JPH06292668A - Ultrasonic equipment - Google Patents

Ultrasonic equipment

Info

Publication number
JPH06292668A
JPH06292668A JP8294193A JP8294193A JPH06292668A JP H06292668 A JPH06292668 A JP H06292668A JP 8294193 A JP8294193 A JP 8294193A JP 8294193 A JP8294193 A JP 8294193A JP H06292668 A JPH06292668 A JP H06292668A
Authority
JP
Japan
Prior art keywords
signal
fourier transform
reflector
signals
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8294193A
Other languages
Japanese (ja)
Inventor
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8294193A priority Critical patent/JPH06292668A/en
Publication of JPH06292668A publication Critical patent/JPH06292668A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure the vector velocity of an object by performing an operation to transmit an ultrasonic wave and to transmit a reflected signal from a specified direction by plural elements several times, time-sequentially obtaining the received signals of respective elements corresponding to specified depth and performing Fourier transformation to the result. CONSTITUTION:Ultrasonic signals Tp are successively transmitted from an element for transmission to a comparatively wide range 2 at time intervals T, signals from a reflector are received by an arrangement type receiver 3, and the curvature of a wave surface depending on a distance to the reflector is corrected by a recessed surface delay circuit 4. Thus, received signals R (n, m, p) to be changed like 5, 6 and 7 are provided corresponding to the position of the reflector to be changed with the passage of time. Signals R0 (m, p) (=R (n0, m, p) at the specified time (a sample number n0) of such a received signal are changed like 8, 9 and 10. Fourier transformation is performed to such a signal in the arranging direction and normal projection processing is performed so as to measure operation velocity in the manner of a vector.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超音波による物体のベク
トル的速度計測に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to vectorial velocity measurement of an object by ultrasonic waves.

【0002】[0002]

【従来の技術】超音波のドプラ効果により対象物の速度
を計測する方法は知られている。また、超音波の進行方
向に直交する方向の速度成分を計測可能とする方法もあ
る。この方法は、超音波を送信し特定方向からの反射信
号を複数の素子により受信する動作を複数回行い、特定
深度に対応する受信信号を配列方向にフーリエ変換し、
この結果の時間変化を二次元信号と考え放射状フーリエ
変換を行うことによりベクトル的運動速度の計測を行う
方法(以下CVと呼ぶ)である。
2. Description of the Related Art A method for measuring the velocity of an object by the Doppler effect of ultrasonic waves is known. There is also a method of making it possible to measure a velocity component in a direction orthogonal to the traveling direction of ultrasonic waves. This method performs an operation of transmitting ultrasonic waves and receiving a reflection signal from a specific direction by a plurality of elements a plurality of times, and Fourier transforms a reception signal corresponding to a specific depth in an array direction,
This is a method (hereinafter referred to as CV) of measuring the vectorial motion velocity by considering the resulting time change as a two-dimensional signal and performing radial Fourier transform.

【0003】[0003]

【発明が解決しようとする課題】このCVによると、放
射状のフーリエ変換が必要であり、特殊な構成が必要と
なる。そこで、この問題点を解決し、通常技術により同
等の効果を実現する。
According to this CV, a radial Fourier transform is required and a special configuration is required. Therefore, this problem is solved and the equivalent effect is realized by the normal technique.

【0004】[0004]

【課題を解決するための手段】超音波を送信し特定方向
からの反射信号を複数の素子により受信する動作を複数
回行い、特定深度に対応する各素子の受信信号を時系列
的に求める。この結果を通常の一次元あるいは二次元の
フーリエ変換を行い、通常の投影処理を行うことにより
ベクトル的運動速度の計測を行う。この方法において
は、放射方向に関する特殊なフーリエ変換は不要とな
る。
An operation of transmitting an ultrasonic wave and receiving a reflected signal from a specific direction by a plurality of elements is performed a plurality of times, and a received signal of each element corresponding to a specific depth is obtained in time series. The result is subjected to a normal one-dimensional or two-dimensional Fourier transform, and a normal projection process is performed to measure the vectorial motion velocity. This method does not require a special Fourier transform with respect to the radial direction.

【0005】[0005]

【作用】本方式の送受信動作を図1により説明する。ま
ず、図1の1に示す送信用素子から比較的広い範囲2
に、時間間隔Tなる超音波信号Tp(p=−P・・・+
P)を順次送波する。反射体からの信号を配列形受波器
3により受波し、反射体までの距離に依存する波面の曲
率を凹面遅延回路4により補正する。このようにして得
られた受信信号R(n,m,p)は、時間と共に変化する反
射体位置に対応して5,6,7と変化する。このような
受信信号の特定時刻(サンプル番号n0 )の信号R
0(m,p)(=R(n0,m,p))は8,9,10と変化す
る。
The transmission / reception operation of this system will be described with reference to FIG. First, a relatively wide range 2 from the transmitting element 1 shown in FIG.
, The ultrasonic signal Tp (p = −P ... +) with the time interval T
P) are sequentially transmitted. The signal from the reflector is received by the arrayed wave receiver 3, and the curvature of the wavefront depending on the distance to the reflector is corrected by the concave delay circuit 4. The received signal R (n, m, p) thus obtained changes to 5, 6, and 7 in accordance with the position of the reflector that changes with time. A signal R of such a received signal at a specific time (sample number n 0 )
0 (m, p) (= R (n 0 , m, p)) changes to 8, 9, and 10.

【0006】つまり目的信号の空間周波数は、反射体の
方位方向移動に対応し、図2aに示すように時間と共に
変化することとなる。ここでMは素子の総数である。こ
のような信号を配列方向にフーリエ変換すると図2bと
なり、傾斜した直線11上に信号R1(ω,p)が得られ
る。ここで、この直線の勾配θ0が反射体の方位方向速
度に対応する。
That is, the spatial frequency of the target signal corresponds to the movement of the reflector in the azimuth direction, and changes with time as shown in FIG. 2a. Here, M is the total number of elements. The signal R 1 (ω, p) is obtained on the inclined straight line 11 by Fourier transforming such a signal in the array direction as shown in FIG. Here, the gradient θ 0 of this straight line corresponds to the azimuth direction velocity of the reflector.

【0007】ここで、図3aに示すように反射体が距離
方向の速度成分を同時に有する場合には、図3bに示す
ように信号の位相が回転する。この位相回転速度が反射
体の距離方向速度に対応する。
Here, when the reflector simultaneously has a velocity component in the distance direction as shown in FIG. 3a, the phase of the signal rotates as shown in FIG. 3b. This phase rotation speed corresponds to the distance direction speed of the reflector.

【0008】ついで、図4aの11に示すこのR1(ω,
p)を二次元フーリエ変換すると、図4bに示すR2(m,
f)となる。ここでR2 の第一変数は、フーリエ変換に
おける関係から、当初変数である配列素子位置変数mに
戻る。図4bにおける距離r0は、R1(ω,p)の傾斜直
線11上の周波数に対応し、従って対象の距離方向速度
に対応する。
Then, this R 1 (ω,
If the two-dimensional Fourier transform of p) is performed, R 2 (m,
f). Here, the first variable of R 2 returns to the array element position variable m, which is an initial variable, from the relationship in the Fourier transform. The distance r 0 in FIG. 4b corresponds to the frequency on the inclined straight line 11 of R 1 (ω, p) and thus to the distance-wise velocity of the object.

【0009】このR2(m,f)を図5の12,13,14
に示すように種々の方向に投影する。この投影結果を投
影方向θと中心からの距離rに対応して表示すると図5
bのR(r,θ)となり、13に示す方向の投影結果であ
る、対象の方位方向及び距離方向速度に対応する位置
(r0,θ0)に大きな信号が表示される事になり、この
位置から対象のベクトル速度が求まることになる。
This R 2 (m, f) is represented by 12, 13, 14 in FIG.
Project in various directions as shown in. When this projection result is displayed in correspondence with the projection direction θ and the distance r from the center, FIG.
It becomes R (r, θ) of b, and a large signal is displayed at the position (r 0 , θ 0 ) corresponding to the azimuth direction and the distance direction speed of the target, which is the projection result in the direction indicated by 13. From this position, the target vector velocity can be obtained.

【0010】以上の処理の全体をまとめて図6に示す。
ここで、15が配列方向への一次元フーリエ変換,16
が二次元フーリエ変換,17が放射方向への投影処理で
ある。
The entire processing described above is shown in FIG.
Here, 15 is a one-dimensional Fourier transform in the array direction, 16
Is a two-dimensional Fourier transform, and 17 is a projection process in the radial direction.

【0011】以上は、先ず配列方向にフーリエ変換し次
いで二次元フーリエ変換することにより形成する基本的
構成法である。ここで、図4bに示したように、R
2(m,f)の第一の次元は当初の素子位置に関する変数
mに戻っている。このため、受信信号R(m,p)を送
波時刻pに関してフーリエ変換することにより、直接R
2(m,f)が得られる事になる。このR2(m,f)を投影
することにより、基本構成と同様に、対象のベクトル速
度が求まることになる。この簡略化構成の全体を図7に
示す。ここで、18は時間方向への一次元フーリエ変
換、また17は放射方向への投影処理である。
The above is the basic construction method which is formed by first performing the Fourier transform in the array direction and then the two-dimensional Fourier transform. Here, as shown in FIG.
The first dimension of 2 (m, f) returns to the variable m for the initial device position. Therefore, the received signal R 0 (m, p) is directly transformed into R
2 (m, f) will be obtained. By projecting this R 2 (m, f), the target vector velocity can be obtained as in the basic configuration. The whole of this simplified configuration is shown in FIG. Here, 18 is a one-dimensional Fourier transform in the time direction, and 17 is a projection process in the radial direction.

【0012】図6あるいは図7の構成において、R
2(m,f)を求めるためには時間軸方向pに関するフーリ
エ変換がどこかで行われるが、この変換において図8a
に示す受信信号R0(m,p)のp方向について図8bに示
す振幅重みを付加する。このような重み付けを行うと、
加重結果のpに関するフーリエ変換は図8cに示すよう
に、目的信号出力の両脇に振幅が半分で位相が逆の部分
が付加される。このため、図9に示すように、対象物の
方位方向速度に対応するθ0 方向13への投影は大きな
値に成長するが、その方向から微小量Δθずれた方向1
2あるいは14への投影はこの逆位相部分の打消効果に
より大幅に低下する。このため方位方向の速度分解能が
大幅に向上する。またこのフーリエ変換における重み付
けはこの方法に限られるものではなく、任意の方向につ
き種々の形状により可能であり、それぞれ固有の効果が
期待される。
In the configuration of FIG. 6 or 7, R
In order to obtain 2 (m, f), a Fourier transform with respect to the time axis direction p is performed somewhere.
8b is added to the p direction of the received signal R 0 (m, p) shown in FIG. With such weighting,
As shown in FIG. 8C, the Fourier transform related to the weighting result p is such that a portion having half the amplitude and the opposite phase is added to both sides of the target signal output. Therefore, as shown in FIG. 9, although the projection in the θ 0 direction 13 corresponding to the azimuth velocity of the object grows to a large value, the direction 1 deviated from that direction by a small amount Δθ.
The projection onto 2 or 14 is greatly reduced by the canceling effect of this antiphase portion. Therefore, the velocity resolution in the azimuth direction is significantly improved. Further, the weighting in this Fourier transform is not limited to this method, and it is possible to have various shapes in arbitrary directions, and the respective unique effects are expected.

【0013】また、図7に典型例が見られるが、時間軸
方向にフーリエ変換を行う場合においては、図10に示
すように、R2(m,f)から最も古い信号による部分Aを
フーリエの領域において取り除き、最新信号の効果Bを
加算し次の時刻のR2(m,f)であるR2′(m,f)を導出
する逐次処理 R2′(m,f)=R2(m,f)−A+B により、連続計測などの場合におけるフーリエ変換が大
幅に簡略化される。
A typical example can be seen in FIG. 7, but in the case of performing the Fourier transform in the time axis direction, as shown in FIG. 10, the portion A of the oldest signal from R 2 (m, f) is Fourier-transformed. removed in the region, it is added to effect B latest signal R 2 at the next time (m, f) R 2 ' (m, f) sequential processing to derive the R 2' (m, f) = R 2 (m, f) -A + B greatly simplifies the Fourier transform in cases such as continuous measurement.

【0014】次に、固定した反射体が存在する場合を考
えると、このままでは計測精度が低下する。そこで、送
波時間方向pに関して隣接する信号間の差R0′(m,
p)を R0′(m,p)=R0(m,p)−R0(m,p+1) とすると、時間と共に変化する運動物体に対応する信号
のみが大きく残ることになり、その後の速度計測処理を
行うことにより、計測精度の低下なしに目的とする速度
計測が可能となる。この差分処理は、固定信号を抑圧す
る手段であればどのような構成でもよく、この構成に限
定されるものではない。
Next, considering the case where a fixed reflector is present, the measurement accuracy will be reduced as it is. Therefore, the difference R 0 ′ (m,
If p) is R 0 ′ (m, p) = R 0 (m, p) −R 0 (m, p + 1), only the signal corresponding to the moving object that changes with time remains largely, and By performing the speed measurement process, the target speed measurement can be performed without lowering the measurement accuracy. This difference processing may have any configuration as long as it is a means for suppressing a fixed signal, and is not limited to this configuration.

【0015】[0015]

【実施例】本発明による装置全体の構成を図11に示
す。ここで、19が配列形超音波送受波器であり、その
一部分を駆動信号源20からの信号により振動させるこ
とにより対象領域中に超音波を発生する。反射体からの
信号は19により受信される。この受信信号は増幅器2
1により増幅され、アナログ−ディジタル変換器22に
よりディジタル化され、速度演算部23に入力する。こ
の速度演算部により本発明による速度計測処理が行わ
れ、24の表示部に色相あるいは輝度あるいは数字等に
より表示する。この他の、超音波装置通常の処理は当然
併用される。また、CVにおいて行われる三次元ベクト
ル計測等の各種拡張構成は、この方式においても同様に
可能である。
FIG. 11 shows the structure of the entire apparatus according to the present invention. Here, 19 is an array type ultrasonic wave transmitter / receiver, and an ultrasonic wave is generated in a target region by vibrating a part of the ultrasonic wave transmitter / receiver by a signal from the drive signal source 20. The signal from the reflector is received by 19. This received signal is the amplifier 2
The signal is amplified by 1, digitized by the analog-digital converter 22, and input to the speed calculator 23. The speed calculation processing according to the present invention is performed by the speed calculation unit, and the display is made by the hue, the brightness, the numeral or the like on the 24 display unit. Other than this, the normal processing of the ultrasonic device is naturally used together. Further, various expanded configurations such as three-dimensional vector measurement performed in the CV are also possible in this system as well.

【0016】[0016]

【発明の効果】本発明の装置によれば、通常のフーリエ
変換のみにより、ベクトル速度計測が可能となる。
According to the apparatus of the present invention, the vector velocity can be measured only by the ordinary Fourier transform.

【図面の簡単な説明】[Brief description of drawings]

【図1】受信信号説明図。FIG. 1 is an explanatory diagram of received signals.

【図2】配列方向一次元フーリエ変換出力の説明図。FIG. 2 is an explanatory diagram of an array direction one-dimensional Fourier transform output.

【図3】距離方向速度説明図。FIG. 3 is an explanatory view of speed in a distance direction.

【図4】二次元フーリエ変換出力の説明図。FIG. 4 is an explanatory diagram of a two-dimensional Fourier transform output.

【図5】放射方向投影説明図。FIG. 5 is a radial projection explanatory diagram.

【図6】基本構成説明図。FIG. 6 is an explanatory diagram of a basic configuration.

【図7】簡易構成説明図。FIG. 7 is an explanatory diagram of a simple configuration.

【図8】重み付け説明図。FIG. 8 is an explanatory diagram of weighting.

【図9】重み付け効果説明図。FIG. 9 is an explanatory diagram of a weighting effect.

【図10】逐次フーリエ変換説明図。FIG. 10 is an explanatory diagram of a sequential Fourier transform.

【図11】実施例全体構成例を示す図。FIG. 11 is a diagram showing an example of the overall configuration of the embodiment.

【符号の説明】[Explanation of symbols]

19…送受波器、20…送波信号源、21…増幅器、2
2…アナログ−ディジタル変換器、23…速度演算部、
24…表示部。
Reference numeral 19 ... Transceiver, 20 ... Transmission signal source, 21 ... Amplifier, 2
2 ... Analog-digital converter, 23 ... Speed calculator,
24 ... Display section.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】超音波を送信する手段と、特定方向からの
反射信号を受信する複数の素子と上記受信動作を複数回
行って得られる特定深度に対応する受信信号を時系列方
向につきフーリエ変換する手段と、この結果である二次
元信号を各方向に投影することによりベクトル的運動速
度の計測を行う手段を有することを特徴とする超音波装
置。
1. A means for transmitting an ultrasonic wave, a plurality of elements for receiving a reflected signal from a specific direction, and a Fourier transform of a received signal corresponding to a specific depth obtained by performing the receiving operation a plurality of times in a time series direction. And an ultrasonic device comprising means for measuring the vectorial motion velocity by projecting the resulting two-dimensional signal in each direction.
【請求項2】超音波を送信する手段と、特定方向からの
反射信号を受信する複数の素子と、上記受信動作を複数
回行って得られる、特定深度に対応する受信信号を素子
配列方向につきフーリエ変換する手段と、この結果を二
次元フーリエ変換する手段と、さらにこの結果を各方向
に投影することによりベクトル的運動速度の計測を行う
手段を有することを特徴とする超音波装置。
2. A means for transmitting an ultrasonic wave, a plurality of elements for receiving a reflection signal from a specific direction, and a reception signal corresponding to a specific depth obtained by performing the receiving operation a plurality of times in the element array direction. An ultrasonic device comprising means for performing a Fourier transform, means for performing a two-dimensional Fourier transform of the result, and means for measuring the vectorial motion velocity by projecting the result in each direction.
【請求項3】請求項1あるいは2記載の装置において、
フーリエ変換時に信号の差分処理を行う手段を設けてな
る超音波装置。
3. The apparatus according to claim 1 or 2,
An ultrasonic device comprising means for performing signal difference processing during Fourier transform.
【請求項4】請求項1あるいは2記載の装置において、
フーリエ変換処理を逐次処理により行う手段を有してな
る超音波装置。
4. The apparatus according to claim 1 or 2,
An ultrasonic device comprising means for performing Fourier transform processing by sequential processing.
【請求項5】請求項1あるいは2記載の装置において、
フーリエ変換時に信号の重み付けを行う手段を有してな
る超音波装置。
5. The apparatus according to claim 1 or 2,
An ultrasonic device comprising means for weighting signals during Fourier transform.
JP8294193A 1993-04-09 1993-04-09 Ultrasonic equipment Pending JPH06292668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8294193A JPH06292668A (en) 1993-04-09 1993-04-09 Ultrasonic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8294193A JPH06292668A (en) 1993-04-09 1993-04-09 Ultrasonic equipment

Publications (1)

Publication Number Publication Date
JPH06292668A true JPH06292668A (en) 1994-10-21

Family

ID=13788254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8294193A Pending JPH06292668A (en) 1993-04-09 1993-04-09 Ultrasonic equipment

Country Status (1)

Country Link
JP (1) JPH06292668A (en)

Similar Documents

Publication Publication Date Title
US20220107403A1 (en) Systems and methods for interpolated virtual aperature radar tracking
CN101548198B (en) A sar radar system and a method relating thereto
JP2544342B2 (en) Ultrasonic Doppler diagnostic device
RU96115330A (en) DEVICE FOR COMPENSATION OF MOTION ERRORS FOR RADARS WITH A SYNTHESIZED Aperture BASED ON ROTATING ANTENNA (ROSAR) FOR HELICOPTERS
JPH10253730A (en) Wide-band direction estimation device and method
US5476098A (en) Partially coherent imaging for large-aperture phased arrays
EP2317335B1 (en) Improved beamforming method for analysing signals received by a transducer arrray, and relative detection system
KR20000036154A (en) Process for determining the relative velocity between two moving objects
KR0122764B1 (en) Transducer device for acoustic log
JP3266723B2 (en) Ultrasonic signal processing method
JPH06292668A (en) Ultrasonic equipment
JP3018300B2 (en) Vector velocity measurement device for objects using ultrasonic waves
NL8006069A (en) METHOD FOR DETERMINING THE STATE OF THE SEA AND APPARATUS FOR APPLYING THE METHOD
JPH04126137A (en) Ultrasonic doppler diagnostic device
US5668776A (en) Velocity measurement apparatus of moving object
JP2751616B2 (en) Radar signal processing method and apparatus
EP1678522A1 (en) Improved active element array apparatus for displaced phase center systems
JP2003322678A (en) Ultrasonic surveyor
JP3483970B2 (en) Ultrasonic flow velocity measuring device
JP3583838B2 (en) Ultrasonic underwater detector
US5127418A (en) Ultrasonic diagnostic apparatus
JP2956783B2 (en) Ultrasonic flow velocity measuring device
RU2195683C2 (en) Method determining direction on target
JPH0933553A (en) Ultrasonic flow velocity measuring device
JPH10170640A (en) Measuring device