 and 14, thereby relatively raising the temperatures of the central portions of the molding dies 5 and 6. By performing the above action, the temperature of the upper mold 5 and the lower mold 6 and the temperature of the glass gob can be made uniform.
Subsequently, the outer circumference of the glass lens 12 having a heat pool is cooled by the outer circumference cooling blow 21 to uniformly cool the glass lens 12, so that the glass lens 12 having good surface accuracy on both sides is molded with good quality.

【0016】上記において、上型5、下型6の中央部の
加熱に係わる加熱部15,16を、それぞれ熱伝導部材
13,14を介して型の外部に設けることができたので
高能力の加熱部を設けることができた。即ち、加熱の速
さと、出力の増減を成形するガラスレンズの形状に合わ
せて自在に選択することができる。また、冷却部17,
18を熱伝導部材13,14の周りに配設したので、上
型5、下型6内の加熱と型内の冷却との切り換えが同一
の成形機で行うことが可能となったので、凹凸のガラス
レンズを同一成形機で成形することができると共に両面
の面精度をよく成形することができるという利点があ
る。
In the above, since the heating portions 15 and 16 for heating the central portions of the upper die 5 and the lower die 6 can be provided outside the die via the heat conducting members 13 and 14, respectively, high performance is achieved. A heating section could be provided. That is, the heating speed and the increase / decrease in output can be freely selected according to the shape of the glass lens to be molded. In addition, the cooling unit 17,
Since 18 is arranged around the heat conducting members 13 and 14, it is possible to switch between heating in the upper mold 5 and lower mold 6 and cooling in the mold with the same molding machine. The glass lens can be molded by the same molding machine, and the surface precision of both surfaces can be molded with good advantages.

【0017】上記した本実施例においての熱伝導部材1
3,14の材料には、その温調レスポンスを向上させる
ために高熱伝導材料を用いる程よいが、上記本実施例
は、BN、SC、アルミナイトライドマグネシア、サイ
アロン等が用いられている。また、加熱部15,16の
加熱手段には、一般的な抵抗線コイルヒーターやセラミ
ックスヒーターでもよいが、高能力の高周波コイル、高
レスポンスの電磁加熱を利用するものでもよい。更に、
冷却部17,18の冷却手段には、一般にパイプ内に冷
媒を通す方法もあるが、図3に示すように、熱伝導部材
14の外周面に多数の溝を外周に形成し、その溝内に固
定ピン29を挿入して熱伝導部材14と一体的に装着し
た円筒形状の冷却フィン24の外周近傍に配設したエア
ーノズル25よりエアーにて冷却を行うという方法でも
よい。
The heat conducting member 1 in this embodiment described above.
For the materials 3 and 14, it is preferable to use a high thermal conductive material in order to improve the temperature control response, but in the present embodiment, BN, SC, aluminum nitride magnesia, sialon, etc. are used. Further, as the heating means of the heating units 15 and 16, a general resistance wire coil heater or a ceramic heater may be used, but a high capacity high frequency coil or a high response electromagnetic heating may be used. Furthermore,
As a cooling means of the cooling parts 17 and 18, there is generally a method of passing a refrigerant through a pipe, but as shown in FIG. 3, a large number of grooves are formed on the outer peripheral surface of the heat conducting member 14 and the inside of the grooves is formed. It is also possible to insert a fixing pin 29 into the above and cool with air from an air nozzle 25 arranged near the outer circumference of a cylindrical cooling fin 24 integrally mounted with the heat conducting member 14.

【0018】[0018]

【実施例2】本発明の実施例2を図4に基づいて説明す
る。図4は、本発明のガラスレンズ成形装置の型内の加
熱冷却装置の実施例2に係わる下型のみの要部を示す正
面よりの断面図である。図5は、図4に示すA−A線よ
りの断面図である。なお、図中において上記した本発明
の概念に用いた図1と上記実施例1に用いた図2および
図3と同一部材、同一形状、同一構成については、同一
符号を付し、その説明は省略する。
Second Embodiment A second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a cross-sectional view from the front showing the main part of only the lower mold according to the second embodiment of the heating and cooling device in the mold of the glass lens molding apparatus of the present invention. FIG. 5 is a sectional view taken along the line AA shown in FIG. In the drawings, the same members, shapes and configurations as those of FIG. 1 used for the above-described concept of the present invention and FIGS. 2 and 3 used for the above-described first embodiment are designated by the same reference numerals, and their description will be omitted. Omit it.

【0019】上記した実施例1と本実施例との相違点
は、図に示すように熱伝導部材の構成と作用が大きく異
なる。即ち、実施例1においては、熱伝導部材13,1
4の材料としてBN、SC、アルミナイトライドマグネ
シア、サイアロン等により形成された円柱体形状を用い
たのに対し、本実施例においては、熱伝導性を一層高能
率化と高速化を計るために、一方の端面を有底の円筒形
状とし、開口を下方向に向けて配設し、他端面の開口端
面をカシメキャップ33,34にて密封構成したヒート
パイプ構造の熱伝導部材31(31は図示されず),3
2を上型5(図示されず)、下型6の非成形面の中央に
穿設された孔内に、一方の有底の端部を挿入装着してい
る点である。また、熱伝導部材30の円筒状の空胴内に
は、その内径周壁面の全面を覆い構成したウィック網3
5(図示されず),36を形成する網材は、ニッケル合
金系、ステンレス鋼系、インコーネル系、タングステン
合金系の材質の材料か、或いはアルミナ系、ジルコニア
系、ガラス系の繊維で形成された網材でもよい。上記し
た熱伝導部材31,32およびカシメキャップ33,3
4に用いた材質は、ニッケル合金系、ステンレス鋼系、
インコネル系、タンステン合金系を用い、その外周面を
T −C、TT −Nなどにて被覆構成されている。
The difference between the above-described first embodiment and this embodiment is that the structure and action of the heat conducting member are greatly different as shown in the figure. That is, in the first embodiment, the heat conducting members 13, 1
While a cylindrical body formed of BN, SC, aluminide nitride magnesia, sialon, etc. was used as the material of No. 4, in the present embodiment, in order to further improve the thermal conductivity and speed up. , One end surface is a bottomed cylindrical shape, the opening is arranged downward, and the other end surface of the opening end surface is sealed by caulking caps 33, 34. (Not shown), 3
2 is an upper mold 5 (not shown), and one bottomed end is inserted and mounted in a hole formed in the center of the non-molding surface of the lower mold 6. In addition, in the cylindrical cavity of the heat conducting member 30, the wick net 3 that covers the entire inner peripheral wall surface is formed.
The mesh material forming 5 (not shown) and 36 is made of nickel alloy-based, stainless steel-based, inconel-based, tungsten alloy-based material, or alumina-based, zirconia-based, or glass-based fiber. Mesh material may be used. The heat conducting members 31, 32 and the caulking caps 33, 3 described above.
The material used for 4 is nickel alloy type, stainless steel type,
Inconel, using Tansuten alloy system is covered up that the outer peripheral surface T T -C, at such T T -N.

【0020】上記した熱伝導部材31,32の空洞内に
配設したウィック網材35,36に変えて、この空洞内
に壁周面に軸方向に図5に示すように縦方向に多数の溝
38を形成し、その内部を真空引き(10-3〜10-6
orr)したあと、その空洞内に鉱物気化材料を3〜5
体積%封入し、カシメキャップ33,34にて密封し、
ヒートパイプ構造にする。これに封入される鉱物気化材
料としては、使用温度範囲によって異なるが、150〜
500℃で水250〜600℃でダウンサーム、300
〜800℃で水銀500〜1000℃でカリウム、60
0〜1350℃でナトリウムが最も好ましい。
Instead of the wick net materials 35 and 36 arranged in the cavities of the heat conducting members 31 and 32, a large number of wick nets 35 and 36 are provided in the cavities in the axial direction along the wall peripheral surface in the longitudinal direction as shown in FIG. The groove 38 is formed, and the inside thereof is vacuumed (10 −3 to 10 −6 T
orr), and then the mineral vaporization material is placed in the cavity for 3 to 5 times.
Enclosed by volume% and sealed with caulking caps 33 and 34,
Use a heat pipe structure. The mineral vaporization material enclosed in this varies depending on the operating temperature range,
Water at 500 ° C Downtherm at 250-600 ° C, 300
Mercury at ~ 800 ° C, potassium at 500 ~ 1000 ° C, 60
Most preferred is sodium at 0 to 1350 ° C.

【0021】上記構成による作用を説明する。上型5、
下型6内の加熱時においては、加熱部15,16により
加熱されると、その近傍の熱伝導部材31,32の内部
で鉱物気化材料が、気化し放熱ポイント40に矢印42
にて示す拡散して液化する。液化した鉱物気化材料は、
熱伝導部材31,32の内壁面をウィック網材36内あ
るいは縦溝38内を毛細管現象により流れて加熱部1
5,16の近傍に戻る。また、逆に上型5、下型6内の
冷却時には、冷却部17,18の近傍の熱伝導部材3
1,32の内部が放熱ポイント39,40となり拡散4
1,42の鉱物気化材料が液化するポイントとなり上型
5、下型6の内部に当接する熱伝導部材31,32の内
面が気化ポイント39,40となって熱交換作用が作動
する。
The operation of the above configuration will be described. Upper mold 5,
When the lower mold 6 is heated, when heated by the heating units 15 and 16, the mineral vaporization material is vaporized inside the heat conducting members 31 and 32 in the vicinity thereof and the arrow 42 is drawn to the heat radiation point 40.
It diffuses and liquefies as shown in. Liquefied mineral vaporization material,
The inner wall surfaces of the heat conducting members 31 and 32 flow in the wick net material 36 or in the vertical grooves 38 by a capillary phenomenon so that the heating unit 1
Return to the vicinity of 5,16. On the contrary, when cooling the upper mold 5 and the lower mold 6, the heat conducting member 3 near the cooling units 17 and 18 is used.
The inside of 1, 32 becomes the heat dissipation points 39, 40 and diffuses 4
The inner surfaces of the heat conducting members 31 and 32, which come into contact with the insides of the upper mold 5 and the lower mold 6, serve as points for liquefying the mineral vaporized materials 1 and 42 to serve as vaporization points 39 and 40, thereby operating the heat exchange action.

【0022】上記の現象が連続的に発生するために高速
かつ、高能率な熱伝導が可能となる。これにより、通常
の固体材料(金属セラミックス)で10〜150W/m
0 Kの熱伝統率のところが、この熱交換ヒートパイプ構
造とすることによって103〜2×104 W/m0 Kの
熱伝導率が得られる。
Since the above phenomenon occurs continuously, high-speed and highly efficient heat conduction becomes possible. As a result, the usual solid material (metal ceramics) is 10 to 150 W / m.
Whereas the traditional heat transfer coefficient of 0 K, this heat exchange heat pipe structure provides a thermal conductivity of 10 3 to 2 × 10 4 W / m 0 K.

【0023】上記した本実施例によれば、熱伝導部材3
1,32の熱伝導率を飛躍的に向上することができるた
め、ガラスレンズ12の均温化を成形型5,6の内部温
度調整により、きめ細かく行うことが可能となるので、
より一層成形ガラスレンズの両面の面精度が向上し、品
質のよいレンズが生産性よく製造できる。
According to the present embodiment described above, the heat conducting member 3
Since the thermal conductivity of 1, 32 can be dramatically improved, the temperature of the glass lens 12 can be finely adjusted by adjusting the internal temperatures of the molding dies 5, 6.
The surface accuracy of both surfaces of the molded glass lens is further improved, and high quality lenses can be manufactured with high productivity.

【0024】[0024]

【発明の効果】上記構成の本発明によれば、成形型の加
熱と冷却手段を成形型外に設けて熱伝導部材を介して加
熱と冷却とを行うようにしたので、成形されるガラスレ
ンズの形状、材質などに対応した加熱冷却と、能力およ
び装置の大型化などの制限を必要としない選択自由とな
り、幅の広い型内部の温調が実現し、ガラスレンズの均
温化が容易となり、特に凸レンズ凹レンズあるいはメニ
スカスレンズなどの両面の面精度がよい高品質で生産性
に優れた効果を奏する。
According to the present invention having the above-mentioned structure, the heating and cooling means for the molding die are provided outside the molding die to perform heating and cooling through the heat conducting member. The heating and cooling corresponding to the shape and material of the mold, and the freedom to choose without the limitation of capacity and size of the equipment, wide temperature control inside the mold, and easy temperature equalization of the glass lens In particular, a convex lens, a concave lens, a meniscus lens, and the like have high surface accuracy on both surfaces, and have an effect of excellent productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガラスレンズ成形装置の型内の加熱冷
却装置の概念を示す正面よりの断面図である。
FIG. 1 is a front sectional view showing the concept of a heating / cooling device in a mold of a glass lens molding device of the present invention.

【図2】本発明のガラスレンズ成形装置の型内加熱冷却
装置の実施例1に係わる要部を示す正面よりの断面図で
ある。
FIG. 2 is a cross-sectional view from the front showing the main part of the heating / cooling device in the mold of the glass lens molding device according to the first embodiment of the present invention.

【図3】図2に示す加熱冷却装置の冷却部の変形例を示
す正面よりの断面図である。
FIG. 3 is a front sectional view showing a modified example of the cooling unit of the heating / cooling device shown in FIG.

【図4】本発明のガラスレンズ成形装置の型内の加熱冷
却装置の実施例2に係わる下型のみの要部を示す正面よ
りの断面図である。
FIG. 4 is a cross-sectional view from the front showing a main part of only a lower mold according to a second embodiment of the heating and cooling device in the mold of the glass lens molding apparatus of the present invention.

【図5】図4に示すA−A線よりの熱伝導部材の上面よ
りの断面図である。
5 is a cross-sectional view from the top surface of the heat conducting member taken along the line AA shown in FIG.

【図6】従来のガラス光学部品の成形型を示す正面より
の断面図である。
FIG. 6 is a cross-sectional view from the front showing a molding die for a conventional glass optical component.

【図7】従来の光学素子の製造方法に用い似れた成形用
型装置の正面よりの断面図である。
FIG. 7 is a cross-sectional view from the front of a molding die apparatus similar to that used in the conventional method of manufacturing an optical element.

【符号の説明】[Explanation of symbols]

5 上型 6 下型 8,9 熱電対 12 ガラスレンズ 13,14,31,32 熱伝導部材 15,16 加熱部 17,18 冷却部 19,20 外周加熱部 21 外周冷却ブロー 22,23 加熱冷却部材 24 冷却フィン 25 エアーノズル 28,29 固定ピン 33,34 カシメキャップ 35,36 ウィック網 38 縦溝 39,40 放熱ポイント(気化ポイント) 41,42 拡散 5 Upper mold 6 Lower mold 8,9 Thermocouple 12 Glass lens 13,14,31,32 Heat conduction member 15,16 Heating part 17,18 Cooling part 19,20 Outer peripheral heating part 21 Outer peripheral cooling blow 22,23 Heating / cooling member 24 Cooling Fin 25 Air Nozzle 28,29 Fixing Pin 33,34 Caulking Cap 35,36 Wick Net 38 Vertical Groove 39,40 Heat Dissipation Point (Vaporization Point) 41,42 Diffusion

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 加熱軟化したガラスゴブを押圧成形する
一対の成形型と、この成形型内を加熱冷却するために設
けた型内加熱冷却部と、この加熱冷却部と成形型間に配
設した熱伝導部材とを具備したことを特徴とするガラス
レンズ成形装置の型内加熱冷却装置。
1. A pair of molding dies for press-molding a heat-softened glass gob, an in-mold heating / cooling section provided for heating / cooling the inside of the molding dies, and a heating / cooling section and a molding die. An in-mold heating / cooling device for a glass lens molding device, comprising: a heat conducting member.
【請求項2】 加熱部と冷却部とは、同一の熱伝導部材
に連設したことを特徴とする請求項1のガラスレンズ成
形装置の型内加熱冷却装置。
2. The in-mold heating / cooling device of the glass lens molding apparatus according to claim 1, wherein the heating part and the cooling part are connected to the same heat conducting member.
【請求項3】 熱伝導部材が熱交換ヒートパイプである
ことを特徴とする請求項1のガラスレンズ成形装置の型
内加熱冷却装置。
3. The in-mold heating / cooling device of the glass lens molding device according to claim 1, wherein the heat conducting member is a heat exchange heat pipe.
JP10040093A 1993-04-02 1993-04-02 In-mold heating and cooling device for glass lens forming device Pending JPH06293528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10040093A JPH06293528A (en) 1993-04-02 1993-04-02 In-mold heating and cooling device for glass lens forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10040093A JPH06293528A (en) 1993-04-02 1993-04-02 In-mold heating and cooling device for glass lens forming device

Publications (1)

Publication Number Publication Date
JPH06293528A true JPH06293528A (en) 1994-10-21

Family

ID=14272940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10040093A Pending JPH06293528A (en) 1993-04-02 1993-04-02 In-mold heating and cooling device for glass lens forming device

Country Status (1)

Country Link
JP (1) JPH06293528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011528A1 (en) * 2008-02-28 2009-09-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for the production of articles from glass by hot forming and manufacturing process
CN110963679A (en) * 2019-12-12 2020-04-07 深圳市赢合技术有限公司 Cooling system and method for rapidly cooling 3D curved surface hot-bent glass
CN111212726A (en) * 2017-10-13 2020-05-29 康宁股份有限公司 Method and apparatus for pressing glass or glass-ceramic preform to form shaped plate, method for manufacturing liquid lens and liquid lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011528A1 (en) * 2008-02-28 2009-09-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for the production of articles from glass by hot forming and manufacturing process
CN111212726A (en) * 2017-10-13 2020-05-29 康宁股份有限公司 Method and apparatus for pressing glass or glass-ceramic preform to form shaped plate, method for manufacturing liquid lens and liquid lens
US11608288B2 (en) 2017-10-13 2023-03-21 Corning Incorporated Methods and apparatus for pressing glass or glass-ceramic preforms to form shaped plates, methods for manufacturing liquid lenses, and liquid lenses
CN110963679A (en) * 2019-12-12 2020-04-07 深圳市赢合技术有限公司 Cooling system and method for rapidly cooling 3D curved surface hot-bent glass
CN110963679B (en) * 2019-12-12 2023-10-24 惠州市赢合智能技术有限公司 Cooling system and method for rapidly cooling 3D curved surface hot bent glass

Similar Documents

Publication Publication Date Title
JPH06293528A (en) In-mold heating and cooling device for glass lens forming device
JP3135098B2 (en) Optical element molding equipment
JP2011016699A (en) Method for manufacturing optical device and optical device
CN114685033A (en) Method for moulding by obtaining a calibration curve of temperature
JP2000247653A (en) Metal mold for forming optical element and optical element
JP2006240943A (en) Apparatus and method for hot press molding
JP2002172625A (en) Resin molding mold and resin molding method using the mold
JP3537160B2 (en) Optical lens molding die
JP3585260B2 (en) Apparatus and method for manufacturing optical element
CN211307219U (en) Steam quick-cooling and quick-heating die
KR200310830Y1 (en) Heat device of die casting mold
JP3131472B2 (en) Optical element and method for molding optical element
JP2723139B2 (en) Optical element molding method and molding apparatus
JPS6227336A (en) Forming device for optical parts
JP3131584B2 (en) Method for molding optical element and optical element
CN115893816A (en) Hot reflux forming method and hot pressing device
JP4203289B2 (en) Quartz glass element molding apparatus and molding method
JPH0531501B2 (en)
JPH06157054A (en) Method for forming optical element and apparatus therefor
JP2694690B2 (en) Optical element molding die and optical element molding method using the die
JPH05193962A (en) Method for forming glass optical element
JP2007238389A (en) Method and apparatus for molding optical component
JP2001180948A (en) Press-forming machine for glass product
JPH06191865A (en) Metallic mold for molding optical element
JP2645096B2 (en) Optical element molding equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516