JPH06291585A - Surface acoustic wave element and filter - Google Patents

Surface acoustic wave element and filter

Info

Publication number
JPH06291585A
JPH06291585A JP3091180A JP9118091A JPH06291585A JP H06291585 A JPH06291585 A JP H06291585A JP 3091180 A JP3091180 A JP 3091180A JP 9118091 A JP9118091 A JP 9118091A JP H06291585 A JPH06291585 A JP H06291585A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
electrode
positive
negative electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3091180A
Other languages
Japanese (ja)
Other versions
JP2847438B2 (en
Inventor
Kazuhiko Yamanouchi
和彦 山之内
Junichi Ogata
淳一 尾形
Toshiharu Kato
俊治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3091180A priority Critical patent/JP2847438B2/en
Priority to US07/858,333 priority patent/US5256927A/en
Publication of JPH06291585A publication Critical patent/JPH06291585A/en
Application granted granted Critical
Publication of JP2847438B2 publication Critical patent/JP2847438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14555Chirped transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02685Grating lines having particular arrangements
    • H03H9/0274Intra-transducers grating lines
    • H03H9/02755Meandering floating or grounded grating lines
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/30Time-delay networks
    • H03H9/42Time-delay networks using surface acoustic waves
    • H03H9/44Frequency dependent delay lines, e.g. dispersive delay lines

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To provide a surface acoustic wave element having the characteristic of a low insertion loss for one direction, and a wide band characteristic. CONSTITUTION:The surface acoustic wave element in which an interdigital electrode having a thickness is provided on a piezoelectric or electrostrictive substrate 1, is equipped with a first interdigital electrode which excites a surface acoustic wave in which positive and negative electrodes 4 and 5 whose electrode width and period are gradually shortened in the transmitting direction of the surface acoustic wave are alternatively arranged, and a second interdigital electrode which receives the surface acoustic wave in which positive and negative electrodes 6 and 7 whose electrode width and cycle are gradually lengthened in the transmitting direction of the surface acoustic wave are alternately arranged. Also, this element is equipped with a third interdigital electrode which excites the surface acoustic wave in which the positive and negative electrodes whose electrode width and cycle are gradually shortened in the transmitting direction of the surface acoustic wave are alternately arranged, and a fourth interdigital electrode which receives the surface acoustic wave in which the positive and negative electrodes whose electrode width and period are gradually shortened in the transmitting direction of the surface acoustic wave are alternately arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、弾性表面波の伝搬方向
に電極幅および周期の異なるすだれ状電極を設けた弾性
表面波変換器を組合わせた弾性表面波素子およびそのよ
うな弾性表面波素子を用いたフィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave element in which a surface acoustic wave converter is provided which is provided with interdigital transducers having different electrode widths and periods in the propagation direction of the surface acoustic wave, and such a surface acoustic wave. The present invention relates to a filter using an element.

【0002】[0002]

【従来の技術】従来、圧電性基板(圧電性薄膜基板を含
む)または電歪性基板上に設けられた正負の電極からな
るすだれ状電極を有する弾性表面波変換器は、一般には
等周期構造の電極配置となっていた。図4(a)は、従
来の弾性表面波変換器を用いたフィルタを示す平面図、
図4(b)はそのX−Y断面図を示す。41は電気信号
を弾性表面波に変換する励振側の弾性表面波変換器、4
2は弾性表面波変換器41で発生され矢印Aのように進
んできた弾性表面波を検出して電気信号として取り出す
受信側の弾性表面波変換器である。弾性表面波変換器4
1,42のすだれ状電極はいずれも等周期の電極配置構
造を有する。すなわち、すだれ状電極の電極幅をm、周
期をpとしたときpは一定であり、またm/pはどこを
とっても定数(多くは「0.5」)であった。
2. Description of the Related Art Conventionally, a surface acoustic wave converter having a comb-shaped electrode composed of positive and negative electrodes provided on a piezoelectric substrate (including a piezoelectric thin film substrate) or an electrostrictive substrate generally has an equi-periodic structure. The electrodes were arranged. FIG. 4A is a plan view showing a filter using a conventional surface acoustic wave converter,
FIG.4 (b) shows the XY sectional view. 41 is a surface acoustic wave converter on the excitation side for converting an electric signal into a surface acoustic wave, 4
Reference numeral 2 denotes a receiving surface acoustic wave converter that detects the surface acoustic wave generated by the surface acoustic wave converter 41 and progressing as shown by an arrow A, and extracts the surface acoustic wave as an electric signal. Surface acoustic wave converter 4
Each of the interdigital electrodes 1 and 42 has an electrode arrangement structure with an equal period. That is, when the electrode width of the interdigital transducer is m and the period is p, p is constant and m / p is a constant (mostly "0.5").

【0003】このような等周期の電極配置構造を有する
弾性表面波変換器では、発生された弾性表面波は左右両
方向にほぼ同じ振幅で伝搬する。したがって、両方向に
同様の挿入損失特性を有し、いわば両方向性の特性を有
するといえる。
In the surface acoustic wave converter having such an electrode arrangement structure of equal period, the generated surface acoustic waves propagate in the left and right directions with substantially the same amplitude. Therefore, it can be said that they have similar insertion loss characteristics in both directions, that is, they have bidirectional characteristics.

【0004】一方、等周期の電極配置構造を有する弾性
表面波変換器を用いて一方向にのみ低挿入損失の特性を
有する一方向性の弾性表面波変換器を得る技術として、
従来は例えば120度移相器を用いる方法、90度移相
器を用いる方法、および等周期で正負電極の間に反射電
極を非対称に配置することにより一方向特性を得る内部
反射型一方向性変換器とする方法などがあった。
On the other hand, as a technique for obtaining a unidirectional surface acoustic wave converter having a characteristic of low insertion loss in only one direction by using a surface acoustic wave converter having an electrode arrangement structure of equal periods,
Conventionally, for example, a method of using a 120-degree phase shifter, a method of using a 90-degree phase shifter, and an internal reflection type unidirectionality that obtains a unidirectional characteristic by arranging reflective electrodes asymmetrically between positive and negative electrodes at equal intervals There was a method such as a converter.

【0005】さらに、弾性表面波素子の1つに分散型遅
延線(チャープフィルタ)がある。図5は、従来の分散
型遅延線の構造を示す平面図である。51は電気信号を
弾性表面波に変換する励振側の弾性表面波変換器、52
は弾性表面波変換器51で発生され矢印Bのように進ん
できた弾性表面波を検出して電気信号として取り出す受
信側の弾性表面波変換器である。弾性表面波変換器52
のすだれ状電極は、弾性表面波の伝搬方向Bに沿って徐
々に周期が短くなるように正電極53および負電極54
を交互に配置した構造を有する。このように正負の電極
を配置することにより、遅延時間が周波数に比例して変
化する特性が得られる。
Further, one of the surface acoustic wave devices is a dispersion type delay line (chirp filter). FIG. 5 is a plan view showing the structure of a conventional distributed delay line. Reference numeral 51 is a surface acoustic wave converter on the excitation side for converting an electric signal into a surface acoustic wave.
Is a surface acoustic wave converter on the receiving side that detects the surface acoustic wave generated by the surface acoustic wave converter 51 and has proceeded as shown by arrow B, and extracts it as an electric signal. Surface acoustic wave converter 52
The interdigital transducer has a positive electrode 53 and a negative electrode 54 so that the period becomes gradually shorter along the propagation direction B of the surface acoustic wave.
It has a structure in which are alternately arranged. By arranging the positive and negative electrodes in this way, the characteristic that the delay time changes in proportion to the frequency can be obtained.

【0006】[0006]

【発明が解決しようとする課題】等周期の電極配置構造
を有する弾性表面波変換器は両方向性の特性を有し、一
方向にのみ低挿入損失となる特性は得られない。また、
上述の一方向性の弾性表面波変換器を得る技術では、一
方向に低挿入損失となる特性が得られるが、やはり等周
期の電極配置構造を有する弾性表面波変換器を用いてい
るので、広帯域の特性が得られない。
A surface acoustic wave converter having an electrode arrangement structure with an equal period has a bidirectional characteristic, and a characteristic of low insertion loss in only one direction cannot be obtained. Also,
In the technique for obtaining the above-mentioned unidirectional surface acoustic wave converter, a characteristic that the insertion loss is low in one direction is obtained, but since the surface acoustic wave converter having the electrode arrangement structure of an equal period is used, Broadband characteristics cannot be obtained.

【0007】また、図5のような分散型遅延線では周波
数の高い信号の遅延時間は長く、周波数の低い信号の遅
延時間は短いアップチャープの遅延線となり、逆の特性
のダウンチャープの遅延線も得ることができる。しか
し、この場合も従来の分散型の変換器すなわち両方向性
の特性を有する変換器を用いており、低挿入損失の変換
器ではない。
Further, in the distributed delay line as shown in FIG. 5, the delay time of a high frequency signal is long and the delay time of a low frequency signal is a short up-chirp delay line. You can also get However, also in this case, the conventional distributed converter, that is, the converter having the bidirectional characteristic is used, and the converter is not a low insertion loss converter.

【0008】この発明は、上述の従来例における問題点
に鑑み、一方向に対して低挿入損失となる特性を有し、
かつ広帯域特性を有する弾性表面波素子を提供すること
を目的とする。
In view of the problems in the above-mentioned conventional example, the present invention has a characteristic of low insertion loss in one direction,
Another object of the present invention is to provide a surface acoustic wave device having wide band characteristics.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
め、この発明は、圧電性または電歪性の基板上に厚みを
有するすだれ状電極を設けた弾性表面波素子において、
弾性表面波の伝搬方向に徐々に電極幅および周期が短く
なる正負の電極を交互に配置した弾性表面波を励振する
第1のすだれ状電極と、弾性表面波の伝搬方向に徐々に
電極幅および周期が長くなる正負の電極を交互に配置し
た弾性表面波を受信する第2のすだれ状電極とを具備す
ることを特徴とする。
In order to achieve the above object, the present invention provides a surface acoustic wave device having a comb-shaped electrode having a thickness on a piezoelectric or electrostrictive substrate.
A first interdigital transducer that excites a surface acoustic wave in which positive and negative electrodes are alternately arranged whose electrode width and period are gradually shortened in the surface acoustic wave propagation direction, and the electrode width and the electrode width gradually increase in the surface acoustic wave propagation direction. It is characterized by comprising a second interdigital transducer for receiving surface acoustic waves in which positive and negative electrodes having a long period are alternately arranged.

【0010】また、この発明は、圧電性または電歪性の
基板上に厚みを有するすだれ状電極を設けた弾性表面波
素子において、弾性表面波の伝搬方向に徐々に電極幅お
よび周期が短くなる正負の電極を交互に配置した弾性表
面波を励振する第3のすだれ状電極と、弾性表面波の伝
搬方向に徐々に電極幅および周期が短くなる正負の電極
を交互に配置した弾性表面波を受信する第4のすだれ状
電極とを具備することを特徴とする。
Further, according to the present invention, in a surface acoustic wave element in which a comb-shaped electrode having a thickness is provided on a piezoelectric or electrostrictive substrate, the electrode width and period are gradually shortened in the propagation direction of the surface acoustic wave. A third interdigital transducer that excites a surface acoustic wave in which positive and negative electrodes are alternately arranged, and a surface acoustic wave in which positive and negative electrodes whose electrode width and period are gradually shortened in the propagation direction of the surface acoustic wave are alternately arranged. And a fourth interdigital transducer for receiving.

【0011】すだれ状電極の、電極幅をm、周期をpと
したとき、第3のすだれ状電極は0.2≦m/p≦0.
7であり、第4のすだれ状電極は0.72≦m/p≦
0.9であるようにするのが好ましい。
When the electrode width of the interdigital transducer is m and the period is p, the third interdigital electrode has 0.2 ≦ m / p ≦ 0.
7 and the fourth interdigital transducer is 0.72 ≦ m / p ≦
It is preferably set to 0.9.

【0012】また、すだれ状電極の金属膜の反射係数
が、一方は正の反射係数を有し、他方は負の反射係数を
有するようにして前記弾性表面波素子をフィルタとして
用いることができる。
Further, the surface acoustic wave device can be used as a filter so that one of the metal films of the interdigital transducer has a positive reflection coefficient and the other has a negative reflection coefficient.

【0013】[0013]

【作用】伝搬方向に周期の異なる正負電極が配置され、
その電極の膜厚が厚い場合、励振の位相と電極の反射の
位相とが一方の伝搬方向で同じ位相となり、他方の伝搬
方向では逆位相となるようにできる。このような一方向
性の特性を有する弾性表面波変換器をその方向が向かい
合うように配置すれば、周波数により遅延時間の異なる
特性の弾性表面波素子(フィルタ)が得られる。
[Operation] Positive and negative electrodes having different periods are arranged in the propagation direction,
When the film thickness of the electrode is large, the phase of excitation and the phase of reflection of the electrode can be the same phase in one propagation direction and opposite phases in the other propagation direction. If the surface acoustic wave converters having such unidirectional characteristics are arranged so that their directions face each other, a surface acoustic wave element (filter) having characteristics different in delay time depending on frequency can be obtained.

【0014】また、励振側および受信側の弾性表面波変
換器の方向性を同じ向きに合せることにより、周波数に
対して遅延時間が一定となる弾性表面波素子(フィル
タ)が得られる。特に上記の構成で、第3のすだれ状電
極は0.2≦m/p≦0.7であり、第4のすだれ状電
極は0.72≦m/p≦0.9であるようにすれば、第
4の電極はほぼ両方向性の特性を有するものとなり、挿
入損失の低いフィルタが得られる。
By adjusting the directivity of the surface acoustic wave converters on the excitation side and the receiving side to the same direction, a surface acoustic wave element (filter) having a constant delay time with respect to the frequency can be obtained. Particularly, in the above configuration, the third interdigital transducer has 0.2 ≦ m / p ≦ 0.7, and the fourth interdigital electrode has 0.72 ≦ m / p ≦ 0.9. For example, the fourth electrode has almost bidirectional characteristics, and a filter with low insertion loss can be obtained.

【0015】[0015]

【実施例】以下、図面を用いてこの発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1(a)は本発明の一実施例に係る弾性
表面波素子であるフィルタの平面図、図1(b)はその
X−Y断面図である。1は圧電性基板、2は圧電性基板
1上に配置された励振側の弾性表面波変換器、3は圧電
性基板1上に配置された受信側の弾性表面波変換器であ
る。励振側の弾性表面波変換器2は正電極4および負電
極5(第1のすだれ状電極)を有する。受信側の弾性表
面波変換器3は正電極6および負電極7(第2のすだれ
状電極)を有する。励振側の正電極4および負電極5
は、弾性表面波の伝搬方向Cに沿って徐々に電極幅mお
よび周期pが短くなるように交互に配置してある。逆
に、受信側の正電極6および負電極7は、弾性表面波の
伝搬方向Cに沿って徐々に電極幅mおよび周期pが長く
なるように交互に配置してある。ここでは、圧電性基板
1としてYカットZ伝搬のニオブ酸リチウムを、電極
4,5,6,7としてアルミニウム膜を用いた。また、
m/p=0.5とした。
FIG. 1 (a) is a plan view of a filter which is a surface acoustic wave element according to an embodiment of the present invention, and FIG. 1 (b) is an XY sectional view thereof. Reference numeral 1 is a piezoelectric substrate, 2 is an excitation-side surface acoustic wave converter arranged on the piezoelectric substrate 1, and 3 is a receiving-side surface acoustic wave converter arranged on the piezoelectric substrate 1. The surface acoustic wave converter 2 on the excitation side has a positive electrode 4 and a negative electrode 5 (first interdigital transducer). The surface acoustic wave converter 3 on the receiving side has a positive electrode 6 and a negative electrode 7 (second interdigital transducer). Excitation side positive electrode 4 and negative electrode 5
Are alternately arranged along the propagation direction C of the surface acoustic wave so that the electrode width m and the period p gradually become shorter. On the contrary, the positive electrode 6 and the negative electrode 7 on the receiving side are alternately arranged along the propagation direction C of the surface acoustic wave so that the electrode width m and the period p gradually increase. Here, Y-cut Z-propagation lithium niobate was used as the piezoelectric substrate 1, and aluminum films were used as the electrodes 4, 5, 6, 7. Also,
m / p = 0.5.

【0017】図3のグラフ31は図1のフィルタにおけ
るm/pと挿入損失との関係を示す。図1のフィルタで
は励振側と受信側で左右対称の電極配置を取っているの
で、グラフ31は弾性表面波変換器の前進方向(より大
きい振幅の弾性表面波が得られる方向)の挿入損失特性
を示すこととなる。グラフ32は図1とは逆に弾性表面
波変換器の後進方向(より小さい振幅の弾性表面波が得
られる方向)を向い合せとしたフィルタにおけるm/p
と挿入損失との関係を示す。したがって、グラフ32
は、弾性表面波変換器の後進方向の挿入損失特性を示す
こととなる。図3から、後進方向に対する挿入損失のほ
うが前進方向に対する挿入損失より大きく、また挿入損
失の大きさはm/pにより異なることが分かる。なお、
圧電体の結晶のカットおよび伝搬、さらに蒸着膜の種類
により、前進方向が反対になることもある。
Graph 31 in FIG. 3 shows the relationship between m / p and insertion loss in the filter of FIG. Since the filter of FIG. 1 has symmetrical electrode arrangements on the excitation side and the reception side, graph 31 shows insertion loss characteristics in the forward direction of the surface acoustic wave converter (direction in which a surface acoustic wave having a larger amplitude is obtained). Will be shown. Graph 32 shows m / p in a filter in which the backward direction of the surface acoustic wave converter (the direction in which a surface acoustic wave having a smaller amplitude is obtained) is made to face each other contrary to FIG.
And the insertion loss. Therefore, the graph 32
Indicates the insertion loss characteristic of the surface acoustic wave converter in the backward direction. From FIG. 3, it can be seen that the insertion loss in the backward direction is larger than the insertion loss in the forward direction, and the magnitude of the insertion loss varies depending on m / p. In addition,
The advancing direction may be opposite depending on the cut and propagation of the crystal of the piezoelectric body and the type of the deposited film.

【0018】上記図1の構成により、帯域幅が20%以
上、挿入損失が5dB以下のフィルタが得られた。な
お、図1の構成の場合のm/pは0.2〜0.7程度が
好ましい。
With the structure shown in FIG. 1, a filter having a bandwidth of 20% or more and an insertion loss of 5 dB or less was obtained. In the case of the configuration of FIG. 1, m / p is preferably about 0.2 to 0.7.

【0019】図1の例は周波数により遅延時間の異なる
特性のフィルタであるが、周波数に対して遅延時間が一
定のフィルタを得るためには、図2のように励振側およ
び受信側の方向性を同じ向きに合せればよい。図2にお
いて、22は圧電性基板上に配置された励振側の弾性表
面波変換器、23は圧電性基板上に配置された受信側の
弾性表面波変換器である。励振側の弾性表面波変換器2
2は正電極24および負電極25(第3のすだれ状電
極)を有する。受信側の弾性表面波変換器23は正電極
26および負電極27(第4のすだれ状電極)を有す
る。励振側の正電極24および負電極25は、弾性表面
波の伝搬方向Dに沿って徐々に電極幅mおよび周期pが
短くなるように交互に配置してある。同様に、受信側の
正電極26および負電極27も、弾性表面波の伝搬方向
Dに沿って徐々に電極幅mおよび周期pが短くなるよう
に交互に配置してある。
The example of FIG. 1 is a filter having a characteristic in which the delay time differs depending on the frequency, but in order to obtain a filter having a constant delay time with respect to the frequency, as shown in FIG. Should be aligned in the same direction. In FIG. 2, reference numeral 22 is an excitation-side surface acoustic wave converter arranged on the piezoelectric substrate, and 23 is a receiving-side surface acoustic wave converter arranged on the piezoelectric substrate. Excitation side surface acoustic wave converter 2
2 has a positive electrode 24 and a negative electrode 25 (third interdigital transducer). The surface acoustic wave converter 23 on the reception side has a positive electrode 26 and a negative electrode 27 (fourth interdigital transducer). The positive electrode 24 and the negative electrode 25 on the excitation side are alternately arranged along the propagation direction D of the surface acoustic wave so that the electrode width m and the period p gradually become shorter. Similarly, the positive electrode 26 and the negative electrode 27 on the receiving side are also alternately arranged along the propagation direction D of the surface acoustic wave so that the electrode width m and the period p gradually become shorter.

【0020】このように電極を配置することにより、周
波数に対して遅延時間が一定のフィルタが得られた。
By arranging the electrodes in this way, a filter having a constant delay time with respect to the frequency was obtained.

【0021】なお、励振側および受信側の一方の弾性表
面波変換器は一方向性の強いものを用い、他方は一方向
性の弱いほとんど両方向性のものを用いるとよい。した
がって、図3から一方の弾性表面波変換器は0.2≦m
/p≦0.7とし、他方は0.72≦m/p≦0.9程
度とすることが好ましい。図2のフィルタでは、励振側
の正電極24および負電極25はm/p=0.5、受信
側の正電極26および負電極27はm/p=0.8とし
た。以上により、周波数に対して遅延時間が一定であ
り、帯域幅が広く挿入損失が低いフィルタが得られる。
It should be noted that one of the surface acoustic wave converters on the excitation side and the reception side is preferably one having a strong unidirectionality, and the other surface acoustic wave converter is preferably a bidirectional one having a weak unidirectionality. Therefore, from FIG. 3, one of the surface acoustic wave converters has 0.2 ≦ m.
It is preferable that /p≦0.7 and the other is about 0.72 ≦ m / p ≦ 0.9. In the filter of FIG. 2, the positive electrode 24 and the negative electrode 25 on the excitation side were set to m / p = 0.5, and the positive electrode 26 and the negative electrode 27 on the reception side were set to m / p = 0.8. As described above, a filter having a constant delay time with respect to frequency, a wide bandwidth, and a low insertion loss can be obtained.

【0022】なお本発明は、圧電性基板上に配置された
電極における反射を積極的に利用して弾性表面波変換器
に方向性をもたせることを初めて見出だし、この弾性表
面波変換器の方向性を利用して広い帯域幅で挿入損失の
低い特性を有する弾性表面波素子を構成したものであ
る。この場合、電極において弾性表面波が反射するよう
に、電極はある程度の厚みを有する必要がある。電極の
厚さをH、弾性表面波の波長をλとすると、0.01≦
H/λ≦0.10程度とするのが好ましい。
Note that the present invention has for the first time found that the surface acoustic wave converter has directivity by positively utilizing the reflection at the electrodes arranged on the piezoelectric substrate, and the direction of the surface acoustic wave converter is determined. The surface acoustic wave device having a wide band width and a low insertion loss is formed by utilizing the characteristics. In this case, the electrode needs to have a certain thickness so that the surface acoustic wave is reflected at the electrode. Assuming that the thickness of the electrode is H and the wavelength of the surface acoustic wave is λ, 0.01 ≦
It is preferable that H / λ ≦ 0.10.

【0023】さらに、Zmを電極メタルの音響インピー
ダンスとし、Zgを電極ギャップの音響インピーダンス
としたとき、Zm/Zgの値に応じて弾性表面波変換器
の方向性が定まる。
Furthermore, when Zm is the acoustic impedance of the electrode metal and Zg is the acoustic impedance of the electrode gap, the directionality of the surface acoustic wave converter is determined according to the value of Zm / Zg.

【0024】図7は、Alからなる電極の厚さを200
0オングストロームとしZm/Zg=0.98としたと
きの等価回路解析によるチャープ型トランスジューサの
方向性を説明するための周波数特性および電極の配置を
示す図である。図7(b)のように、一対の正負電極を
有するIDT(インタディジタルトランスジューサ、す
だれ状電極)74に向かって、正負電極の配置の密度が
徐々に高くなるようなアップチャープのIDT73を隣
接させた構成では、図7(a)の実線71に示すような
周波数特性となる。逆に、図7(c)のように、一対の
正負電極を有するIDT76に向かって、正負電極の配
置の密度が徐々に粗くなるようなダウンチャープのID
T75を隣接させた構成では、図7(a)の破線72に
示すような周波数特性となる。周波数特性としては実線
71のほうが破線72より良好である。したがって、I
DT73は矢印73Dに示す方向性を有し、IDT75
は矢印75Dに示す方向性を有することがわかる。
In FIG. 7, the thickness of the electrode made of Al is 200
It is a figure which shows the frequency characteristic and arrangement | positioning of an electrode for demonstrating the directivity of the chirp type transducer by an equivalent circuit analysis when it is set to 0 angstrom and Zm / Zg = 0.98. As shown in FIG. 7B, an up-chirp IDT 73 in which the arrangement density of the positive and negative electrodes is gradually increased is adjacent to the IDT (interdigital transducer, interdigital transducer) 74 having a pair of positive and negative electrodes. With this configuration, the frequency characteristic is as shown by the solid line 71 in FIG. On the contrary, as shown in FIG. 7C, a down-chirp ID in which the arrangement density of the positive and negative electrodes gradually becomes coarser toward the IDT 76 having a pair of positive and negative electrodes.
In the configuration in which the T75s are adjacent to each other, the frequency characteristic is as shown by the broken line 72 in FIG. As for the frequency characteristic, the solid line 71 is better than the broken line 72. Therefore, I
The DT73 has the directionality shown by the arrow 73D, and the IDT75
It can be seen that has the directionality shown by the arrow 75D.

【0025】図8は、Zm/Zg=1.00としたとき
の等価回路解析によるチャープ型トランスジューサの方
向性を説明するための周波数特性および電極の配置を示
す図である。図8(b)のように、一対の正負電極を有
するIDT84に向かって、正負電極の配置の密度が徐
々に高くなるようなアップチャープのIDT83を隣接
させた構成では、図8(a)の実線81に示すような周
波数特性となる。また、図8(c)のように、一対の正
負電極を有するIDT86に向かって、正負電極の配置
の密度が徐々に粗くなるようなダウンチャープのIDT
85を隣接させた構成でも、同じく図8(a)の実線8
1に示す周波数特性となる。したがって、IDT83お
よびIDT85は、ともに方向性を有しないことがわか
る。
FIG. 8 is a diagram showing the frequency characteristics and the arrangement of electrodes for explaining the directivity of the chirp type transducer by the equivalent circuit analysis when Zm / Zg = 1.00. As shown in FIG. 8B, in the configuration in which the IDTs 84 having a pair of positive and negative electrodes are arranged adjacent to each other with the up-chirp IDT 83 in which the arrangement density of the positive and negative electrodes is gradually increased, The frequency characteristic is as shown by the solid line 81. Further, as shown in FIG. 8C, a down-chirp IDT in which the arrangement density of the positive and negative electrodes gradually becomes coarser toward the IDT 86 having a pair of positive and negative electrodes.
Also in the configuration in which 85 are adjacent to each other, the solid line 8 in FIG.
The frequency characteristic shown in FIG. Therefore, it is understood that the IDT 83 and the IDT 85 have no directivity.

【0026】図9は、Zm/Zg=1.02としたとき
の等価回路解析によるチャープ型トランスジューサの方
向性を説明するための周波数特性および電極の配置を示
す図である。図9(b)のように、一対の正負電極を有
するIDT94に向かって、正負電極の配置の密度が徐
々に高くなるようなアップチャープのIDT93を隣接
させた構成では、図9(a)の実線91に示すような周
波数特性となる。逆に、図9(c)のように、一対の正
負電極を有するIDT96に向かって、正負電極の配置
の密度が徐々に粗くなるようなダウンチャープのIDT
95を隣接させた構成では、図9(a)の破線92に示
すような周波数特性となる。周波数特性としては破線9
2のほうが実線91より良好である。したがって、ID
T93は矢印93Dに示す方向性を有し、IDT95は
矢印95Dに示す方向性を有することがわかる。
FIG. 9 is a diagram showing the frequency characteristics and the arrangement of electrodes for explaining the directivity of the chirp type transducer by the equivalent circuit analysis when Zm / Zg = 1.02. As shown in FIG. 9B, in the configuration in which the IDTs 93 having a pair of positive and negative electrodes are adjacent to each other with the up-chirp IDTs 93 such that the arrangement density of the positive and negative electrodes is gradually increased, The frequency characteristic is as shown by the solid line 91. On the contrary, as shown in FIG. 9C, a down-chirp IDT in which the arrangement density of the positive and negative electrodes gradually becomes coarser toward the IDT 96 having a pair of positive and negative electrodes.
In the configuration in which 95 are adjacent to each other, the frequency characteristic is as shown by a broken line 92 in FIG. The broken line 9 shows the frequency characteristics.
2 is better than solid line 91. Therefore, the ID
It can be seen that T93 has a directionality shown by an arrow 93D and IDT95 has a directionality shown by an arrow 95D.

【0027】以上のような各種の条件でのチャープ型ト
ランスジューサの方向性を調査した結果、チャープ型ト
ランスジューサにおいては、Zm/Zg<1のときは正
負電極の配置密度が粗から密になる向きの方向性を有
し、Zm/Zg=1のときは方向性を有さず、Zm/Z
g>1のときは正負電極の配置密度が密から粗になる向
きの方向性を有することが分かった。したがって、この
ようなトランスジューサの方向性を考慮してフィルタを
構成すれば低挿入損失かつ広帯域特性を有するようにす
ることができる。
As a result of investigating the directivity of the chirp type transducer under various conditions as described above, in the chirp type transducer, when Zm / Zg <1, the arrangement density of the positive and negative electrodes becomes coarse to dense. It has directionality, and when Zm / Zg = 1, it has no directionality and Zm / Z
It was found that when g> 1, the arrangement density of the positive and negative electrodes has a directivity in a direction from dense to coarse. Therefore, if the filter is configured in consideration of the directivity of such a transducer, it is possible to have a low insertion loss and a wide band characteristic.

【0028】図6は、Alからなる電極の厚さを200
0オングストロームとしZm/Zg=0.98としたと
きの等価回路解析によるチャープ型フィルタの方向性を
説明するための周波数特性および電極の配置を示す図で
ある。言替えれば、図7の例で用いたトランスジューサ
を並べたフィルタを構成した場合の周波数特性などを示
す。図6(b)のように、アップチャープのIDT63
とアップチャープのIDT64を隣接させた構成では、
図6(a)の実線61に示すような周波数特性となる。
逆に、図6(c)のように、ダウンチャープのIDT6
5とダウンチャープのIDT66を隣接させた構成で
は、図6(a)の破線62に示すような周波数特性とな
る。このように周波数特性に差が生じるのは、図7で説
明したように、IDT63,64,65,66がそれぞ
れ矢印63D,64D,65D,66Dに示す方向性を
有することによる。
FIG. 6 shows that the thickness of the electrode made of Al is 200
It is a figure which shows the frequency characteristic and arrangement | positioning of an electrode for demonstrating the directivity of the chirp type filter by an equivalent circuit analysis at 0 angstrom and Zm / Zg = 0.98. In other words, it shows the frequency characteristics and the like in the case of configuring a filter in which the transducers used in the example of FIG. 7 are arranged. As shown in FIG. 6B, the upchirp IDT 63
With the configuration in which the IDT64 of Upchirp is adjacent to
The frequency characteristic is as shown by the solid line 61 in FIG.
On the contrary, as shown in FIG. 6C, the down chirp IDT6
In the configuration in which the No. 5 and the down-chirp IDT 66 are adjacent to each other, the frequency characteristic is as shown by the broken line 62 in FIG. The difference in the frequency characteristics is caused because the IDTs 63, 64, 65, 66 have the directivities shown by the arrows 63D, 64D, 65D, 66D, respectively, as described in FIG.

【0029】特に1つの方法として、図10に示すよう
に浮き電極を設けることによりZm/Zg>1とするこ
とができ、これによりトランスジューサに方向性を付与
することができる。図10において、弾性表面波変換器
であるトランスジューサ102は正または負の電極10
4,105を有する。さらに、これら正負の電極10
4,106間のギャップに浮き電極106を有する。浮
き電極106を有することによりこのトランスジューサ
102のZm/Zgは1より大きくなった。
In particular, as one method, it is possible to set Zm / Zg> 1 by providing a floating electrode as shown in FIG. 10, and thereby it is possible to give directionality to the transducer. In FIG. 10, a transducer 102, which is a surface acoustic wave converter, has a positive or negative electrode 10
4,105. Furthermore, these positive and negative electrodes 10
The floating electrode 106 is provided in the gap between the electrodes 4, 106. By having the floating electrode 106, Zm / Zg of this transducer 102 became larger than 1.

【0030】なお、上記の図2では励振側の電極24,
25をm/p=0.5、受信側の電極26,27をm/
p=0.8とした例を説明したが、これに対し励振側の
電極をm/p=0.25、受信側の電極をダブル電極構
造とすると、フィルタ特性はさらに良好となる。図11
は、このようなダブル電極構造を用いたフィルタの例を
示す。この図において、112は圧電性基板上に配置さ
れた励振側の弾性表面波変換器、113は圧電性基板上
に配置された受信側の弾性表面波変換器である。励振側
の弾性表面波変換器112は正電極114および負電極
115を有する。この電極はm/p=0.25である。
受信側の弾性表面波変換器113は正電極116および
負電極117を有する。受信側の弾性表面波変換器11
3はダブル電極構造を有している。言替えれば、図11
のフィルタは図2のフィルタの電極24,25の幅を狭
めてm/p=0.25となるようにし、かつ電極26,
27の1本1本を2分割してダブル電極構造の電極11
6(116a,116b),117(117a,117
b)としたものである。
In the above FIG. 2, the electrodes 24 on the excitation side,
25 is m / p = 0.5, and electrodes 26 and 27 on the reception side are m / p.
Although an example in which p = 0.8 has been described, by contrast, when the excitation side electrode has m / p = 0.25 and the reception side electrode has a double electrode structure, the filter characteristics are further improved. Figure 11
Shows an example of a filter using such a double electrode structure. In this figure, 112 is a surface acoustic wave transducer on the excitation side arranged on the piezoelectric substrate, and 113 is a surface acoustic wave transducer on the receiving side arranged on the piezoelectric substrate. The surface acoustic wave converter 112 on the excitation side has a positive electrode 114 and a negative electrode 115. This electrode has m / p = 0.25.
The surface acoustic wave converter 113 on the reception side has a positive electrode 116 and a negative electrode 117. Surface acoustic wave converter 11 on the receiving side
3 has a double electrode structure. In other words, FIG.
Of the filter of FIG. 2 is such that the electrodes 24, 25 of the filter of FIG. 2 are narrowed so that m / p = 0.25, and the electrode 26,
Electrode 11 of double electrode structure by dividing each of 27 into two
6 (116a, 116b), 117 (117a, 117
b).

【0031】ダブル電極構造は両方向性の特性を示すの
で図2のようなm/p=0.8として逆方向性を弱めた
構造より、特性がよくなる。電極幅はλ/8となるが実
用の周波数では問題なく作製できる。
Since the double electrode structure exhibits bidirectional characteristics, the characteristics are better than the structure in which the reverse direction is weakened by setting m / p = 0.8 as shown in FIG. Although the electrode width is λ / 8, it can be produced without problems at a practical frequency.

【0032】上記実施例では弾性表面波素子としてフィ
ルタを例にとり説明したが、本発明は遅延線にも適用で
きる。また、上述した一方向性を有する弾性表面波変換
器はそれ自身、インピーダンス素子として使用すること
もできる。
In the above embodiments, the filter was used as an example of the surface acoustic wave element for explanation, but the present invention can also be applied to a delay line. Further, the above-described unidirectional surface acoustic wave converter can be used as an impedance element itself.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
圧電性または電歪性の基板上に厚みを有するすだれ状電
極を設けた弾性表面波素子において、励振受信される弾
性表面波による電気信号と弾性表面波の電極による反射
の位相が一方の方向に同位相で他方の方向に逆位相とな
り一方向性の特性を持つように電極を配置しているの
で、低挿入損失かつ広帯域特性を有する弾性表面波素子
が得られる。
As described above, according to the present invention,
In a surface acoustic wave device in which a comb-shaped electrode having a thickness is provided on a piezoelectric or electrostrictive substrate, the phase of the electric signal by the surface acoustic wave to be excited and received and the reflection of the surface acoustic wave by the electrode in one direction Since the electrodes are arranged so that they have the same phase and opposite phases in the other direction and have a unidirectional characteristic, a surface acoustic wave element having a low insertion loss and a wide band characteristic can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る弾性表面波素子であ
るフィルタの平面図および断面図
FIG. 1 is a plan view and a sectional view of a filter that is a surface acoustic wave device according to an embodiment of the present invention.

【図2】 励振側および受信側の方向性を同じ向きに合
せたフィルタの平面図
FIG. 2 is a plan view of a filter in which the directions of the excitation side and the reception side are matched to each other.

【図3】 m/pと挿入損失との関係を示すグラフFIG. 3 is a graph showing the relationship between m / p and insertion loss.

【図4】 従来の弾性表面波変換器を用いたフィルタの
平面図および断面図
FIG. 4 is a plan view and a cross-sectional view of a filter using a conventional surface acoustic wave converter.

【図5】 従来の分散型遅延線の構造を示す平面図FIG. 5 is a plan view showing the structure of a conventional distributed delay line.

【図6】 Zm/Zg=0.98とのチャープ型フィ
ルタの方向性を説明するための周波数特性および電極の
配置を示す図
FIG. 6 is a diagram showing a frequency characteristic and an arrangement of electrodes for explaining the directivity of a chirp filter with Zm / Zg = 0.98.

【図7】 Zm/Zg=0.98のチャープ型トランス
ジューサの方向性を説明するための周波数特性および電
極の配置を示す図
FIG. 7 is a diagram showing a frequency characteristic and an arrangement of electrodes for explaining the directivity of a chirp transducer having Zm / Zg = 0.98.

【図8】 Zm/Zg=1.00のチャープ型トランス
ジューサの方向性を説明するための周波数特性および電
極の配置を示す図
FIG. 8 is a diagram showing a frequency characteristic and an arrangement of electrodes for explaining the directivity of a chirp type transducer having Zm / Zg = 1.00.

【図9】 Zm/Zg=1.02のチャープ型トランス
ジューサの方向性を説明するための周波数特性および電
極の配置を示す図
FIG. 9 is a diagram showing frequency characteristics and arrangement of electrodes for explaining the directivity of a chirp type transducer with Zm / Zg = 1.02.

【図10】 浮き電極を用いたトランスジューサを示す
平面図
FIG. 10 is a plan view showing a transducer using a floating electrode.

【図11】 ダブル電極構造を用いたフィルタを示す平
面図
FIG. 11 is a plan view showing a filter using a double electrode structure.

【符号の説明】[Explanation of symbols]

1…圧電性基板、2,22…励振側の弾性表面波変換
器、3,23…受信側の弾性表面波変換器、4,6,2
4,26…正電極、5,7,25,27…負電極。
1 ... Piezoelectric substrate, 2, 22 ... Excitation side surface acoustic wave converter, 3, 23 ... Receiving side surface acoustic wave converter, 4, 6, 2
4, 26 ... Positive electrode, 5, 7, 25, 27 ... Negative electrode.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年5月7日[Submission date] May 7, 1991

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Name of item to be corrected] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】 また、前記すだれ状電極の金属膜の音
響インピーダンスをZm、電極ギャップの音響インピー
ダンスをZgとしたとき、前記第3のすだれ状電極のZ
m/Zgが1より小さく、前記第4のすだれ状電極のZ
m/Zgが1より大きくなるようにして、前記弾性表面
波素子をフィルタとして用いることができる。
When the acoustic impedance of the metal film of the interdigital transducer is Zm and the acoustic impedance of the electrode gap is Zg, the Z of the third interdigital electrode is Z.
m / Zg is less than 1 and Z of the fourth interdigital transducer
The surface acoustic wave element can be used as a filter by setting m / Zg to be greater than 1.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0O29[Name of item to be corrected] 029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】 特に1つの方法として、図10に示す
ように浮き電極を設けることによりZm/Zgの値を調
整することができ、これによりトランスジューサに方向
性を付与することができる。図10において、弾性表面
波変換器であるトランスジューサ102は正または負の
電極104,105を有する。さらに、これら正負の電
極104,106間のギャップに浮き電極106を有す
る。この浮き電極106は1つおきに短絡してある。こ
のような短絡した浮き電極106を備えることにより、
このトランスジューサ102のZm/Zgは1より小さ
くなった。また、図示しないが浮き電極106を短絡さ
せることなく、開放した浮き電極106を備えることに
より、このトランスジューサ102のZm/Zgは1よ
り大きくなった。
In particular, as one method, it is possible to adjust the value of Zm / Zg by providing a floating electrode as shown in FIG. 10, and thereby to give directionality to the transducer. In FIG. 10, a transducer 102, which is a surface acoustic wave converter, has positive or negative electrodes 104 and 105. Further, the floating electrode 106 is provided in the gap between the positive and negative electrodes 104 and 106. Every other floating electrode 106 is short-circuited. By providing such a short-circuited floating electrode 106,
The Zm / Zg of this transducer 102 was smaller than 1. Further, although not shown, by providing the floating electrode 106 opened without short-circuiting the floating electrode 106, Zm / Zg of this transducer 102 became larger than 1.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】 なお、上記の図2では励振側の電極2
4,25をm/p=0.5、受信側の電極26,27を
m/p=0.8とした例を説明したが、これに対し励振
側の電極を同じくm/p=0.5、受信側の電極をダブ
ル電極構造とすると、フィルタ特性はさらに良好とな
る。図11は、このようなダブル電極構造を用いたフィ
ルタの例を示す。この図において、112は圧電性基板
上に配置された励振側の弾性表面波変換器、113は圧
電性基板上に配置された受信側の弾性表面波変換器であ
る。励振側の弾性表面波変換器112は正電極114お
よび負電極115を有する。この電極はm/p=0.5
である。受信側の弾性表面波変換器113は正電極11
6および負電極117を有する。受信側の弾性表面波変
換器113はダブル電極構造を有している。言替えれ
ば、図11のフィルタは図2のフィルタの電極24,2
5はそのままとし、かつ電極26,27の1本1本を2
分割してダブル電極構造の電極116(116a,11
6b),117(117a,117b)としたものであ
る。この場合、タブル電極についてはm/p=0.25
となる。
In the above FIG. 2, the electrode 2 on the excitation side is
4 and 25 are set to m / p = 0.5, and the electrodes 26 and 27 on the reception side are set to m / p = 0.8. However, the electrodes on the excitation side are also set to m / p = 0. 5. If the electrode on the receiving side has a double electrode structure, the filter characteristics will be further improved. FIG. 11 shows an example of a filter using such a double electrode structure. In this figure, 112 is a surface acoustic wave transducer on the excitation side arranged on the piezoelectric substrate, and 113 is a surface acoustic wave transducer on the receiving side arranged on the piezoelectric substrate. The surface acoustic wave converter 112 on the excitation side has a positive electrode 114 and a negative electrode 115. This electrode has m / p = 0.5
Is. The surface acoustic wave converter 113 on the receiving side is the positive electrode 11
6 and negative electrode 117. The surface acoustic wave converter 113 on the receiving side has a double electrode structure. In other words, the filter of FIG. 11 has the electrodes 24, 2 of the filter of FIG.
5 is left as it is, and each one of the electrodes 26 and 27 is set to 2
The electrodes 116 (116a, 11a) having a double electrode structure are divided.
6b), 117 (117a, 117b). In this case, m / p = 0.25 for the table electrode.
Becomes

【手続補正6】[Procedure correction 6]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図11[Name of item to be corrected] Fig. 11

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図11】 ─────────────────────────────────────────────────────
FIG. 11 ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年7月5日[Submission date] July 5, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】 また、図5のような分散型遅延線では
周波数の高い信号の遅延時間は長く、周波数の低い信号
の遅延時間は短いダウンチャープの遅延線となり、逆の
特性のアップチャープの遅延線も得ることができる。し
かし、この場合も従来の分散型の変換器すなわち両方向
性の特性を有する変換器を用いており、低挿入損失の変
換器ではない。
Further, in the distributed delay line as shown in FIG. 5, the delay time of a high frequency signal is long, and the delay time of a low frequency signal is a short down chirp delay line, and an up chirp delay line having the opposite characteristic. You can also get However, also in this case, the conventional distributed converter, that is, the converter having the bidirectional characteristic is used, and the converter is not a low insertion loss converter.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】 図7は、Alからなる電極の厚さを2
000オングストロームとしZm/Zg=0.98とし
たときの等価口路解析によるチャープ型トランスジュー
サの方向性を説明するための周波数特性および電極の配
置を示す図である。図7(b)のように、一対の正負電
極を有するIDT(インタディジタルトランスジュー
サ、すだれ状電極)74に向かって、正負電極の配置の
密度が徐々に高くなるようなダウンチャープのIDT7
3を隣接させた構成では、図7(a)の実線71に示す
ような周波数特性となる。逆に、図7(c)のように、
一対の正負電極を有するIDT76に向かって、正負電
極の配置の密度が徐々に粗くなるようなアップチャープ
のIDT75を隣接させた構成では、図7(a)の破線
72に示すような周波数特性となる。周波数特性として
は実線71のほうが破線72より良好である。したがっ
て、IDT73は矢印73Dに示す方向性を有し、ID
T75は矢印75Dに示す方向性を有することがわか
る。
FIG. 7 shows that the thickness of the electrode made of Al is 2
It is a figure which shows the frequency characteristic and arrangement | positioning of an electrode for demonstrating the directivity of the chirp type transducer by the equivalent channel analysis at 000 angstrom and Zm / Zg = 0.98. As shown in FIG. 7B, a down-chirp IDT 7 in which the arrangement density of the positive and negative electrodes gradually increases toward the IDT (interdigital transducer, interdigital transducer) 74 having a pair of positive and negative electrodes.
In the configuration in which 3 are adjacent to each other, the frequency characteristic is as shown by the solid line 71 in FIG. On the contrary, as shown in FIG.
In the configuration in which the IDTs 75 having a pair of positive and negative electrodes are adjacent to the IDTs 75 of up-chirp so that the arrangement density of the positive and negative electrodes becomes gradually rough, the frequency characteristics as shown by the broken line 72 in FIG. Become. As for the frequency characteristic, the solid line 71 is better than the broken line 72. Therefore, the IDT 73 has the direction shown by the arrow 73D, and the ID
It can be seen that T75 has the directionality shown by the arrow 75D.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】 図8は、Zm/Zg=1.00とした
ときの等価回路解析によるチャープ型トランスジューサ
の方向性を説明するための周波数特性および電極の配置
を示す図である。図8(b)のように、一対の正負電極
を有するIDT84に向かって、正負電極の配置の密度
が徐々に高くなるようなダウンチャープのIDT83を
隣接させた構成では、図8(a)の実線81に示すよう
な周波数特性となる。また、図8(c)のように、一対
の正負電極を有するIDT86に向かって、正負電極の
配置の密度が徐々に粗くなるようなアップチャープのI
DT85を隣接させた構成でも、同じく図8(a)の実
線81に示す周波数特性となる。したがって、IDT8
3およびIDT85は、ともに方向性を有しないことが
わかる。
FIG. 8 is a diagram showing a frequency characteristic and an arrangement of electrodes for explaining the directivity of the chirp type transducer by an equivalent circuit analysis when Zm / Zg = 1.00. As shown in FIG. 8B, in a configuration in which the IDTs 83 having a pair of positive and negative electrodes are adjacent to each other with the down-chirp IDTs 83 so that the density of the arrangement of the positive and negative electrodes is gradually increased, the configuration shown in FIG. The frequency characteristic is as shown by the solid line 81. Further, as shown in FIG. 8C, an up-chirp I in which the arrangement density of the positive and negative electrodes gradually becomes coarser toward the IDT 86 having a pair of positive and negative electrodes.
Even with the configuration in which the DTs 85 are adjacent to each other, the frequency characteristic shown by the solid line 81 in FIG. Therefore, IDT8
It can be seen that both 3 and IDT85 have no directivity.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】 図9は、Zm/Zg=1.02とした
ときの等価回路解析によるチャープ型トランスジューサ
の方向性を説明するための周波数特性および電極の配置
を示す図である。図9(b)のように、一対の正負電極
を有するIDT94に向かって、正負電極の配置の密度
が徐々に高くなるようなダウンチャープのIDT93を
隣接させた構成では、図9(a)の実線91に示すよう
な周波数特性となる。逆に、図9(c)のように、一対
の正負電極を有するIDT96に向かって、正負電極の
配置の密度が徐々に粗くなるようなアップチャープのI
DT95を隣接させた構成では、図9(a)の破線92
に示すような周波数特性となる。周波数特性としては破
線92のほうが実線91より良好である。したがって、
IDT93は矢印93Dに示す方向性を有し、IDT9
5は矢印95Dに示す方向性を有することがわかる。
FIG. 9 is a diagram showing the frequency characteristics and the arrangement of electrodes for explaining the directivity of the chirp transducer by the equivalent circuit analysis when Zm / Zg = 1.02. As shown in FIG. 9B, in the configuration in which the down-chirp IDT 93 in which the arrangement density of the positive and negative electrodes is gradually increased toward the IDT 94 having the pair of positive and negative electrodes is adjacent, The frequency characteristic is as shown by the solid line 91. On the contrary, as shown in FIG. 9C, the up-chirp I of which the arrangement density of the positive and negative electrodes gradually becomes coarser toward the IDT 96 having the pair of positive and negative electrodes.
In the configuration in which the DTs 95 are adjacent to each other, the broken line 92 in FIG.
The frequency characteristics are as shown in. Regarding the frequency characteristic, the broken line 92 is better than the solid line 91. Therefore,
The IDT 93 has the direction shown by the arrow 93D, and
It can be seen that 5 has the directionality shown by the arrow 95D.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0028】 図6は、Alからなる電極の厚さを2
000オングストロームとしZm/Zg=0.98とし
たときの等価回路解析によるチャープ型フィルタの方向
性を説明するための周波数特性および電極の配置を示す
図である。言替えれば、図7の例で用いたトランスジュ
ーサを並べたフィルタを構成した場合の周波数特性など
を示す。図6(b)のように、ダウンチャープのIDT
63とダウンチャープのIDT64を隣接させた構成で
は、図6(a)の実線61に示すような周波数特性とな
る。逆に、図6(c)のように、アップチャープのID
T65とアップチャープのIDT66を隣接させた構成
では、図6(a)の破線62に示すような周波数特性と
なる。このように周波数特性に差が生じるのは、図7で
説明したように、IDT63,64,65,66がそれ
ぞれ矢印63D,64D,65D,66Dに示す方向性
を有することによる。
FIG. 6 shows that the thickness of the electrode made of Al is 2
It is a figure which shows the frequency characteristic and arrangement | positioning of an electrode for demonstrating the directivity of the chirp type filter by an equivalent circuit analysis at 000 angstrom and Zm / Zg = 0.98. In other words, it shows the frequency characteristics and the like in the case of configuring a filter in which the transducers used in the example of FIG. 7 are arranged. As shown in FIG. 6 (b), down chirp IDT
In the configuration in which 63 and the down-chirp IDT 64 are adjacent to each other, the frequency characteristic is as shown by the solid line 61 in FIG. On the contrary, as shown in FIG. 6C, the ID of the up chirp
In the configuration in which the T65 and the up-chirp IDT 66 are adjacent to each other, the frequency characteristic is as shown by the broken line 62 in FIG. The difference in the frequency characteristics is caused because the IDTs 63, 64, 65, 66 have the directivities shown by the arrows 63D, 64D, 65D, 66D, respectively, as described in FIG.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図6[Name of item to be corrected] Figure 6

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図7[Name of item to be corrected] Figure 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図7】 [Figure 7]

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

【手続補正10】[Procedure Amendment 10]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図9[Correction target item name] Figure 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図9】 [Figure 9]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧電性または電歪性の基板上に厚みを有
するすだれ状電極を設けた弾性表面波素子において、 弾性表面波の伝搬方向に徐々に電極幅および周期が短く
なる正負の電極を交互に配置した弾性表面波を励振する
第1のすだれ状電極と、 弾性表面波の伝搬方向に徐々に電極幅および周期が長く
なる正負の電極を交互に配置した弾性表面波を受信する
第2のすだれ状電極とを具備することを特徴とする弾性
表面波素子。
1. A surface acoustic wave device comprising a piezoelectric or electrostrictive substrate on which a comb-shaped electrode having a thickness is provided. Positive and negative electrodes whose electrode width and period are gradually reduced in the propagation direction of the surface acoustic wave. A first interdigital transducer that excites alternating surface acoustic waves and a second surface acoustic wave that alternately arranges positive and negative electrodes whose electrode width and period gradually increase in the propagation direction of the surface acoustic wave. A surface acoustic wave device comprising: a comb-shaped electrode.
【請求項2】 圧電性または電歪性の基板上に厚みを有
するすだれ状電極を設けた弾性表面波素子において、 弾性表面波の伝搬方向に徐々に電極幅および周期が短く
なる正負の電極を交互に配置した弾性表面波を励振する
第3のすだれ状電極と、 弾性表面波の伝搬方向に徐々に電極幅および周期が短く
なる正負の電極を交互に配置した弾性表面波を受信する
第4のすだれ状電極とを具備することを特徴とする弾性
表面波素子。
2. A surface acoustic wave device comprising a piezoelectric or electrostrictive substrate provided with thick interdigital electrodes, in which positive and negative electrodes whose electrode width and period are gradually shortened in the surface acoustic wave propagation direction are provided. A third interdigital transducer for exciting surface acoustic waves alternately arranged and a fourth surface for receiving surface acoustic waves in which positive and negative electrodes whose electrode width and period are gradually shortened in the propagation direction of the surface acoustic wave are alternately arranged. A surface acoustic wave device comprising: a comb-shaped electrode.
【請求項3】 前記すだれ状電極の、電極幅をm、周期
をpとしたとき、前記第3のすだれ状電極は0.2≦m
/p≦0.7であり、前記第4のすだれ状電極は0.7
2≦m/p≦0.9である請求項2に記載の弾性表面波
素子。
3. When the electrode width of the interdigital transducer is m and the period is p, the third interdigital electrode is 0.2 ≦ m.
/P≦0.7, and the fourth interdigital electrode is 0.7
The surface acoustic wave device according to claim 2, wherein 2 ≦ m / p ≦ 0.9.
【請求項4】 前記すだれ状電極の金属膜の反射係数
が、一方のすだれ状電極では1より大きく、他方のすだ
れ状電極では1より小さい請求項2に記載の弾性表面波
素子を用いたフィルタ。
4. The filter using the surface acoustic wave device according to claim 2, wherein the reflection coefficient of the metal film of the interdigital transducer is greater than 1 at one interdigital electrode and less than 1 at the other interdigital electrode. .
JP3091180A 1991-03-29 1991-03-29 Surface acoustic wave device Expired - Fee Related JP2847438B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3091180A JP2847438B2 (en) 1991-03-29 1991-03-29 Surface acoustic wave device
US07/858,333 US5256927A (en) 1991-03-29 1992-03-26 Surface acoustic wave element having a wide bandwidth and a low insertion loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3091180A JP2847438B2 (en) 1991-03-29 1991-03-29 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JPH06291585A true JPH06291585A (en) 1994-10-18
JP2847438B2 JP2847438B2 (en) 1999-01-20

Family

ID=14019258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3091180A Expired - Fee Related JP2847438B2 (en) 1991-03-29 1991-03-29 Surface acoustic wave device

Country Status (2)

Country Link
US (1) US5256927A (en)
JP (1) JP2847438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526919A (en) * 2003-06-04 2006-11-24 エプコス アクチエンゲゼルシャフト Electroacoustic component and manufacturing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677759A (en) * 1992-06-29 1994-03-18 Canon Inc Surface acoustic wave element, and demodulator and communication system using the same
JPH0685597A (en) * 1992-09-02 1994-03-25 Mitsubishi Electric Corp Saw device
JPH07283682A (en) * 1994-04-13 1995-10-27 Murata Mfg Co Ltd Surface acoustic wave resonator filter
DE19849782B4 (en) * 1998-10-28 2004-09-30 Epcos Ag Surface wave arrangement with at least two surface wave structures
AU779050B2 (en) * 2000-02-02 2005-01-06 Rutgers, The State University Of New Jersey Programmable surface acoustic wave (SAW) filter
DE10010089A1 (en) * 2000-03-02 2001-09-06 Epcos Ag Interdigital transducer for surface acoustic wave filter, has same phase excitation and reflection in several base cells
DE10111959B4 (en) * 2001-03-13 2014-11-20 Epcos Ag With acoustic waves working transducer structure
DE102008037091A1 (en) * 2008-08-08 2010-02-11 Epcos Ag SAW device
KR20110081865A (en) * 2008-10-24 2011-07-14 엡슨 토요콤 가부시키 가이샤 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave modular device
US8299680B2 (en) * 2008-10-24 2012-10-30 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module unit
KR101711204B1 (en) * 2010-10-29 2017-03-13 삼성전자주식회사 Single-input Multi-output Surface Acoustic Wave Device
US20170104470A1 (en) * 2015-10-09 2017-04-13 Avago Technologies General Ip (Singapore) Pte. Ltd. Interdigitated transducers and reflectors for surface acoustic wave devices with non-uniformly spaced elements
EP4094833A1 (en) * 2021-05-25 2022-11-30 AcouSort AB Acoustofluidic methods and devices using floating electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087752A (en) * 1973-12-07 1975-07-15
JPS5477048A (en) * 1977-12-02 1979-06-20 Hitachi Ltd Manufacture of elastic surface wave device
JPS5621407A (en) * 1979-07-31 1981-02-27 Toshiba Corp Dispersive type delay line
JPS6210444A (en) * 1985-07-05 1987-01-19 Honda Motor Co Ltd Control device for idle speed in internal-combustion engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376572A (en) * 1966-09-15 1968-04-02 Rca Corp Electroacoustic wave shaping device
US3675163A (en) * 1970-08-26 1972-07-04 Clinton S Hartmann Cascaded f. m. correlators for long pulses
US3882433A (en) * 1974-02-15 1975-05-06 Zenith Radio Corp Swif with transducers having varied duty factor fingers for trap enhancement
JPS5937605B2 (en) * 1979-09-25 1984-09-11 富士通株式会社 surface acoustic wave device
GB2078042B (en) * 1980-06-13 1984-08-08 Nippon Telegraph & Telephone Surface acoustic wave resonator
US4473888A (en) * 1981-10-28 1984-09-25 The United States Of America As Represented By The Secretary Of The Army Saw monolithic convolver using dispersive transducers
JPS58213519A (en) * 1982-06-07 1983-12-12 Clarion Co Ltd Elastic surface wave device
DE3529916A1 (en) * 1985-08-21 1987-02-26 Siemens Ag DISPERSIVE INTERDIGITAL CONVERTER FOR ARRANGEMENTS WORKING WITH ACOUSTIC WAVES
US4918349A (en) * 1987-11-13 1990-04-17 Hitachi, Ltd. Surface acoustic wave device having apodized transducer provided with irregular pitch electrode group

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5087752A (en) * 1973-12-07 1975-07-15
JPS5477048A (en) * 1977-12-02 1979-06-20 Hitachi Ltd Manufacture of elastic surface wave device
JPS5621407A (en) * 1979-07-31 1981-02-27 Toshiba Corp Dispersive type delay line
JPS6210444A (en) * 1985-07-05 1987-01-19 Honda Motor Co Ltd Control device for idle speed in internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526919A (en) * 2003-06-04 2006-11-24 エプコス アクチエンゲゼルシャフト Electroacoustic component and manufacturing method

Also Published As

Publication number Publication date
US5256927A (en) 1993-10-26
JP2847438B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
JP3339350B2 (en) Surface acoustic wave device
US7880563B2 (en) High-frequency acoustic wave device
US11764755B2 (en) Elastic wave device, radio-frequency front-end circuit, and communication apparatus
JPH06291585A (en) Surface acoustic wave element and filter
KR100397743B1 (en) Surface acoustic wave device
GB2123638A (en) Surface acoustic wave device
JPH06260881A (en) Surface acoustic wave convolver
JP3484237B2 (en) Surface acoustic wave device
JP3363937B2 (en) Surface acoustic wave filter device
JP2005012736A (en) Surface acoustic wave converter and electronic device using same
US5714830A (en) Free edge reflective-type surface acoustic wave device
JPH04109709A (en) Surface acoustic wave element
WO2023002823A1 (en) Elastic wave device
US4531107A (en) Acoustic surface wave device
WO1997017757A1 (en) Surface acoustic wave converter and acoustic wave filter using the same
JP5500562B2 (en) Acoustic surface wave transducer with natural unidirectionality
JP2745167B2 (en) Surface acoustic wave convolver
KR100429474B1 (en) Surface acoustic wave device
EP0840446B1 (en) Unidirectional surface acoustic wave filter
JP3255658B2 (en) Surface acoustic wave convolver
JPH04331505A (en) Surface acoustic wave convolver
JP3014930B2 (en) Surface acoustic wave device
JPH08204492A (en) Surface acoustic wave transducer
JPS585605B2 (en) surface acoustic wave transducer
JPH0653772A (en) Variable frequency surface acoustic wave function element and variable frequency filter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101106

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees