JPH06291042A - Selective vapor growth method and device - Google Patents

Selective vapor growth method and device

Info

Publication number
JPH06291042A
JPH06291042A JP7695393A JP7695393A JPH06291042A JP H06291042 A JPH06291042 A JP H06291042A JP 7695393 A JP7695393 A JP 7695393A JP 7695393 A JP7695393 A JP 7695393A JP H06291042 A JPH06291042 A JP H06291042A
Authority
JP
Japan
Prior art keywords
film
substrate
gas
reaction tank
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7695393A
Other languages
Japanese (ja)
Inventor
Yasushi Higuchi
靖 樋口
Kyuzo Nakamura
久三 中村
Kenzo Nagano
賢三 長野
Takashi Komatsu
孝 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP7695393A priority Critical patent/JPH06291042A/en
Publication of JPH06291042A publication Critical patent/JPH06291042A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To extremely suppress the damage to a substrate, at the same time enhance adhesion property and selectively grow a uniform and improved metal film which is not affected by the contamination on the substrate surface and the difference in dopants CONSTITUTION:A first reaction bath 1 is provided with a means 7 for heating a substrate to 300 deg.C, or higher, an exhaust means 8, a means 9 for introducing at least a feed gas in a short pulsive shape, and a control means 10 for maintaining the product of a film-forming time and the pressure of the feed gas to 1X10<-2>sec.Torr by controlling either or both of the gas introduction means 9 and the exhaust means 8. In the first reaction bath, a ground film is allowed to grow selectively at a contact hole, etc., out the substrate. In the second reaction bath 2, a metal film with a desired film thickness is obtained on the ground film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板の表面上の
コンタクトホールに金属膜を選択的に成長させる選択気
相成長方法(選択CVD法)に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a selective vapor deposition method (selective CVD method) for selectively growing a metal film in a contact hole on the surface of a semiconductor substrate.

【0002】[0002]

【従来の技術】近年ますます強くなる半導体の高集積化
という要求に対応して、基板表面に施される回路パター
ンは微細化の一途をたどっている。それに伴いコンタク
トホールやスルーホールのパターンも微細化している
が、窓開けを施す薄膜の膜厚がほぼ一定のままパターン
サイズのみが小さくなったため、アスペクト比が大きく
なってしまった。そのため、単に配線金属であるアルミ
ニウムをスパッタ等するだけでは素子間の良好な接続を
得ることができなくなってきた。従って、この様な事態
に対処するため、アルミニウム配線加工時にエッチング
されない様な高融点金属により、コンタクトホール等を
埋め込んでからアルミニウム等により素子間に配線を施
す技術が必要とされた。
2. Description of the Related Art In response to the ever-increasing demand for higher integration of semiconductors, circuit patterns formed on the surface of a substrate are becoming finer. Along with this, the patterns of contact holes and through holes have been miniaturized, but only the pattern size has been reduced while the film thickness of the thin film for window opening has been kept substantially constant, resulting in an increased aspect ratio. Therefore, it has become impossible to obtain good connection between elements simply by sputtering aluminum, which is a wiring metal. Therefore, in order to cope with such a situation, there has been a need for a technique of filling a contact hole or the like with a refractory metal which is not etched during the processing of aluminum wiring and then providing wiring between elements with aluminum or the like.

【0003】上述のコンタクトホールを埋め込む技術に
は、一旦基板全面に金属を成長させ、次いで不要部分の
金属をエッチングにより除去するブランケットCVD+
エッチバック法と、最初から必要部分にのみ金属膜を成
長させる選択CVD法とがあるが、量産性や経済性等の
観点からは選択CVD法が有利である、と言われてい
る。
The technique of burying the above-mentioned contact hole is a blanket CVD + in which a metal is once grown on the entire surface of the substrate and then an unnecessary portion of the metal is removed by etching.
There are an etch-back method and a selective CVD method in which a metal film is grown only on a necessary portion from the beginning, but it is said that the selective CVD method is advantageous from the viewpoints of mass productivity and economical efficiency.

【0004】この様なコンタクトホール等の埋め込みに
用いられる配線材料には、ドープされたポリシリコン、
アルミニウム、タングステン、モリブデン、シリサイド
等が用いられてきたが、前記配線材料中、エレクトロマ
イグレーションやストレスマイグレーションに対する耐
性という観点からはタングステンが優れていると言われ
ている。
The wiring material used for filling such contact holes is doped polysilicon,
Although aluminum, tungsten, molybdenum, silicide, etc. have been used, it is said that tungsten is excellent among the above wiring materials from the viewpoint of resistance to electromigration and stress migration.

【0005】ところで、選択CVD法においては、埋め
込み金属を、絶縁物上には成長させずに基板表面の接続
を得たい部分にのみ選択的に成長させる技術が必要とな
るが、そのため、原料ガスと適当な還元剤を選ぶことに
より、基板中の絶縁物の部分と接続部との反応機構の相
違や反応ガスの吸着確率の差等を利用して選択性を得て
いる。
By the way, the selective CVD method requires a technique for selectively growing the embedded metal only on the portion of the substrate surface where connection is desired to be obtained without growing on the insulator. By selecting an appropriate reducing agent, the selectivity is obtained by utilizing the difference in reaction mechanism between the insulator part and the connection part in the substrate and the difference in adsorption probability of the reaction gas.

【0006】上記選択CVD法における化学反応として
は、シリコン還元、水素還元、シラン還元が一般的に知
られており、タングステンを例にとると以下の様な反応
機構であると考えられている。
As the chemical reaction in the selective CVD method, silicon reduction, hydrogen reduction and silane reduction are generally known. Taking tungsten as an example, it is considered that the reaction mechanism is as follows.

【0007】 シリコンを用いるシリコン還元 3Si + 2WF6 → 3SiF4 + 2W 水素を用いる水素還元 3H2 + WF6 → 6HF + W シランを用いるシラン還元 3SiH4 + 2WF6 → 3SiF4 + 2W
+ 6H2
Silicon reduction using silicon 3Si + 2WF 6 → 3SiF 4 + 2W Hydrogen reduction using hydrogen 3H 2 + WF 6 → 6HF + W Silane reduction using silane 3SiH 4 + 2WF 6 → 3SiF 4 + 2W
+ 6H 2

【0008】[0008]

【発明が解決しようとする課題】シリコン還元や水素還
元で得られる金属膜は基板に対する密着力は強いもの
の、シリコン還元では基板の部材であるシリコンが消費
されると共に膜厚が一定値以上になると反応が停止して
それ以上金属膜が成長しなくなる不具合があり、又、水
素還元では反応副生成物としてHFが生じるため基板に
ウォームホールやエンクローチメントと呼ばれるダメー
ジを与える不具合がある。
Although a metal film obtained by silicon reduction or hydrogen reduction has a strong adhesion to a substrate, silicon reduction consumes silicon, which is a member of the substrate, and the film thickness exceeds a certain value. There is a problem that the reaction stops and the metal film does not grow anymore, and HF is generated as a reaction by-product in the hydrogen reduction, which causes damage to the substrate called wormholes or encroachment.

【0009】一方、シラン還元では上記の不具合は生じ
ないが、生成する金属膜の基板に対する密着性が悪く、
容易に剥離するという不具合がある。更に、選択CVD
法による成膜反応は、基板表面に打ち込まれたドーパン
トの違いや汚染の程度の違いにより、反応速度に差を生
じるという問題があり、そのため同一基板中でも膜厚に
差があったり、基板の前処理が面倒である等の問題点も
あった。
On the other hand, the silane reduction does not cause the above-mentioned problems, but the resulting metal film has poor adhesion to the substrate,
There is a problem that it is easily peeled off. Furthermore, selective CVD
The film-forming reaction by the method has a problem that the reaction rate varies depending on the difference in the dopants implanted on the substrate surface and the degree of contamination. There were also problems such as troublesome processing.

【0010】本発明は以上の点に鑑み、基板へのダメー
ジを極力抑制すると共に密着性を高め、且つ、基板表面
の汚染やドーパントの相違に影響を受けない均一で良質
な金属膜を選択的に成長し得るようにすることをその目
的としている。
In view of the above points, the present invention selectively selects a uniform and high-quality metal film that suppresses damage to the substrate as much as possible and enhances adhesion, and is not affected by contamination of the substrate surface or difference in dopant. Its purpose is to be able to grow into.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、所望の金属元素を組成として含む原料ガ
スの反応により基板の表面上の所望の部分に前記金属元
素の膜を選択的に成長させる選択気相成長方法におい
て、基板を300℃以上に加熱し、前記原料ガスを短時
間だけ導入すると共に、反応雰囲気を1×10-2Tor
r以下の圧力に保って基板表面に金属膜を選択的に成長
させて下地膜を得る第1工程と、反応雰囲気中に還元性
ガスを導入して下地膜上に更に金属膜を選択的に成長を
させて所望の膜厚の金属膜を得る第2工程とを有するこ
とを特徴とする。
In order to achieve the above object, the present invention selects a film of a metal element at a desired portion on the surface of a substrate by reacting a source gas containing the desired metal element as a composition. In the selective vapor deposition method of growing the substrate selectively, the substrate is heated to 300 ° C. or higher, the source gas is introduced for a short time, and the reaction atmosphere is set to 1 × 10 −2 Tor.
A first step of selectively growing a metal film on the surface of the substrate while maintaining a pressure of r or less to obtain a base film, and introducing a reducing gas into the reaction atmosphere to selectively form a metal film on the base film. And a second step of growing to obtain a metal film having a desired film thickness.

【0012】[0012]

【作用】第1工程において基板を300℃以上の高温に
加熱するため、基板上の有機物の汚れは焼失する。又、
後に述べる様にこの工程は主としてシリコン基板との還
元反応を利用したシリコン還元であるため、通常300
℃で行われるが、この反応は更に高温にすることにより
反応が促進され汚れの影響は無視できるようになる。
In the first step, since the substrate is heated to a high temperature of 300 ° C. or higher, the organic substances on the substrate are burned out. or,
As will be described later, since this step is mainly a silicon reduction utilizing a reduction reaction with a silicon substrate, it is usually 300
The reaction is carried out at a temperature of ℃, but the reaction is accelerated by raising the temperature to a higher temperature, and the influence of stains becomes negligible.

【0013】更に又、選択CVD法では一般に、反応雰
囲気圧を0.1Torr程度にするが、それに対して本
発明は1×10-2以下の低圧にし、成膜時間と原料ガス
圧力の積が1×10-2秒・Torr以下の条件で原料ガ
スをパルス状に導入する短時間成膜であるため、基板を
300℃以上に加熱しても金属析出は十分制御でき、薄
い下地膜を均一に成膜できる。
Further, in the selective CVD method, generally, the reaction atmosphere pressure is set to about 0.1 Torr, whereas in the present invention, the pressure is set to a low pressure of 1 × 10 -2 or less, and the product of the film formation time and the source gas pressure is set. Since it is a short-time film formation in which the source gas is introduced in a pulsed manner under the condition of 1 × 10 -2 sec · Torr or less, metal deposition can be sufficiently controlled even if the substrate is heated to 300 ° C. or more, and a thin base film can be uniformly formed Can be formed into a film.

【0014】又、第1工程での成膜反応に、基板への密
着性を高めるため、シリコン還元若しくは水素還元又は
これらの複合反応を用いても、パルス状の短時間ガス導
入で反応を制御しているので、基板素材であるシリコン
の消費量や基板へのダメージを極力少なくすることがで
きる。そして、第1工程で下地膜を形成することによ
り、第2工程に於ける金属膜の成長の際、基板の種類や
汚染の程度に影響されない一定の膜成長速度が得られ
る。又、この金属膜と下地膜とは金属同士の接合のため
密着性が良いので、下地膜を介して金属膜と基板との密
着性も確保される。なお、下地膜はバリア層としても機
能するため、第2工程での成膜反応を水素還元で行って
も基板へのダメージはある程度抑えることができるが、
ダメージ回避のためには第2工程での成膜反応をシラン
還元で行う方が望ましい。
Further, in order to improve the adhesion to the substrate in the film forming reaction in the first step, even if silicon reduction or hydrogen reduction or a composite reaction of these is used, the reaction is controlled by introducing a pulsed short-time gas. Therefore, the consumption of silicon as a substrate material and the damage to the substrate can be minimized. Then, by forming the base film in the first step, a constant film growth rate that is not affected by the type of substrate and the degree of contamination can be obtained during the growth of the metal film in the second step. Further, since the metal film and the base film are bonded to each other because they are bonded to each other, the metal film and the base film have good adhesiveness. Since the base film also functions as a barrier layer, damage to the substrate can be suppressed to some extent even if the film formation reaction in the second step is carried out by hydrogen reduction.
In order to avoid damage, it is desirable to carry out the film formation reaction in the second step by silane reduction.

【0015】ところで、上記第1工程と第2工程とを同
一の反応槽で実行することも可能であるが、第1工程用
の第1反応槽と、第2工程用の第2反応槽と、第1反応
槽から第2反応槽へ基板を搬送する搬送手段とを設けれ
ば、基板処理を第1工程から第2工程へと連続して行う
ことが可能となり、成膜作業を能率よく行える。この場
合、第1反応槽には、排気手段と、基板を300℃より
高い温度に加熱する加熱手段と、少なくとも所望の金属
元素を組成として含む原料ガスを導入するガス導入手段
と、前記ガス導入手段と前記排気手段のいずれか一方又
は両方を制御して、成膜時間と原料ガス圧力の積を1×
10-2秒・Torr以下の条件に保つ制御手段とを設け
るが、ガス導入手段をパルス開閉可能なガス導入バルブ
で構成して、パルス状にガスを導入すれば、下地膜の膜
厚制御が容易になる。
By the way, although it is possible to carry out the first step and the second step in the same reaction tank, a first reaction tank for the first step and a second reaction tank for the second step By providing a transfer means for transferring the substrate from the first reaction tank to the second reaction tank, the substrate processing can be continuously performed from the first step to the second step, and the film forming work can be performed efficiently. You can do it. In this case, in the first reaction tank, an evacuation unit, a heating unit for heating the substrate to a temperature higher than 300 ° C., a gas introduction unit for introducing a source gas containing at least a desired metal element as a composition, and the gas introduction unit. One or both of the means and the exhaust means are controlled so that the product of film formation time and source gas pressure is 1 ×.
A control means for keeping the condition of 10 -2 seconds · Torr or less is provided. However, if the gas introduction means is constituted by a gas introduction valve capable of opening and closing the pulse and the gas is introduced in a pulsed manner, the film thickness control of the underlying film can be performed. It will be easier.

【0016】[0016]

【実施例】図1を参照して、1は第1反応槽、2は第2
反応槽であり、該両反応槽1、2間に各々ゲートバルブ
3a、3bを介して接続されるバッファチャンバー4を
両反応槽1、2間に介設すると共に、該チャンバー4に
ゲートバルブ3cを介して接続されるローディング・ア
ンローディングチャンバー5を設け、基板を図示しない
搬送手段により矢印6で示す如く、ローディング・アン
ローディングチャンバー5、バッファチャンバー4、第
1反応槽1、バッファーチャンバー4、第2反応槽2、
バッファチャンバー4、ローディング・アンローディン
グチャンバー5の順に搬送する様にした。
EXAMPLES Referring to FIG. 1, 1 is a first reaction tank and 2 is a second reaction tank.
A buffer chamber 4 which is a reaction tank and is connected between the reaction tanks 1 and 2 via gate valves 3a and 3b is provided between the reaction tanks 1 and 2, and a gate valve 3c is provided in the chamber 4. A loading / unloading chamber 5 connected to the substrate is provided, and the substrate is loaded by a transporting means (not shown) as indicated by an arrow 6, the loading / unloading chamber 5, the buffer chamber 4, the first reaction tank 1, the buffer chamber 4, 2 reaction tanks 2,
The buffer chamber 4 and the loading / unloading chamber 5 are conveyed in this order.

【0017】ローディング・アンローディングチャンバ
ー5に基板を搬入する際には、ゲートバルブ3cは閉じ
られ、第1反応槽1とバッファチャンバー4と第2反応
槽2とは真空状態におかれる。基板の搬入後、ローディ
ング・アンローディングチャンバー5を閉じて、図示し
ない排気手段により大気を排出し、該チャンバー5を真
空状態にした後にゲートバルブ3cを開け、基板をバッ
ファチャンバー4に、次いでゲートバルブ3aを開けて
第1反応槽1に搬送する。
When the substrate is loaded into the loading / unloading chamber 5, the gate valve 3c is closed and the first reaction tank 1, the buffer chamber 4 and the second reaction tank 2 are kept in a vacuum state. After loading the substrate, the loading / unloading chamber 5 is closed, the atmosphere is exhausted by an exhaust means (not shown), the chamber 5 is evacuated, and then the gate valve 3c is opened to place the substrate in the buffer chamber 4 and then the gate valve. 3a is opened and it is conveyed to the first reaction tank 1.

【0018】第1反応槽1には、基板を加熱する赤外線
ランプ等の加熱手段7と、排気手段8とガス導入手段9
とが設けられていて、更に排気手段8とガス導入手段9
とのいずれか一方又は両方を制御して第1反応槽1の内
圧制御を行う制御手段10が設けられている。
In the first reaction tank 1, heating means 7 such as an infrared lamp for heating the substrate, exhaust means 8 and gas introduction means 9 are provided.
And an exhaust means 8 and a gas introduction means 9 are provided.
There is provided a control means 10 for controlling one or both of the above and to control the internal pressure of the first reaction tank 1.

【0019】排気手段8は、ターボ分子ポンプと油回転
ポンプとメカニカルブースタポンプとを組み合わせて構
成され、1×10-5Torr以下の高真空が得られるよ
うにしている。なお、第2反応槽2にも同様の加熱手段
11と、更に、図示しないが、同様の排気手段とガス導
入手段とが設けられている。
The exhaust means 8 is constructed by combining a turbo molecular pump, an oil rotary pump and a mechanical booster pump so as to obtain a high vacuum of 1 × 10 -5 Torr or less. It should be noted that the second reaction tank 2 is also provided with the same heating means 11 and, further, although not shown, similar exhaust means and gas introduction means.

【0020】第1反応槽1内に基板が搬入された後は、
ゲートバルブ3aを閉じて、加熱手段7により基板を3
00℃よりも高い温度に加熱する。基板の温度が所定温
度に達したら、ガス導入手段9により金属膜の原料であ
る原料ガスを導入し、下地膜の成長を開始する。この原
料ガスには、WF6の他にMoF6等、所望のものを用い
ることができる。
After the substrate is loaded into the first reaction tank 1,
The gate valve 3a is closed and the substrate is heated to 3 by the heating means 7.
Heat to a temperature above 00 ° C. When the temperature of the substrate reaches a predetermined temperature, the gas introducing means 9 introduces a raw material gas, which is a raw material of the metal film, to start the growth of the base film. As the raw material gas, besides WF 6 , a desired gas such as MoF 6 can be used.

【0021】下地膜成長中は制御手段10を働かせて、
成膜時間と原料ガス圧力の積を1×10-2秒・Torr
以下の安定した条件で膜成長を維持する。
During the growth of the base film, the control means 10 is activated to
The product of film formation time and source gas pressure is 1 × 10 -2 seconds · Torr
The film growth is maintained under the following stable conditions.

【0022】原料ガスに水素ガスを添加しない場合は、
下地膜は原料ガスと基板物質との還元反応により得られ
る。その際、アルゴン等の希釈ガスを用いることなく成
膜することが可能であり、その場合には原料ガスの圧力
はそのまま第1反応槽内の圧力、即ち真空度を示す値と
なる。
When hydrogen gas is not added to the raw material gas,
The base film is obtained by a reduction reaction between a source gas and a substrate material. At that time, it is possible to form a film without using a diluting gas such as argon. In that case, the pressure of the raw material gas is a value indicating the pressure in the first reaction tank, that is, the degree of vacuum.

【0023】第1反応槽で得ようとする下地膜の膜厚
は、第2反応槽で行う金属膜の選択成長時に基板にダメ
ージを与えない程度のものが必要となるが、そのような
膜厚を得るために必要な反応時間は、基板温度と原料ガ
スの圧力とで決まる。例えば原料ガスにWF6ガスを用
い、基板温度を400℃に保って成膜した場合には、1
×10-3Torrの圧力では1秒、5×10-5Torr
の圧力では20秒の反応時間で下地膜としては十分な1
00Åの厚みのタングステン膜を得ることができる。
The film thickness of the base film to be obtained in the first reaction tank must be such that it does not damage the substrate during the selective growth of the metal film carried out in the second reaction tank. The reaction time required to obtain the thickness is determined by the substrate temperature and the pressure of the source gas. For example, when a film is formed by using WF 6 gas as a source gas and keeping the substrate temperature at 400 ° C.,
1 second at a pressure of × 10 -3 Torr, 5 × 10 -5 Torr
At a pressure of 20 seconds, a reaction time of 20 seconds is sufficient for a base film.
A tungsten film having a thickness of 00Å can be obtained.

【0024】なお、WF6を用いてシリコン基板上にタ
ングステン膜を選択的に成長させるシリコン還元を行う
場合は、生成するタングステン膜の厚みの約1.5倍の
厚みのシリコンが消費されるが、膜と基板との密着性
や、浅い接合上に膜成長を行った場合に観察されるリー
ク電流の等は、このシリコンの消費のためといえる。図
2に、原料ガスにWF6を用い、シリコン基板上に2×
10-4Torrの圧力下で10秒間反応させて下地膜を
生成した場合の、基板温度とタングステンの基板へのく
いこみ深さとの関係を示す。粘着テープを用いてピール
テストを行ったが、第1工程で成膜温度を300℃以上
として得られた30Å以上の下地膜上に、第2工程で膜
厚1μmのタングステンを成膜した膜では実用上十分な
密着性が得られ、リーク電流も観測されなかった。
In the case of performing silicon reduction in which a tungsten film is selectively grown on a silicon substrate using WF 6 , about 1.5 times the thickness of the produced tungsten film is consumed. The adhesion between the film and the substrate, the leak current observed when the film is grown on the shallow junction, and the like can be said to be due to the consumption of silicon. In Figure 2, WF 6 was used as the source gas and 2 × was formed on the silicon substrate.
The relationship between the substrate temperature and the depth of indentation of tungsten into the substrate when a base film is formed by reacting for 10 seconds under a pressure of 10 −4 Torr is shown. A peel test was carried out using an adhesive tape. In the film in which the tungsten film with a film thickness of 1 μm was formed in the second step on the base film having a film thickness of 30 Å or more obtained at the film forming temperature of 300 ° C. or more in the first step. Practically sufficient adhesion was obtained and no leak current was observed.

【0025】図3は、反応温度を500℃として原料ガ
スの圧力と反応時間を変化させた場合のシリコン単結晶
基板へのタングステンのくいこみ深さを示すものであ
る。いずれの場合も密着性は良好であり、リーク電流も
観測されなかった。
FIG. 3 shows the depth of tungsten penetration into the silicon single crystal substrate when the pressure of the source gas and the reaction time were changed at a reaction temperature of 500 ° C. In all cases, the adhesion was good and no leak current was observed.

【0026】本発明は原料ガスのみを用いるものに限定
されるものではなく、原料ガスに水素ガスを添加して下
地膜を生成することも可能である。その場合には、下地
膜成長反応は水素還元とシリコン還元によることとなる
が、ガス導入手段5は原料ガスと水素ガスを別々に反応
槽に導入するものであっても原料ガスに水素ガスを添加
した後反応槽1に導入するものであってもよい。いずれ
の場合にも、ガス導入手段9に、応答性の良い電磁バル
ブから成るパルス開閉可能なガス導入バルブを用いるこ
とができる。これによれば、ガスをパルス状に導入して
短時間数回に分けて下地膜を連続して成膜することがで
き、長時間1回の成膜を行う場合に比し、下地膜の微少
な膜厚制御をより正確に行うことができる。
The present invention is not limited to using only the raw material gas, but hydrogen gas may be added to the raw material gas to form the base film. In that case, the underlying film growth reaction depends on hydrogen reduction and silicon reduction. However, even if the gas introduction means 5 introduces the raw material gas and the hydrogen gas into the reaction tank separately, the hydrogen gas is added to the raw material gas. It may be introduced into the reaction tank 1 after the addition. In any case, the gas introduction means 9 may be a gas introduction valve which is a responsive electromagnetic valve and is capable of opening and closing pulses. According to this, the base film can be continuously formed by introducing the gas in a pulsed manner for several times in a short time, as compared with the case where the film is formed once for a long time. It is possible to more accurately perform minute film thickness control.

【0027】なお、複数の基板を連続して処理する場合
は、第1反応槽へ基板を搬入する前に水素プラズマ等
で、第1反応槽内のクリーニングを行っておき、当該基
板を処理する前に行った基板の下地膜の成長作業の際に
反応槽内壁に吸着され、又は、成長作業後に反応槽から
基板を搬出した後も反応槽内に残留するWF6ガス等の
原料ガスを除去しておけば、その後に行う下地膜成長の
際の原料ガスの残留ガス分圧を低下させることができ、
さらに膜厚制御性や再現性のよい安定な成膜作業を行う
ことができる。
When a plurality of substrates are processed continuously, the inside of the first reaction tank is cleaned with hydrogen plasma before the substrates are loaded into the first reaction tank, and the substrates are processed. Removal of source gas such as WF 6 gas that is adsorbed on the inner wall of the reaction tank during the previous substrate underlayer growth operation or remains in the reaction tank after the substrate is unloaded after the growth operation By doing so, the residual gas partial pressure of the raw material gas during the subsequent underlayer growth can be reduced,
Further, it is possible to perform stable film forming work with good film thickness controllability and reproducibility.

【0028】第1反応槽1において所望の膜厚の下地膜
が得られたら、基板の加熱と原料ガス等の導入を停止し
て、下地膜成長反応を終了する。反応終了後は、第1反
応槽1内は1×10-5Torr以下の高真空状態に保っ
た状態で基板を冷却する。この冷却はバッファチャンバ
ー4で行ってもよい。基板を所定温度に冷却した後、ゲ
ートバルブ3aを開き、搬送手段によって基板を第1反
応槽から搬出し、バッファチャンバー4に搬入する。次
いでゲートバルブ3bを開け、該バッファチャンバー4
から第2反応槽2に基板を搬入する。この際、必要に応
じて第1反応槽1内を水素プラズマ等によりクリーニン
グした後、次の基板を第1反応槽に搬入し、下地膜生成
を行う様な連続処理も可能である。
When the base film having a desired film thickness is obtained in the first reaction tank 1, the heating of the substrate and the introduction of the raw material gas are stopped, and the base film growth reaction is completed. After completion of the reaction, the substrate is cooled while the first reaction tank 1 is kept in a high vacuum state of 1 × 10 −5 Torr or less. This cooling may be performed in the buffer chamber 4. After cooling the substrate to a predetermined temperature, the gate valve 3a is opened, and the substrate is unloaded from the first reaction tank by the carrying means and loaded into the buffer chamber 4. Next, the gate valve 3b is opened, and the buffer chamber 4
Then, the substrate is loaded into the second reaction tank 2. At this time, a continuous process is possible in which the inside of the first reaction tank 1 is cleaned with hydrogen plasma or the like, if necessary, and then the next substrate is loaded into the first reaction tank to form a base film.

【0029】加熱手段11は、第2反応槽2内に搬入し
た基板を所定反応が生じる温度に加熱し、図示していな
いガス導入手段により例えばWF6等の原料ガスである
金属ハロゲン化物ガスとシラン(SiH4)等の還元性
ガス、及び必要に応じてアルゴン等の希釈ガスを導入
し、一般的に知られている選択CVD法により効率的な
成膜作業を実行する。
The heating means 11 heats the substrate carried into the second reaction tank 2 to a temperature at which a predetermined reaction occurs, and a metal halide gas, which is a source gas such as WF6, and silane are heated by a gas introducing means (not shown). A reducing gas such as (SiH 4 ) and, if necessary, a diluent gas such as argon are introduced, and an efficient film forming operation is performed by a generally known selective CVD method.

【0030】第2反応槽2において所望の厚さの金属膜
を得たら、ゲートバルブ3bを開け、搬送手段により基
板を搬出してバッファチャンバー4に搬入する。ゲート
バルブ3a、3bを閉じた状態でゲートバルブ3cを開
け、基板をローディング・アンローディングチャンバー
5に搬出する。
When the metal film having a desired thickness is obtained in the second reaction tank 2, the gate valve 3b is opened, and the substrate is carried out by the carrying means and carried into the buffer chamber 4. The gate valve 3c is opened with the gate valves 3a and 3b closed, and the substrate is unloaded into the loading / unloading chamber 5.

【0031】この様に、基板の搬入から成膜作業終了ま
で、基板を大気に曝したり、エッチング等の余分な工程
を必要とすることがないため、基板の連続処理を実行で
き、自動化にも対応しやすい。
As described above, since the substrate is not exposed to the atmosphere or an extra step such as etching is not required from the loading of the substrate to the completion of the film forming operation, continuous processing of the substrate can be executed and it can be automated. Easy to handle.

【0032】以上の方法で下地膜を設けて選択気相成長
を行った場合と、下地膜を設けないで選択気相成長を行
った場合の、得られた金属膜の膜厚と成長時間との関係
を図4に示す。基板は<100>シリコン単結晶ウェハ
ーであり、p型基板上にAs+を4×1015cm-2打ち
込んで作成したn+−pウェハーと、n型基板上にBF2
+を4×1015cm-2打ち込んで作成したp+−nウェハ
ーとを用いた。その基板上に一旦SiO2を1μmの厚
さに成膜してその膜にコンタクトホールを作成して金属
膜の成長を行った。原料ガスにはWF6を用いた。
The film thickness and the growth time of the obtained metal film in the case of performing the selective vapor phase growth by providing the underlayer film by the above method and in the case of performing the selective vapor phase growth without providing the underlayer film 4 shows the relationship. The substrate was a <100> silicon single crystal wafer, an n + -p wafer prepared by implanting As + of 4 × 10 15 cm −2 on a p-type substrate, and BF 2 on the n-type substrate.
A p + -n wafer prepared by implanting + with 4 × 10 15 cm −2 was used. SiO 2 was once deposited on the substrate to a thickness of 1 μm and contact holes were formed in the film to grow a metal film. WF 6 was used as the source gas.

【0033】ウェハーは、フッ素系ガスプラズマによる
ドライ前処理後、下地膜を設ける場合には、基板温度4
00℃、圧力2×10-4Torr、反応時間は10秒間
として下地膜の生成を行った。
After the dry pretreatment with the fluorine-based gas plasma, the wafer has a substrate temperature of 4 when the base film is provided.
The underlying film was formed at 00 ° C., pressure of 2 × 10 −4 Torr, and reaction time of 10 seconds.

【0034】下地膜を用いるウェハーの場合は下地膜生
成後、下地膜を用いないウェハーの場合は前記ドライ前
処理後、基板温度を300℃とし、水素ガス1000s
ccm、WF6とSiH4を流量比WF6/SiH4=2の
割合で導入し、全圧0.1Torrの下でシラン還元に
よりタングステン膜成長を行った。図4から明かな様
に、下地膜を用いた方がn+−pウェハーとp+−nウェ
ハーとの間の膜厚差が小さいことがわかる。又、上記と
同じドライ前処理を行ったウェハーを有機ガス系プラズ
マに曝して故意にウェハーを汚染した後に膜成長を行っ
た場合も、下地膜を用いた方がウェハー間の膜厚差が小
さいことが確認されている。
In the case of a wafer using a base film, after the base film is formed, in the case of a wafer not using a base film, after the dry pretreatment, the substrate temperature is set to 300 ° C. and hydrogen gas is set to 1000 s.
ccm, WF 6 and SiH 4 were introduced at a flow rate ratio of WF 6 / SiH 4 = 2, and a tungsten film was grown by silane reduction under a total pressure of 0.1 Torr. As is apparent from FIG. 4, the film thickness difference between the n + -p wafer and the p + -n wafer is smaller when the underlayer film is used. Further, even when the same dry pretreatment as described above is performed on the wafer by exposing it to the organic gas plasma to intentionally contaminate the wafer and perform the film growth, the film thickness difference between the wafers is smaller when the base film is used. It has been confirmed.

【0035】なお、本発明は主としてシリコン基板に用
いられるが、基板表面にSiO2等の金属膜が成長しな
い酸化膜部分と金属状のシリコン原子が存在している部
分とがあれば、金属シリコン部分に選択的に膜成長を行
うことができるので、この限りにおいて基板自体はシリ
コン基板に限定されるものではない。
Although the present invention is mainly used for a silicon substrate, if there is an oxide film portion where a metal film such as SiO 2 does not grow and a portion where metallic silicon atoms are present on the substrate surface, metal silicon is used. Since the film can be selectively grown on the portion, the substrate itself is not limited to the silicon substrate as long as this is the case.

【0036】[0036]

【発明の効果】以上述べてきた様に、本発明によれば基
板へのダメージを極力抑制し、密着性の良い金属膜を形
成でき、従って、接合破壊等をおこすことなくコンタク
トホール等の埋め込み配線を行うことができる。更に、
基板の表面状態の相違に影響を受けることなく一定速度
で膜成長を行うことができるので、前処理や膜厚制御が
容易になり、生産性の向上を図ることができる。
As described above, according to the present invention, damage to the substrate can be suppressed as much as possible, and a metal film having good adhesion can be formed. Therefore, the contact hole or the like can be buried without causing junction breakage or the like. Wiring can be done. Furthermore,
Since the film growth can be performed at a constant rate without being affected by the difference in the surface state of the substrate, pretreatment and film thickness control are facilitated, and productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】 タングステン膜がシリコン基板に食い込む深
さと基板温度との関係を示した図である。
FIG. 2 is a diagram showing a relationship between a substrate temperature and a depth at which a tungsten film bites into a silicon substrate.

【図3】 反応圧力及び反応時間とタングステン膜がシ
リコン単結晶基板に食い込む深さとの関係を示した図で
ある。
FIG. 3 is a diagram showing a relationship between a reaction pressure and a reaction time and a depth at which a tungsten film bites into a silicon single crystal substrate.

【図4】 成膜時間とタングステン膜の膜厚の関係を示
す図である。
FIG. 4 is a diagram showing a relationship between a film formation time and a film thickness of a tungsten film.

【符号の説明】[Explanation of symbols]

1 第1反応槽 2 第2反応槽 6
基板搬送順序 7 加熱手段 8 排気手段 9
ガス導入手段 10 制御手段
1 1st reaction tank 2 2nd reaction tank 6
Substrate transfer sequence 7 Heating means 8 Exhaust means 9
Gas introduction means 10 Control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 孝 千葉県山武郡山武町横田523 日本真空技 術株式会社千葉超材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Komatsu 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Japan Vacuum Technology Co., Ltd. Chiba Institute for Super Materials

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所望の金属元素を組成として含む原料ガ
スの反応により基板の表面上の所望の部分に前記金属元
素の膜を選択的に成長させる選択気相成長方法におい
て、 基板を300℃以上に加熱し、前記原料ガスを短時間だ
け導入すると共に、反応雰囲気を1×10-2Torr以
下の圧力に保って基板表面に金属膜を選択的に成長させ
て下地膜を得る第1工程と、 反応雰囲気中に還元性ガスを導入して下地膜上に更に金
属膜を選択的に成長をさせて所望の膜厚の金属膜を得る
第2工程とを有することを特徴とする選択気相成長方
法。
1. A selective vapor deposition method for selectively growing a film of a metal element at a desired portion on a surface of a substrate by reacting a source gas containing a desired metal element as a composition, wherein the substrate is 300 ° C. or higher. The first step of obtaining a base film by selectively growing a metal film on the surface of the substrate while heating the raw material gas for a short time and maintaining the reaction atmosphere at a pressure of 1 × 10 −2 Torr or less. A second step of introducing a reducing gas into a reaction atmosphere to selectively grow a metal film on the underlayer film to obtain a metal film having a desired thickness. How to grow.
【請求項2】 前記第1工程で導入するガスは成膜時間
と原料ガス圧力の積が1×10-2秒・Torr以下の条
件でパルス状に導入されることを特徴とする請求項1記
載の選択気相成長方法。
2. The gas introduced in the first step is introduced in pulses under the condition that the product of film forming time and source gas pressure is 1 × 10 −2 sec · Torr or less. The selective vapor phase growth method described.
【請求項3】 前記第2工程で導入する還元性ガスはS
iH4又はその誘導体であることを特徴とする請求項1
記載の選択気相成長方法。
3. The reducing gas introduced in the second step is S
iH 4 or a derivative thereof, i.
The selective vapor phase growth method described.
【請求項4】 請求項1に記載の方法の実施に用いられ
る装置であって、前記第1工程を実行する第1反応槽
と、前記第2工程を実行する第2反応槽と、前記第1反
応槽から前記第2反応槽へ基板を搬送する搬送手段とを
備えると共に、 前記第1反応槽には、排気手段と、基板を300℃以上
に加熱する第1加熱手段と、少なくとも前記原料ガスを
導入するガス導入手段と、前記ガス導入手段と前記排気
手段のいずれか一方又は両方を制御して成膜時間と原料
ガス圧力との積を1×10-2秒・Torr以下の条件に
保つ制御手段とを設けたことを特徴とする選択気相成長
装置。
4. An apparatus used for carrying out the method according to claim 1, wherein a first reaction tank for performing the first step, a second reaction tank for performing the second step, and the second reaction tank The first reaction tank is provided with an evacuation means, a first heating means for heating the substrate to 300 ° C. or higher, and at least the raw material. The product of film formation time and source gas pressure is controlled to 1 × 10 -2 sec · Torr or less by controlling gas introduction means for introducing gas and / or one or both of the gas introduction means and the exhaust means. A selective vapor phase growth apparatus provided with a control means for maintaining the same.
【請求項5】 前記ガス導入手段がパルス開閉可能なガ
ス導入バルブで構成されることを特徴とする請求項3記
載の選択気相成長装置。
5. The selective vapor phase growth apparatus according to claim 3, wherein the gas introduction unit is composed of a gas introduction valve capable of opening and closing a pulse.
JP7695393A 1993-04-02 1993-04-02 Selective vapor growth method and device Pending JPH06291042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7695393A JPH06291042A (en) 1993-04-02 1993-04-02 Selective vapor growth method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7695393A JPH06291042A (en) 1993-04-02 1993-04-02 Selective vapor growth method and device

Publications (1)

Publication Number Publication Date
JPH06291042A true JPH06291042A (en) 1994-10-18

Family

ID=13620150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7695393A Pending JPH06291042A (en) 1993-04-02 1993-04-02 Selective vapor growth method and device

Country Status (1)

Country Link
JP (1) JPH06291042A (en)

Similar Documents

Publication Publication Date Title
US10741435B2 (en) Oxidative volumetric expansion of metals and metal containing compounds
US4985372A (en) Method of forming conductive layer including removal of native oxide
JP3228746B2 (en) Method for nucleating tungsten on titanium nitride by CVD without silane
US20170372919A1 (en) Flowable Amorphous Silicon Films For Gapfill Applications
US4540607A (en) Selective LPCVD tungsten deposition by the silicon reduction method
US10395916B2 (en) In-situ pre-clean for selectivity improvement for selective deposition
JP2003193233A (en) Method for depositing tungsten film
JP2000178735A (en) Method of forming tungsten film
US7622386B2 (en) Method for improved formation of nickel silicide contacts in semiconductor devices
US20110272279A1 (en) Apparatus for manufacturing semiconductor device and method for manufacturing semiconductor device by using the same
JP3381774B2 (en) Method of forming CVD-Ti film
US20180145034A1 (en) Methods To Selectively Deposit Corrosion-Free Metal Contacts
JP3667038B2 (en) CVD film forming method
US7781337B2 (en) Forming method of silicide film
JPH11150073A (en) Thin-film forming equipment
US5338423A (en) Method of eliminating metal voiding in a titanium nitride/aluminum processing
US10854511B2 (en) Methods of lowering wordline resistance
JP2000265272A (en) Formation of tungsten layer and laminated structure of tungsten layer
JPH06291042A (en) Selective vapor growth method and device
US6224942B1 (en) Method of forming an aluminum comprising line having a titanium nitride comprising layer thereon
US6660621B1 (en) Method of forming ultra-shallow junctions in a semiconductor wafer with silicon layer deposited from a gas precursor to reduce silicon consumption during salicidation
JPH1064848A (en) Method and device for manufacturing semiconductor device
JP3003610B2 (en) Method for manufacturing semiconductor device
JPH04345024A (en) Manufacture of semiconductor device
KR100331964B1 (en) Equpiment for for depositing atom layer and method for depositing thereof