JPH06291015A - Evaluating and correcting method for distortion of reduction projection lens - Google Patents

Evaluating and correcting method for distortion of reduction projection lens

Info

Publication number
JPH06291015A
JPH06291015A JP7785393A JP7785393A JPH06291015A JP H06291015 A JPH06291015 A JP H06291015A JP 7785393 A JP7785393 A JP 7785393A JP 7785393 A JP7785393 A JP 7785393A JP H06291015 A JPH06291015 A JP H06291015A
Authority
JP
Japan
Prior art keywords
reduction projection
lens
projection lens
distortion
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7785393A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamashita
一博 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7785393A priority Critical patent/JPH06291015A/en
Publication of JPH06291015A publication Critical patent/JPH06291015A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure and correct the distortion of the reduction projection lens of a reduction projection aligner with high accuracy of <=10nm without being affected by the accuracy of a stage by measuring the relative positional deviation between a resist pattern printed through the lens and two-beam interference fringes at a designated location in an exposing area. CONSTITUTION:A two-beam interference fringe pattern 100 is first formed by exposure on a resist applied to a semiconductor substrate by means of a holographic aligner. After roughly aligning the substrate for rotation and parallelism against the interference fringes 100 by using rough alignment marks formed on the substrate in advance by means of a reduction projection aligner, resist patterns 101 are formed at locations on the semiconductor substrate where the distortion of the reduction projection lens of the reduction aligner is measured. Then the lens is evaluated by measuring the relative positional deviation between the resist pattern printed through the lens and the two-beam interference fringes 100 and the distortion of the lens.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細パターンを持つ半
導体装置等を製造するための露光装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus for manufacturing a semiconductor device having a fine pattern.

【0002】[0002]

【従来の技術】現在、半導体装置等の製造方法として縮
小投影露光装置による光リソグラフィ技術が用いられて
いる。縮小投影露光法は所定の透明部と不透明部とから
なるマスクパターン(レチクル)を縮小投影レンズを通
して半導体基板上に塗布されたレジストに転写する方法
であるが、個々の投影レンズのディストーション量のば
らつきが大きく、異号機の投影露光装置間のmix&m
atchで露光しようとすると、レンズディストーショ
ンが大きくて、重ね合わせ精度がよくないと言う問題が
あった。そこで、レンズディストーションの小さい縮小
投影レンズの製作が要求されているのであるが、レンズ
ディストーションの小さい縮小投影レンズの製作するた
めには、より高精度のレンズディストーション計測が必
要となっている。しかしながら、従来のレンズディスト
ーション計測は縮小投影露光装置により露光領域全体パ
ターンを露光後、露光位置中心がディストーション計測
位置パターンにくるようにステージ移動して次々に露光
中心パターンと重ね合わせ露光し、重ね合わせずれ量を
測定する方法がとられていた。
2. Description of the Related Art At present, an optical lithography technique using a reduction projection exposure apparatus is used as a method of manufacturing a semiconductor device or the like. The reduction projection exposure method is a method of transferring a mask pattern (reticle) consisting of predetermined transparent portions and opaque portions to a resist coated on a semiconductor substrate through a reduction projection lens. However, variations in distortion amount of individual projection lenses Is large, and mix & m between projection exposure systems of different machines
When attempting exposure with the touch, there is a problem that the lens distortion is large and the overlay accuracy is not good. Therefore, it is required to manufacture a reduction projection lens with a small lens distortion, but in order to manufacture a reduction projection lens with a small lens distortion, more accurate lens distortion measurement is required. However, in the conventional lens distortion measurement, after the entire exposure area pattern is exposed by the reduction projection exposure apparatus, the stage is moved so that the exposure position center comes to the distortion measurement position pattern, and the exposure center pattern is sequentially superimposed and exposed. A method of measuring the amount of deviation has been adopted.

【0003】[0003]

【発明が解決しようとする課題】すなわち、従来の方法
はステージの配列位置精度を用いてレンズディストーシ
ョン計測をおこなっており、ステージの配列位置精度が
レンズディストーション計測の誤差要因になっていた。
さらに残留レンズディストーションの補正についてレン
ズ内圧力制御などの倍率補正以外の策がないのが現状で
ある。
That is, in the conventional method, the lens distortion measurement is performed using the arrangement position accuracy of the stage, and the arrangement position accuracy of the stage is an error factor of the lens distortion measurement.
Furthermore, at present, there is no other means for correcting residual lens distortion than magnification correction such as pressure control in the lens.

【0004】本発明はかかる問題点を考慮して発明され
たものでステージ精度に影響を受けない10nm以下の
高精度な縮小投影露光装置のレンズディストーションの
計測および補正方法を提供することを目的とするもので
ある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for measuring and correcting lens distortion of a reduction projection exposure apparatus with high accuracy of 10 nm or less that is not affected by stage accuracy. To do.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は、可干渉な2光束を前記半導体基板上に照
射することにより、2光束干渉縞を前記半導体基板上に
露光し、さらに縮小投影露光装置により、半導体基板上
にレジストパターンを形成する。そして投影レンズで焼
き付けられた前記レジストパターンと前記2光束干渉縞
との相対位置ずれ量を露光領域内の指定箇所で測定する
工程により、縮小投影レンズのディストーションを計測
することにより縮小投影レンズの評価を実施するもので
ある。
In order to solve the above problems, the present invention irradiates the semiconductor substrate with two coherent light beams to expose two-beam interference fringes onto the semiconductor substrate, Further, a reduction projection exposure apparatus is used to form a resist pattern on the semiconductor substrate. Evaluation of the reduction projection lens by measuring the distortion of the reduction projection lens by the step of measuring the relative positional deviation amount between the resist pattern printed by the projection lens and the two-beam interference fringe at a specified location in the exposure area. Is carried out.

【0006】[0006]

【作用】本発明は上記した構成によって、ホログラフィ
法により得られた位置精度の良い2光束干渉縞を絶対位
置基準とすることにより、ステージ精度に影響を受けな
い10nm以下の高精度な縮小投影露光装置のレンズデ
ィストーションが計測可能となる。その結果、レンズデ
ィストーションの小さい縮小投影レンズの製作が可能と
なり、異号機の投影露光装置間のレンズディストーショ
ンが小さくなり、重ね合わせ精度が向上するものであ
る。
According to the present invention, by using the two-beam interference fringes with good positional accuracy obtained by the holography method as the absolute position reference, the present invention has a high-precision reduced projection exposure of 10 nm or less that is not affected by stage accuracy. The lens distortion of the device can be measured. As a result, it is possible to manufacture a reduction projection lens with a small lens distortion, the lens distortion between the projection exposure apparatuses of different machines is reduced, and the overlay accuracy is improved.

【0007】[0007]

【実施例】以下本発明の一実施例の微細パタ−ン形成方
法について、図面を参照しながら説明する。図1は本発
明の縮小投影露光装置のレンズディストショーンを計測
する手順を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A fine pattern forming method according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a procedure for measuring the lens distortion of the reduction projection exposure apparatus of the present invention.

【0008】ステップ1では図2に示すホログラフィク
露光装置により半導体基板上に塗布されたレジスト上に
2光束干渉縞パターン100を露光する。本実施例のホ
ログラフィ露光装置は、露光光源であるレーザ、ビーム
エクスパンダー、ビームスプリッタ、2枚の反射鏡、ウ
エハステージにより構成されており、コヒーレントな光
210をレーザ発生装置からビームスプリッタ(BS)
に入射させ、ほぼ同一強度の反射光211と透過光21
2とに振幅分割し、各々反射鏡M1と反射鏡M2に入射
し、半導体基板Wの表面に対して双方の反射光がほぼ等
しい角度θで入射するように、BS,M1,M2,Wを配
置する。レーザの波長をλ,M1,M2からの反射光21
1、212が干渉して作る干渉縞のピッチをP1とする
と、(数1)で表される干渉縞パターン100が半導体
基板上に露光される。
In step 1, the holographic exposure apparatus shown in FIG. 2 exposes the two-beam interference fringe pattern 100 on the resist applied on the semiconductor substrate. The holographic exposure apparatus according to the present embodiment includes a laser that is an exposure light source, a beam expander, a beam splitter, two reflecting mirrors, and a wafer stage. The coherent light 210 is emitted from the laser generator to a beam splitter (BS).
To the reflected light 211 and the transmitted light 21 with almost the same intensity.
A, B, M 1 , M so that the reflected light is incident on the reflecting mirror M 1 and the reflecting mirror M 2 respectively, and both reflected lights are incident on the surface of the semiconductor substrate W at substantially equal angles θ. 2 and W are arranged. The reflected light 21 from the laser wavelengths λ, M 1 and M 2
Assuming that the pitch of the interference fringes formed by the interference of 1 and 212 is P1, the interference fringe pattern 100 represented by (Equation 1) is exposed on the semiconductor substrate.

【0009】[0009]

【数1】 [Equation 1]

【0010】つぎにステップ2では縮小投影露光装置に
より、事前に半導体基板上に形成された概略の素合わせ
位置合わせマークを用いて前記2光束干渉縞に対して概
略の平行および回転の位置合わせを行った後、半導体基
板上の縮小投影レンズのディストーションを計測する箇
所にレジストパターン101を形成する。この際、図3
に示すように、ディストーションを計測する箇所に当た
る2光束干渉縞は露光しないようにする。レジストパタ
ーン101は格子パターンでなくてもよい。半導体基板
に形成された格子パターンを矩型格子にすると、xy方
向のレンズディストーションを同時に測定することをで
きる。
Next, in step 2, the reduction projection exposure apparatus performs approximate parallel and rotational alignment with respect to the two-beam interference fringes by using approximate alignment marks previously formed on the semiconductor substrate. After that, a resist pattern 101 is formed on the semiconductor substrate at a position where the distortion of the reduction projection lens is measured. At this time, FIG.
As shown in (2), the two-beam interference fringes corresponding to the portion where the distortion is measured are not exposed. The resist pattern 101 does not have to be a grid pattern. When the grating pattern formed on the semiconductor substrate is a rectangular grating, the lens distortion in the xy directions can be measured at the same time.

【0011】図4は本発明で実施される縮小投影露光装
置の構成図である。図4において、301は露光光源、
303はコンデンサレンズ、304はレチクル、308
は縮小投影レンズ、309は半導体基板、310は前記
半導体基板を載置したウエハステ−ジ、311は前記ウ
エハステ−ジを高精度に移動するためのレ−ザ干渉計を
示している。
FIG. 4 is a block diagram of a reduction projection exposure apparatus embodying the present invention. In FIG. 4, 301 is an exposure light source,
303 is a condenser lens, 304 is a reticle, 308
Is a reduction projection lens, 309 is a semiconductor substrate, 310 is a wafer stage on which the semiconductor substrate is mounted, and 311 is a laser interferometer for moving the wafer stage with high precision.

【0012】そしてステップ3では投影レンズで焼き付
けられた前記レジストパターン101と前記2光束干渉
縞100との相対位置ずれ量を露光領域内の指定箇所で
測定することにより、縮小投影レンズのディストーショ
ンを計測することにより縮小投影レンズの評価を実施す
る。なお本発明では2光束干渉縞を露光後、縮小投影露
光装置により、レンズディストーション計測用のパター
ンを形成したが、その逆の手順の最初に縮小投影露光装
置によりレンズディストーション計測用のパターンを形
成後、2光束干渉縞パターンを形成してもよい。
Then, in step 3, the relative displacement between the resist pattern 101 printed by the projection lens and the two-beam interference fringes 100 is measured at a designated position in the exposure area to measure the distortion of the reduction projection lens. By doing so, the reduction projection lens is evaluated. In the present invention, after the two-beam interference fringes are exposed, the pattern for lens distortion measurement is formed by the reduction projection exposure apparatus, but after the reverse procedure, the pattern for lens distortion measurement is formed by the reduction projection exposure apparatus. A two-beam interference fringe pattern may be formed.

【0013】図5に本発明を実施できる2光束干渉を用
いた重ね合わせを測定するための光学系を示す。振動数
が僅かに異なる(△f=25kHz)可干渉な2光束U
1(変調振動周波数f1:100MHz)、U2(変調振
動周波数f:100.25MHz)を入射角度θで半導
体基板401上に入射し、重ね合わせ測定基準となる干
渉縞402を形成する。このとき干渉縞のピッチP2は
(数2)で表される。
FIG. 5 shows an optical system for measuring overlay using two-beam interference in which the present invention can be implemented. Two coherent light beams U with slightly different frequencies (Δf = 25 kHz)
1 (modulated vibration frequency f 1 : 100 MHz) and U 2 (modulated vibration frequency f: 100.25 MHz) are incident on the semiconductor substrate 401 at an incident angle θ to form an interference fringe 402 serving as a superposition measurement reference. At this time, the pitch P2 of the interference fringes is expressed by (Equation 2).

【0014】[0014]

【数2】 [Equation 2]

【0015】一方半導体基板401上には、縮小投影露
光装置により、焼き付けられた格子パターンと、可干渉
な2光束を前記半導体基板上に照射し露光することによ
り焼きつけられた2光束干渉縞パターンが形成されてい
る。位置ずれ測定は図3,図5に示すようにこの2つの
格子100および2光束干渉縞パターン101に2光束
1,U2を一括照射する。半導体基板上の格子および2
光束干渉縞パターンにより半導体基板に対して垂直方向
に回折された±1次光は(数3)で表される。
On the other hand, on the semiconductor substrate 401, a grating pattern printed by a reduction projection exposure apparatus and a two-beam interference fringe pattern printed by irradiating the semiconductor substrate with two coherent light beams for exposure. Has been formed. As for the displacement measurement, as shown in FIGS. 3 and 5, the two gratings 100 and the two-beam interference fringe pattern 101 are collectively irradiated with the two beams U 1 and U 2 . Lattice on semiconductor substrate and 2
The ± first-order light diffracted in the direction perpendicular to the semiconductor substrate by the light flux interference fringe pattern is represented by (Equation 3).

【0016】[0016]

【数3】 [Equation 3]

【0017】但しδは2光束干渉縞と格子および2光束
干渉縞パターンとの位置ずれに基づく位相差であり、
(数4)で表される。
Here, δ is a phase difference based on the positional deviation between the two-beam interference fringe pattern and the grating and the two-beam interference fringe pattern,
It is represented by (Equation 4).

【0018】[0018]

【数4】 [Equation 4]

【0019】これらの式より±1次光の回折光の干渉光
強度は(数5)で表される。ただしI1は格子、I2は2
光束干渉縞パターンからの回折光の干渉光強度である。
From these expressions, the interference light intensity of the ± 1st-order diffracted light is expressed by (Equation 5). Where I 1 is a lattice and I 2 is 2
It is the interference light intensity of the diffracted light from the light flux interference fringe pattern.

【0020】[0020]

【数5】 [Equation 5]

【0021】(数5)からわかるように光検出器405
により検出されるビート信号の位相項に2光束干渉縞4
02と半導体基板の格子101および2光束干渉縞パタ
ーン100間の相対位置ずれ量x1,x2が含まれてい
る。そこで図5(b)に示すように、格子101および
2光束干渉縞100より回折し、光検出器405により
検出されたヘテロダインビート信号の位相差(δ)を位
相計により測定することにより位置ずれ量を測定するこ
とができる。
As can be seen from (Equation 5), the photodetector 405
2 light flux interference fringes 4 in the phase term of the beat signal detected by
02, and the relative positional deviation amounts x 1 and x 2 between the grating 101 of the semiconductor substrate and the two-beam interference fringe pattern 100. Therefore, as shown in FIG. 5B, the phase shift (δ) of the heterodyne beat signal diffracted by the grating 101 and the two-beam interference fringes 100 and detected by the photodetector 405 is measured by a phase meter, and thereby the position shift is caused. The quantity can be measured.

【0022】以上のように本発明を用いることにより高
精度に縮小投影レンズのディストーションが計測できる
ため、その結果縮小投影レンズのレンズディストーショ
ン量に基づいて、半導体基板上に焼き付けられる原画で
あるレチクル上のパターンの描画位置を補正することに
より図6に示すように縮小投影レンズのレンズディスト
ーションの補正が可能となる。レチクル上のパターンの
描画位置を補正する方法としてレチクルを描画するEB
露光装置のステージを走査、制御するレーザ干渉計のス
テージ位置測定量を補正することにより実施できる。
As described above, since the distortion of the reduction projection lens can be measured with high accuracy by using the present invention, based on the lens distortion amount of the reduction projection lens, the reticle on the reticle, which is the original image to be printed on the semiconductor substrate, can be measured. By correcting the drawing position of the pattern, it is possible to correct the lens distortion of the reduction projection lens as shown in FIG. EB for drawing a reticle as a method for correcting the drawing position of the pattern on the reticle
This can be performed by correcting the stage position measurement amount of a laser interferometer that scans and controls the stage of the exposure apparatus.

【0023】[0023]

【発明の効果】以上のように本発明は、ホログラフィ法
により得られた位置精度の良い2光束干渉縞を絶対位置
基準とすることにより、ステージ精度に影響を受けない
10nm以下の高精度な縮小投影露光装置のレンズディ
ストーションが計測可能となる。その結果、レンズディ
ストーションの小さい縮小投影レンズの製作が可能とな
り、異号機の投影露光装置間のレンズディストーション
が小さくなり、重ね合わせ精度が向上する。
As described above, according to the present invention, the two-beam interference fringes with good positional accuracy obtained by the holography method are used as the absolute position reference, so that the high-accuracy reduction of 10 nm or less is not affected by the stage accuracy. The lens distortion of the projection exposure apparatus can be measured. As a result, a reduction projection lens with a small lens distortion can be manufactured, the lens distortion between the projection exposure apparatuses of different machines is reduced, and the overlay accuracy is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】発明の縮小投影露光装置のレンズディストーシ
ョンを計測するフローチャート
FIG. 1 is a flowchart for measuring lens distortion of a reduction projection exposure apparatus of the invention.

【図2】本発明の2光束干渉縞露光を実施できるホログ
ラフィ露光装置の構成図
FIG. 2 is a configuration diagram of a holographic exposure apparatus capable of performing two-beam interference fringe exposure of the present invention.

【図3】本発明の縮小投影露光装置のレンズディストー
ションを計測する箇所を示す図
FIG. 3 is a diagram showing a portion for measuring a lens distortion of the reduction projection exposure apparatus of the present invention.

【図4】縮小投影露光装置の構成図FIG. 4 is a block diagram of a reduction projection exposure apparatus.

【図5】本発明を実施できる2光束干渉を用いた重ね合
わせを測定するための光学系を示す構成図
FIG. 5 is a configuration diagram showing an optical system for measuring overlay using two-beam interference in which the present invention can be implemented.

【図6】縮小投影レンズのレンズディストーション補正
方法を示す説明図
FIG. 6 is an explanatory diagram showing a lens distortion correction method for a reduction projection lens.

【符号の説明】[Explanation of symbols]

100 2光束干渉縞パターン 101 縮小投影露光装置により得られたパターン 405 光検出器 100 Two-beam interference fringe pattern 101 Pattern obtained by reduction projection exposure apparatus 405 Photodetector

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】縮小投影露光装置により、可干渉な2光束
を半導体基板上に照射することにより2光束干渉縞を前
記半導体基板上に露光する工程と、半導体基板上にレジ
ストパターンを形成する工程と、縮小投影露光装置で焼
き付けられた前記レジストパターンと前記2光束干渉縞
との相対位置ずれ量を露光領域内の指定箇所で測定する
工程により、縮小投影レンズのディストーションを計測
することを特徴とする縮小投影レンズの評価方法。
1. A step of exposing a two-beam interference fringe onto the semiconductor substrate by irradiating a semiconductor substrate with two beams of coherent light by a reduction projection exposure apparatus, and a step of forming a resist pattern on the semiconductor substrate. Distortion of the reduction projection lens is measured by a step of measuring a relative positional deviation amount between the resist pattern and the two-beam interference fringes printed by the reduction projection exposure apparatus at a designated position in the exposure area. Evaluation method of reduction projection lens.
【請求項2】請求項1記載において、わずかに周波数が
異なり相互に干渉しうる2光束を、投影レンズで焼き付
けられた格子パターンと2光束干渉縞に照射し、前記半
導体基板から回折し干渉した±1次光のヘテロダインビ
ート信号を光検出器により検出し、位相差を計測するこ
とにより、投影レンズで焼き付けられた前記格子パター
ンと前記2光束干渉縞の相対位置ずれ量を計測すること
を特徴とする縮小投影レンズのレンズディストーション
評価方法。
2. The two light fluxes having slightly different frequencies and capable of interfering with each other are applied to the grating pattern and the two light flux interference fringes printed by the projection lens, and are diffracted and interfered with from the semiconductor substrate. The heterodyne beat signal of ± 1st order light is detected by a photodetector, and the phase difference is measured to measure the relative positional deviation amount between the grating pattern burned by a projection lens and the two-beam interference fringe. A lens distortion evaluation method for a reduction projection lens.
【請求項3】請求項1記載において、半導体基板に形成
された格子パターンが矩型格子であり、xy方向のレン
ズディストーションを同時に測定することを特徴とする
縮小投影レンズのレンズディストーション評価方法。
3. The lens distortion evaluation method for a reduction projection lens according to claim 1, wherein the grating pattern formed on the semiconductor substrate is a rectangular grating, and the lens distortion in the xy directions is measured at the same time.
【請求項4】縮小投影レンズのレンズディストーション
量に基づいて、半導体基板上に焼き付けられる原画であ
るレチクル上のパターンの描画位置を補正することを特
徴とする縮小投影レンズのレンズディストーションの補
正方法。
4. A method of correcting lens distortion of a reduction projection lens, which comprises correcting the drawing position of a pattern on a reticle, which is an original image to be printed on a semiconductor substrate, based on the amount of lens distortion of the reduction projection lens.
【請求項5】請求項4記載において、縮小投影レンズの
レンズディストーション量に基づいて、レチクルを描画
するEB露光装置のステージを走査、制御するレーザ干
渉計のステージ位置測定量を補正することによりレチク
ル上のパターンの描画位置を補正することを特徴とする
縮小投影レンズのレンズディストーションの補正方法。
5. The reticle according to claim 4, wherein the stage position measurement amount of a laser interferometer that scans and controls the stage of the EB exposure apparatus that draws the reticle is corrected based on the lens distortion amount of the reduction projection lens. A method for correcting lens distortion of a reduction projection lens, characterized by correcting the drawing position of the above pattern.
JP7785393A 1993-04-05 1993-04-05 Evaluating and correcting method for distortion of reduction projection lens Pending JPH06291015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7785393A JPH06291015A (en) 1993-04-05 1993-04-05 Evaluating and correcting method for distortion of reduction projection lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7785393A JPH06291015A (en) 1993-04-05 1993-04-05 Evaluating and correcting method for distortion of reduction projection lens

Publications (1)

Publication Number Publication Date
JPH06291015A true JPH06291015A (en) 1994-10-18

Family

ID=13645626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7785393A Pending JPH06291015A (en) 1993-04-05 1993-04-05 Evaluating and correcting method for distortion of reduction projection lens

Country Status (1)

Country Link
JP (1) JPH06291015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437605B1 (en) * 2001-09-05 2004-06-30 주식회사 하이닉스반도체 Mask pattern for lens evaluation of exposure apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437605B1 (en) * 2001-09-05 2004-06-30 주식회사 하이닉스반도체 Mask pattern for lens evaluation of exposure apparatus

Similar Documents

Publication Publication Date Title
JP4065468B2 (en) Exposure apparatus and device manufacturing method using the same
JP2658051B2 (en) Positioning apparatus, projection exposure apparatus and projection exposure method using the apparatus
EP0449582B1 (en) Measuring method and apparatus
US5138176A (en) Projection optical apparatus using plural wavelengths of light
JP3128827B2 (en) Projection exposure apparatus, projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method
JP3364382B2 (en) Sample surface position measuring device and measuring method
JPH1055946A (en) Exposure requirement measuring method
JP3244769B2 (en) Measuring method and measuring device
US5550635A (en) Rotational deviation detecting method and system using a periodic pattern
US5585923A (en) Method and apparatus for measuring positional deviation while correcting an error on the basis of the error detection by an error detecting means
JP3713354B2 (en) Position measuring device
JP2001267211A (en) Method and device for detecting position and method and device for exposure using the method for detecting position
JP3029133B2 (en) Measurement method and device
US5906901A (en) Alignment method and exposure apparatus for use in such alignment method
JP3600882B2 (en) Alignment method, exposure method, element manufacturing method, and alignment apparatus and exposure apparatus
JP2814538B2 (en) Alignment device and alignment method
JP3590821B2 (en) Measuring method of moving mirror bending, exposure method, and exposure apparatus
JPH06291015A (en) Evaluating and correcting method for distortion of reduction projection lens
JP3550605B2 (en) Position detection method, exposure method using the same, semiconductor device using the exposure method, method for manufacturing liquid crystal display element or thin-film magnetic head, position detection apparatus, and exposure apparatus having the same
JPH02133913A (en) Alignment apparatus
JP2888233B2 (en) Position detecting apparatus, exposure apparatus and method
JPH0697031A (en) Positioning method for projection aligner
JPH10270347A (en) Method and device for detecting alignment offset
JPH09223657A (en) Image formation characteristic measuring device and aligner provided therewith
JPH09246175A (en) Position detecting method, its device, exposing method and its device