JPH06289110A - Superconductive magnetometer - Google Patents

Superconductive magnetometer

Info

Publication number
JPH06289110A
JPH06289110A JP5079642A JP7964293A JPH06289110A JP H06289110 A JPH06289110 A JP H06289110A JP 5079642 A JP5079642 A JP 5079642A JP 7964293 A JP7964293 A JP 7964293A JP H06289110 A JPH06289110 A JP H06289110A
Authority
JP
Japan
Prior art keywords
increase
decrease
circuit
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5079642A
Other languages
Japanese (ja)
Inventor
Naoyuki Tojo
尚幸 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5079642A priority Critical patent/JPH06289110A/en
Publication of JPH06289110A publication Critical patent/JPH06289110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a superconductive magnetometer which is prevented from the generation of a bump-shaped transient signal, at the time of a reset, to be generated at every variation of magnetic field of fluxoid quantum phi0, and less in the error of measurement. CONSTITUTION:A transient signal preventing circuit 21 which generates a voltage corresponding to fluxoid quantum phi0 or-phi0 according to the increase- decrease signal of an increase-decrease discriminant circuit 17 at the time of reset, and generates a bump-shaped transient signal on the basis of the above voltage to reduce the transient signal from the quantity of precise instrumentation output from a low-pass filter 16A is added for preventing the generation of the bump-shaped transient signal, at the time of reset, to be generated at every variation of magnetic field of phi0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は超伝導量子干渉素子
(Superconducting Quantum
Interference Device:以後略して
SQUIDと呼ぶ)を用いた高感度な磁力計に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a superconducting quantum interference device (Superconducting Quantum).
(Interference Device: hereinafter referred to as SQUID for short), and relates to a high-sensitivity magnetometer.

【0002】[0002]

【従来の技術】図7は、従来の超伝導磁力計の一実施例
を示すブロック図である。図において、1はSQUID
素子、2は超伝導リング、3A,3Bは超伝導リング2
中に設けられたジョセフソン素子、4は超伝導リング2
と磁気的に結合した変調帰還コイル、5は駆動回路、6
はバイアス回路、7はプリアンプ、8は乗算器、9は位
相器、10は発振器、11は積分器、12は帰還抵抗
器、13は積分器スイッチ、14は積分コンデンサ、1
5は増幅器、16Aはローパスフィルタ、17は増減判
別回路、18はA/D変換器、19は増減カウンタ、2
0は粗精合成回路であり、VK は上記駆動回路5の出
力、VA はローパスフィルタ16Aの出力、R,Zはそ
れぞれ増減判別回路17から出力されるリセット信号と
増減信号、VDはA/D変換器18の出力、Nは増減カ
ウンタ19のカウント値である。
2. Description of the Related Art FIG. 7 is a block diagram showing an embodiment of a conventional superconducting magnetometer. In the figure, 1 is SQUID
Elements, 2 is a superconducting ring, 3A and 3B are superconducting rings 2
Josephson device provided inside, 4 is superconducting ring 2
Modulation feedback coil magnetically coupled with 5 is a drive circuit, 6
Is a bias circuit, 7 is a preamplifier, 8 is a multiplier, 9 is a phase shifter, 10 is an oscillator, 11 is an integrator, 12 is a feedback resistor, 13 is an integrator switch, 14 is an integrating capacitor, 1
5 is an amplifier, 16 A is a low-pass filter, 17 is an increase / decrease determination circuit, 18 is an A / D converter, 19 is an increase / decrease counter, 2
Reference numeral 0 is a coarse-fine synthesis circuit, V K is the output of the drive circuit 5, V A is the output of the low-pass filter 16A, R and Z are reset signals and increase / decrease signals output from the increase / decrease determination circuit 17, and V D is The output of the A / D converter 18, N is the count value of the increase / decrease counter 19.

【0003】上記駆動回路5は一般にFLL(Flux
Locked Loop)回路と呼ばれる公知のもの
であり、その動作は、例えば、Review Of S
cientific Instrument、1984
年、第55巻、第952〜957ページに記載されてい
る。
The drive circuit 5 is generally a FLL (Flux).
This is a known circuit called a Locked Loop circuit, and its operation is, for example, Review Of S.
scientific Instrument, 1984
, 55, 952-957.

【0004】次に動作について説明する。図8はSQU
ID素子のΦ−V特性を示したものである。但し、Φ0
は磁束量子であり、その値は2.07×10-15 Wbで
ある。SQUID素子1を液体ヘリウムに浸すなどして
冷却し超伝導状態に転移させると、SQUID出力電圧
Vは自分自身を鎖交する磁束に対してΦ0 を周期として
変化する。このとき被測定磁界中で上記積分器11の積
分器スイッチ13を開くと開いた時刻から積分を開始
し、図8に示すようにSQUIDの動作点は積分器スイ
ッチ13を開いた時刻において最も近い極大又は極小の
位置に固定(磁束ロック)される。
Next, the operation will be described. Figure 8 is SQU
It shows the Φ-V characteristics of the ID element. However, Φ 0
Is a magnetic flux quantum and its value is 2.07 × 10 −15 Wb. When the SQUID element 1 is cooled by immersing it in liquid helium and is transformed into a superconducting state, the SQUID output voltage V changes with a cycle of Φ 0 with respect to the magnetic flux linking itself. At this time, when the integrator switch 13 of the integrator 11 is opened in the magnetic field to be measured, integration is started from the opened time, and the operating point of the SQUID is the closest at the time when the integrator switch 13 is opened, as shown in FIG. It is fixed at the maximum or minimum position (magnetic flux lock).

【0005】磁束ロック後は積分器スイッチ13を開い
た時刻におけるSQUID鎖交磁束を出力零の原点と
し、そこからの鎖交磁束の相対的な変化量ΔΦに比例し
た電圧VK を出力し、ΔΦがΦ0 だけ増減する度にこれ
を上記増減回路17が判別して増減に応じた増減信号Z
とリセット信号Rを出力する。次に上記増減カウンタ1
9が増減信号Zの増減に応じてカウント値が1増加又は
1減算され、同時に、上記積分器11の積分器スイッチ
13が上記リセット信号Rによって閉じられて積分コン
デンサ14に蓄積された電荷が放出され電圧零にリセッ
トされる。尚、変化量ΔΦと出力電圧VK との関係は次
式で表される。
After the magnetic flux is locked, the SQUID interlinkage magnetic flux at the time when the integrator switch 13 is opened is set as the origin of the output zero, and the voltage V K proportional to the relative change amount ΔΦ of the interlinkage magnetic flux from that is output. Each time ΔΦ increases / decreases by Φ 0, the increase / decrease circuit 17 determines this and the increase / decrease signal Z corresponding to the increase / decrease.
And reset signal R is output. Next, the increase / decrease counter 1
9, the count value is incremented or decremented by 1 in accordance with the increase / decrease of the increase / decrease signal Z, and at the same time, the integrator switch 13 of the integrator 11 is closed by the reset signal R and the charge accumulated in the integrating capacitor 14 is discharged. Then, the voltage is reset to zero. The relationship between the amount of change ΔΦ and the output voltage V K is expressed by the following equation.

【0006】[0006]

【数1】 [Equation 1]

【0007】ただしMf は帰還変調コイル4と超伝導リ
ング2との相互インダクタンス、Rf は帰還抵抗器12
の抵抗値、If は帰還抵抗器12に流れる電流である。
However, M f is a mutual inductance between the feedback modulation coil 4 and the superconducting ring 2, and R f is a feedback resistor 12.
The resistance value, I f is the current flowing in the feedback resistor 12.

【0008】次に被測定磁界が次式のようにΔHだけ変
化した場合の動作について説明する。
Next, the operation when the magnetic field to be measured changes by ΔH as in the following equation will be described.

【0009】[0009]

【数2】 [Equation 2]

【0010】被測定磁界がΔHだけ変化すると上記増減
カウンタ19のカウント値はnだけ増加し、同時に、上
記駆動回路5、即ち、この回路の中の積分器11の出力
電圧は式(2)より次式で示される電圧を出力する。
When the magnetic field to be measured changes by ΔH, the count value of the increase / decrease counter 19 increases by n, and at the same time, the output voltage of the drive circuit 5, that is, the integrator 11 in this circuit is calculated from the equation (2). The voltage shown in the following equation is output.

【0011】[0011]

【数3】 [Equation 3]

【0012】そこで上記駆動回路5の出力VK をA/D
変換器18によってディジタル量に変換し、上記A/D
変換器18の出力VD と上記増減カウンタ19のカウン
ト値Nを上記粗精合成回路20に送り込んで、先ず、式
(4)を式(1)に代入した演算を行ってΔΦ1 を算出
し、次に式(3)の演算をしてΔHを算出する。このよ
うにSQUID素子1、駆動回路5、増減判別回路1
7、A/D変換器18、増減カウンタ19及び粗精合成
回路20により、上記駆動回路5が有する計測分解能
で、しかも、上記増減カウンタ19のカウンタ容量分の
ダイナミックレンジで被測定磁界の変化量ΔHを計測す
ることができる。この出力は、例えば、磁性体を発見す
るのに用いられる。尚、上記ローパスフィルタ16Aは
駆動回路5に含まれる雑音を除去するためのものであ
る。
Therefore, the output V K of the drive circuit 5 is set to A / D.
The digital amount is converted by the converter 18, and the A / D
The output V D of the converter 18 and the count value N of the increase / decrease counter 19 are sent to the coarse-fine synthesis circuit 20. First, the equation (4) is substituted into the equation (1) to calculate ΔΦ 1. Then, the equation (3) is calculated to calculate ΔH. In this way, the SQUID element 1, the drive circuit 5, the increase / decrease determination circuit 1
7, the A / D converter 18, the increase / decrease counter 19, and the coarse / fine synthesis circuit 20, with the measurement resolution of the drive circuit 5, and with the dynamic range of the counter capacity of the increase / decrease counter 19, the amount of change in the magnetic field to be measured. ΔH can be measured. This output is used, for example, to find a magnetic material. The low-pass filter 16A is for removing noise contained in the drive circuit 5.

【0013】[0013]

【発明が解決しようとする課題】上記のように構成され
た超伝導磁力計の被測定磁界Hと粗出力、精出力、粗精
合成出力、即ち、増減カウンタ19のカウント値N,A
/D変換器18の出力VD ,粗精合成回路20の出力H
G との関係は、例えば、被測定磁界が直線的に単調増加
する場合、図9の(a),(b),(c),(d)のよ
うに表わされる。但し、図は横軸の時間軸を対応させて
表わしている。
The magnetic field to be measured H of the superconducting magnetometer constructed as described above and the coarse output, fine output, and coarse fine combined output, that is, the count values N and A of the increment / decrement counter 19 are obtained.
Output V D of the D / D converter 18, output H of the coarse synthesis circuit 20
The relationship with G is expressed as shown in (a), (b), (c), and (d) of FIG. 9 when the measured magnetic field linearly increases monotonically, for example. However, in the figure, the horizontal axis is associated with the time axis.

【0014】図9(a)のように被測定磁界HがΦ0
加する度に上記増減カウンタ19の出力Nは図9(b)
のように1カウントずつ増加し、駆動回路5はΦ0 に相
当する振幅の鋸歯波を出力するが、駆動回路5の後に設
けた雑音除去用のローパスフィルタ16Aにより、鋸歯
波の立下がりの所、即ち、駆動回路5のリセット時に遅
れを生じるため、A/D変換器18の出力VD は図9
(c)のようになる。その結果、粗精合成回路20の出
力HG は図9(d)のようにΦ0 の繋ぎ目の所で瘤上の
過渡信号を生ずる。尚、被測定磁界Hが単調減少する場
合、粗精合成回路20の出力HG は、単調増加の場合と
逆の、右下がりの過渡信号も下向きの波形となる。これ
ら粗精合成回路20の出力HG に含まれる過渡信号が磁
界の計測誤差になることがあった。
As shown in FIG. 9A, the output N of the increase / decrease counter 19 is shown in FIG. 9B each time the measured magnetic field H increases by Φ 0 .
As described above, the drive circuit 5 outputs a sawtooth wave having an amplitude corresponding to Φ 0 , but the low pass filter 16A for noise removal provided after the drive circuit 5 causes the sawtooth wave to fall. That is, since a delay occurs when the drive circuit 5 is reset, the output V D of the A / D converter 18 is as shown in FIG.
It becomes like (c). As a result, the output H G of the coarse synthesis circuit 20 produces a transient signal on the bump at the joint of Φ 0 as shown in FIG. 9 (d). When the measured magnetic field H monotonously decreases, the output H G of the coarse / fine synthesis circuit 20 also has a downward-sloping downward-moving transient signal, which is the reverse of the case of monotonically increasing. The transient signal included in the output H G of the coarse-fine synthesis circuit 20 sometimes causes a magnetic field measurement error.

【0015】この発明は上記のような問題点を解決する
ためになされたものであり、駆動回路5のリセット時に
生ずる過渡信号を減少させて計測誤差の少ない超伝導磁
力計を得ることを目的としている。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to obtain a superconducting magnetometer having a small measurement error by reducing a transient signal generated when the drive circuit 5 is reset. There is.

【0016】[0016]

【課題を解決するための手段】この発明の実施例1の超
伝導磁力計においては、SQUID素子と、上記SQU
ID素子を駆動し所望の出力を得る駆動回路と、上記駆
動回路の雑音を除去するローパスフィルタと、上記駆動
回路の出力を基に被測定磁界の増減を示す増減信号及び
上記駆動回路をリセットするリセット信号を出力する増
減判別回路と、上記ローパスフィルタの出力をディジタ
ル量に変換するA/D変換器と、上記増減判別回路の増
減信号を基に被測定磁界の周期的な増減量を計測する増
減カウンタと、上記A/D変換器及び増減カウンタの出
力を合成して被測定磁界を算出する粗精合成回路を備え
た従来の超伝導磁力計のA/D変換器の前に増減判別回
路の増減信号を入力してリセット時の過渡信号を防止す
る過渡信号防止回路を追加したものである。
In a superconducting magnetometer according to a first embodiment of the present invention, an SQUID element and the SQUID described above are provided.
A drive circuit that drives the ID element to obtain a desired output, a low-pass filter that removes noise from the drive circuit, and an increase / decrease signal that indicates an increase / decrease in the magnetic field to be measured based on the output of the drive circuit and the drive circuit is reset. An increase / decrease determination circuit that outputs a reset signal, an A / D converter that converts the output of the low-pass filter into a digital amount, and a periodic increase / decrease amount of the magnetic field to be measured based on the increase / decrease signal of the increase / decrease determination circuit. An increase / decrease determination circuit in front of an A / D converter of a conventional superconducting magnetometer equipped with an increase / decrease counter and a coarse / fine synthesis circuit for combining the outputs of the A / D converter and the increase / decrease counter to calculate a magnetic field to be measured. The transient signal prevention circuit for preventing the transient signal at the time of reset by inputting the increase / decrease signal is added.

【0017】この発明の実施例2の超伝導磁力計におい
ては、SQUID素子と、上記SQUID素子を駆動し
所望の出力を得る駆動回路と、上記駆動回路の雑音を除
去するローパスフィルタと、上記駆動回路の出力を基に
被測定磁界の増減を示す増減信号及び上記駆動回路をリ
セットするリセット信号を出力する増減判別回路と、上
記ローパスフィルタの出力をディジタル量に変換するA
/D変換器と、上記増減判別回路の増減信号を基に被測
定磁界の周期的な増減量を計測する増減カウンタと、上
記A/D変換器及び増減カウンタの出力を合成して被測
定磁界を算出する粗精合成回路を備えた従来の超伝導磁
力計のA/D変換器の後に増減判別回路の増減信号を入
力してリセット時に生ずる過渡信号を相殺する過渡信号
打消し回路を追加したものである。
In the superconducting magnetometer of the second embodiment of the present invention, an SQUID element, a drive circuit that drives the SQUID element to obtain a desired output, a low-pass filter that removes noise of the drive circuit, and the drive circuit. An increase / decrease determination circuit that outputs an increase / decrease signal indicating an increase / decrease in the magnetic field to be measured and a reset signal that resets the drive circuit based on the output of the circuit, and A that converts the output of the low-pass filter into a digital amount.
/ D converter, an increase / decrease counter that measures the periodic increase / decrease amount of the magnetic field to be measured based on the increase / decrease signal of the increase / decrease determination circuit, and the output of the A / D converter and the increase / decrease counter are combined to produce the measured magnetic field. A transient signal canceling circuit is added after the A / D converter of the conventional superconducting magnetometer equipped with a coarse / fine synthesis circuit to calculate It is a thing.

【0018】この発明の実施例3の超伝導磁力計におい
ては、SQUID素子と、上記SQUID素子を駆動し
所望の出力を得る駆動回路と、上記駆動回路の雑音を除
去するローパスフィルタと、上記駆動回路の出力を基に
被測定磁界の増減を示す増減信号及び上記駆動回路をリ
セットするリセット信号を出力する増減判別回路と、上
記ローパスフィルタの出力をディジタル量に変換するA
/D変換器と、上記増減判別回路の増減信号を基に被測
定磁界の周期的な増減量を計測する増減カウンタと、上
記A/D変換器及び増減カウンタの出力を合成して被測
定磁界を算出する粗精合成回路を備えた従来の超伝導磁
力計のローパスフィルタの代わりに上記駆動回路の出力
及び増減判別回路のリセット信号を入力して上記駆動回
路の雑音を除去しかつリセット時の過渡信号を防止する
過渡信号防止型ローパスフィルタを備えたものである。
In the superconducting magnetometer of the third embodiment of the present invention, an SQUID element, a drive circuit for driving the SQUID element to obtain a desired output, a low-pass filter for removing noise of the drive circuit, and the drive circuit. An increase / decrease determination circuit that outputs an increase / decrease signal indicating an increase / decrease in the magnetic field to be measured and a reset signal that resets the drive circuit based on the output of the circuit, and A that converts the output of the low-pass filter into a digital amount.
/ D converter, an increase / decrease counter that measures the periodic increase / decrease amount of the magnetic field to be measured based on the increase / decrease signal of the increase / decrease determination circuit, and the output of the A / D converter and the increase / decrease counter are combined to produce the measured magnetic field. The output of the drive circuit and the reset signal of the increase / decrease determination circuit are input instead of the low-pass filter of the conventional superconducting magnetometer equipped with the coarse-fine synthesis circuit for calculating It is provided with a transient signal prevention type low-pass filter for preventing a transient signal.

【0019】[0019]

【作用】この発明の実施例1の超伝導磁力計において過
渡信号防止回路は増減判別回路の増減信号を基に基準電
圧発生回路及びローパスフィルタによって人工的に過渡
信号を発生させその信号を駆動回路の出力から減算する
ことよって、リセット時の過渡信号を防止する。
In the superconducting magnetometer according to the first embodiment of the present invention, the transient signal prevention circuit artificially generates a transient signal by the reference voltage generation circuit and the low-pass filter based on the increase / decrease signal of the increase / decrease determination circuit and drives the signal. By subtracting from the output of, the transient signal at the time of reset is prevented.

【0020】この発明の実施例2の超伝導磁力計におい
て過渡信号打消し回路は過渡信号発生回路によって人工
的に過渡信号基準信号を発生させ、その信号を増減判別
回路の増減信号に応じてA/D変換器の出力に減算/加
算することによって、リセット時の過渡信号を防止す
る。
In the superconducting magnetometer according to the second embodiment of the present invention, the transient signal canceling circuit artificially generates the transient signal reference signal by the transient signal generating circuit, and the signal A By subtracting / adding to the output of the / D converter, a transient signal at the time of reset is prevented.

【0021】この発明の実施例3の超伝導磁力計におい
てローパスフィルタを構成するフィルタ抵抗と並列に設
けたスイッチを、増減判別回路のリセット信号を用いて
リセット時にフィルタ抵抗をショートさせ、フィルタコ
ンデンサに蓄積された電荷を急速に放電させることによ
ってリセット時の過渡信号を防止する。
In the superconducting magnetometer of the third embodiment of the present invention, a switch provided in parallel with a filter resistor forming a low-pass filter is used to short-circuit the filter resistor at the time of resetting by using a reset signal of an increase / decrease discrimination circuit, and a filter capacitor is formed. The transient signal at the time of reset is prevented by rapidly discharging the accumulated charge.

【0022】[0022]

【実施例】【Example】

実施例1 図1はこの発明の実施例1を示すブロック図である。図
中、1〜20は従来と同一のもの、21はリセット時の
過渡信号を防止する過渡信号防止回路である。
Embodiment 1 FIG. 1 is a block diagram showing Embodiment 1 of the present invention. In the figure, 1 to 20 are the same as the conventional ones, and 21 is a transient signal prevention circuit for preventing a transient signal at the time of reset.

【0023】図2は上記過渡信号防止回路21の構成の
一例を示すブロック図である。図中、16Bはローパス
フィルタ16Aと同一のローパスフィルタ、22は基準
電圧発生回路、23は減算器、Zは増減判別回路17の
増減信号、VA はローパスフィルタ16Aの出力であ
る。
FIG. 2 is a block diagram showing an example of the configuration of the transient signal prevention circuit 21. In the figure, 16B is the same low-pass filter as the low-pass filter 16A, 22 is a reference voltage generation circuit, 23 is a subtractor, Z is an increase / decrease signal of the increase / decrease determination circuit 17, and VA is the output of the low-pass filter 16A.

【0024】次にこの発明の実施例1による超伝導磁力
計の動作について説明する。先ず、SQUID素子1を
液体ヘリウムに浸すなどして冷却し超伝導状態に転移さ
せ、被測定磁界中で積分器スイッチ13を開いて磁束ロ
ックさせると、その後は積分器スイッチ13を開いた時
刻におけるSQUID鎖交磁束を出力零の原点とし、そ
こからの鎖交磁束の相対的な変化量を上記駆動回路5、
増減判別回路17、及びローパスフィルタ16Aによっ
てΦ0 以内の磁界変化量に相当するアナログ量の電圧値
A を精計測量として出力する一方、増減判別回路17
及び増減カウンタ19によってΦ0 毎の磁界変化量をカ
ウント値N、即ち、粗計測量として出力する。
Next, the operation of the superconducting magnetometer according to the first embodiment of the present invention will be described. First, the SQUID element 1 is cooled by immersing it in liquid helium and is transferred to a superconducting state. Then, the integrator switch 13 is opened in the magnetic field to be measured and the magnetic flux is locked. After that, at the time when the integrator switch 13 is opened. The SQUID interlinkage magnetic flux is set as the origin of the output zero, and the relative change amount of the interlinkage magnetic flux from there is set to the drive circuit 5,
The increase / decrease determination circuit 17 and the low-pass filter 16A output the analog value voltage value V A corresponding to the magnetic field change amount within Φ 0 as the precise measurement amount, while the increase / decrease determination circuit 17
The increase / decrease counter 19 outputs the magnetic field change amount for each Φ 0 as the count value N, that is, the rough measurement amount.

【0025】次に過渡信号防止回路21の基準電圧発生
回路22が上記増減判別回路17の増減信号Zの増減に
応じてΦ0 又は−Φ0 に相当する電圧をリセット時に発
生し、次にこの電圧をローパスフィルタ16Bが入力し
て増減に応じて生ずる瘤状の過渡信号を人工的に発生さ
せる。さらに上記減算器23によって上記ローパスフィ
ルタ16Aより出力される精計測量VA から上記過渡信
号を減算することによって瘤状の過渡信号を相殺し、リ
セット時の過渡信号を防止した精計測量を算出する。
Next, the reference voltage generation circuit 22 of the transient signal prevention circuit 21 generates a voltage corresponding to Φ 0 or -Φ 0 at the time of resetting according to the increase or decrease of the increase / decrease signal Z of the increase / decrease determination circuit 17, and then this The low-pass filter 16B inputs the voltage to artificially generate a bump-like transient signal that occurs in response to an increase or decrease. Further, by subtracting the transient signal from the precise measurement amount V A output from the low-pass filter 16A by the subtracter 23, the bump-like transient signal is canceled, and the precise measurement amount that prevents the transient signal at reset is calculated. To do.

【0026】次にこの信号をA/D変換器18でディジ
タル量に変換し、これと上記増減カウンタ19のカウン
ト値N、即ち、粗計測量と上記過渡信号を相殺した精計
測量とを粗精合成回路20で合成して一つの磁界計測量
にまとめ、最終的にリセット時の過渡信号を防止した被
測定磁界を算出する。
Next, this signal is converted into a digital amount by the A / D converter 18, and this and the count value N of the increase / decrease counter 19, that is, the rough measured amount and the fine measured amount obtained by canceling the transient signal are roughly measured. The precise synthesis circuit 20 synthesizes and combines them into one magnetic field measurement amount, and finally the measured magnetic field in which a transient signal at the time of reset is prevented is calculated.

【0027】なお、上記実施例では、SQUID素子1
は超伝導リング中に2つのジョセフソン素子を含み直流
バイアス電流を流して駆動するDC−SQUIDを例と
して説明を行ったが、超伝導リング中に1つのジョセフ
ソン素子を含み交流バイアス電流で駆動するRF−SQ
UIDを用いることもできる。
In the above embodiment, the SQUID element 1
Explained an example of a DC-SQUID that includes two Josephson elements in the superconducting ring and drives by applying a DC bias current. However, the superconducting ring contains one Josephson element and is driven by an AC bias current. RF-SQ
UID can also be used.

【0028】実施例2 図3はこの発明の実施例2を示すブロック図である。図
中、1〜20は従来と同一のもの、24はリセット時の
過渡信号を防止する過渡信号打消し回路である。
Second Embodiment FIG. 3 is a block diagram showing a second embodiment of the present invention. In the figure, 1 to 20 are the same as conventional ones, and 24 is a transient signal canceling circuit for preventing transient signals at the time of resetting.

【0029】図4は過渡信号打消し回路24の構成の一
例を示すブロック図である。図中、25は過渡信号発生
回路、26は加算/減算回路、Zは増減判別回路17の
増減信号、VD はA/D変換器18の出力である。
FIG. 4 is a block diagram showing an example of the configuration of the transient signal canceling circuit 24. In the figure, 25 is a transient signal generation circuit, 26 is an addition / subtraction circuit, Z is an increase / decrease signal of the increase / decrease determination circuit 17, and V D is the output of the A / D converter 18.

【0030】次にこの発明の実施例2による超伝導磁力
計の動作について説明する。先ず、SQUID素子1を
液体ヘリウムに浸すなどして冷却し超伝導状態に転移さ
せ、被測定磁界中で積分器スイッチ13を開いて磁束ロ
ックさせると、その後は積分器スイッチ13を開いた時
刻におけるSQUID鎖交磁束を出力零の原点とし、そ
こからの鎖交磁束の相対的な変化量を上記駆動回路5、
増減判別回路17、ローパスフィルタ16A及びA/D
変換器18によってΦ0 以内の磁界変化量に相当するデ
ィジタル量の電圧値VD を精計測量として出力する一
方、増減判別回路17及び増減カウンタ19によってΦ
0 毎の磁界変化量をカウント値N、即ち、粗計測量とし
て出力する。
Next, the operation of the superconducting magnetometer according to the second embodiment of the present invention will be described. First, the SQUID element 1 is cooled by immersing it in liquid helium and is transferred to a superconducting state. Then, the integrator switch 13 is opened in the magnetic field to be measured and the magnetic flux is locked. After that, at the time when the integrator switch 13 is opened. The SQUID interlinkage magnetic flux is set as the origin of the output zero, and the relative change amount of the interlinkage magnetic flux from there is set to the drive circuit 5,
Increase / decrease determination circuit 17, low-pass filter 16A and A / D
While the converter 18 outputs the voltage value V D of the digital amount corresponding to the magnetic field change amount within Φ 0 as the precise measurement amount, the increase / decrease determination circuit 17 and the increase / decrease counter 19 generate Φ.
The magnetic field change amount for each 0 is output as the count value N, that is, the rough measurement amount.

【0031】一方過渡信号打消し回路24の過渡信号発
生回路25はリセット時に生ずる瘤上の過渡信号の波形
を過渡信号基準信号としてROM等のメモリに記憶させ
ておいて、上記増減信号Zを受けると同時に記憶させて
おいた過渡信号の波形を上記加算/減算回路26に出力
し、増減信号Zの増減に応じてこの信号を上記A/D変
換器18の出力VD と加算/減算することによって瘤上
の過渡信号を相殺した精計測量を算出する。
On the other hand, the transient signal generating circuit 25 of the transient signal canceling circuit 24 stores the waveform of the transient signal on the bump generated at reset as a transient signal reference signal in a memory such as a ROM and receives the increase / decrease signal Z. At the same time, the stored waveform of the transient signal is output to the addition / subtraction circuit 26, and this signal is added / subtracted from the output V D of the A / D converter 18 according to the increase / decrease of the increase / decrease signal Z. Then, the precise measurement amount that cancels the transient signal on the bump is calculated.

【0032】次に上記増減カウンタ19のカウント値
N、即ち、粗計測量と上記過渡信号を相殺した精計測量
とを粗精合成回路20で合成して一つの磁界計測量にま
とめ、最終的にリセット時の過渡信号を防止した被測定
磁界を算出する。
Next, the count value N of the increase / decrease counter 19, that is, the coarse measurement amount and the fine measurement amount that cancels the transient signal are combined by the coarse fine combining circuit 20 to be combined into one magnetic field measurement amount, and finally the final measurement result is obtained. Calculate the measured magnetic field that prevents transient signals at reset.

【0033】実施例3 図5はこの発明の実施例3を示すブロック図である。図
中、1〜20は従来と同一のもの、27は上記駆動回路
の雑音を除去しかつリセット時の過渡信号を防止する過
渡信号防止型ローパスフィルタである。
Third Embodiment FIG. 5 is a block diagram showing a third embodiment of the present invention. In the figure, 1 to 20 are the same as conventional ones, and 27 is a transient signal prevention type low-pass filter which removes noise of the drive circuit and prevents a transient signal at the time of reset.

【0034】図6は上記過渡信号防止型ローパスフィル
タ27の構成の一例を示すブロック図である。図中、2
8はフィルタ抵抗、29はフィルタコンデンサ、30は
上記フィルタ抵抗29と並列に設けたスイッチ、Rは増
減判別回路17から出力されるリセット信号、VK は上
記駆動回路5から出力される信号である。
FIG. 6 is a block diagram showing an example of the configuration of the transient signal prevention type low-pass filter 27. 2 in the figure
8 is a filter resistor, 29 is a filter capacitor, 30 is a switch provided in parallel with the filter resistor 29, R is a reset signal output from the increase / decrease determination circuit 17, and V K is a signal output from the drive circuit 5. .

【0035】次にこの発明の実施例3による超伝導磁力
計の動作について説明する。先ず、SQUID素子1を
液体ヘリウムに浸すなどして冷却し超伝導状態に転移さ
せ、被測定磁界中で積分器スイッチ13を開いて磁束ロ
ックさせると、その後は積分器スイッチ13を開いた時
刻におけるSQUID鎖交磁束を出力零の原点とし、そ
こからの鎖交磁束の相対的な変化量を上記駆動回路5及
び増減判別回路17によってΦ0 以内の磁界変化量に相
当するアナログ量の電圧値VK を精計測量として出力す
る一方、増減判別回路17及び増減カウンタ19によっ
てΦ0 毎の磁界変化量をカウント値N、即ち、粗計測量
として出力する。
Next, the operation of the superconducting magnetometer according to the third embodiment of the present invention will be described. First, the SQUID element 1 is cooled by immersing it in liquid helium and is transferred to a superconducting state. Then, the integrator switch 13 is opened in the magnetic field to be measured and the magnetic flux is locked. After that, at the time when the integrator switch 13 is opened. The SQUID interlinkage magnetic flux is set as the origin of the output zero, and the relative change amount of the interlinkage magnetic flux from there is determined by the drive circuit 5 and the increase / decrease determination circuit 17 as a voltage value V of an analog amount corresponding to the magnetic field change amount within Φ 0. While K is output as the precise measurement amount, the increase / decrease determination circuit 17 and the increase / decrease counter 19 output the magnetic field change amount for each Φ 0 as the count value N, that is, the rough measurement amount.

【0036】次にこの信号に含まれる雑音を上記過渡信
号防止型ローパスフィルタ27で除去するとともに、リ
セット時には上記増減判別回路17から出力されるリセ
ット信号によって上記スイッチ30を接続状態にして上
記フィルタ抵抗28をショートさせ、フィルタコンデン
サ29に蓄積された電荷を急速に放電させることによっ
てリセット時の過渡信号を防止した精計測量を出力す
る。以後の動作は実施例1の場合と同じである。
Next, noise contained in this signal is removed by the transient signal prevention type low-pass filter 27, and at the time of reset, the switch 30 is connected by the reset signal output from the increase / decrease determination circuit 17 and the filter resistance is changed. 28 is short-circuited, and the electric charge accumulated in the filter capacitor 29 is rapidly discharged to output a precise measurement amount in which a transient signal at the time of reset is prevented. The subsequent operation is the same as that of the first embodiment.

【0037】[0037]

【発明の効果】以上のようにこの発明によれば、以下に
記載されるような効果を得ることができる。
As described above, according to the present invention, the following effects can be obtained.

【0038】この発明は、従来の超伝導磁力計のA/D
変換器の前に増減判別回路の増減信号を入力してリセッ
ト時の過渡信号を防止する過渡信号防止回路を追加し、
Φ0の磁界変化毎に生じるリセット時の瘤状の過渡信号
発生を防止するようにしたので計測誤差の少ない超伝導
磁力計を得ることができる。
The present invention is the A / D of the conventional superconducting magnetometer.
Add a transient signal prevention circuit to prevent the transient signal at reset by inputting the increase / decrease signal of the increase / decrease discrimination circuit in front of the converter,
Since the generation of a bump-like transient signal at the time of reset that occurs each time the magnetic field of Φ 0 changes is prevented, it is possible to obtain a superconducting magnetometer with a small measurement error.

【0039】またこの発明は、従来の超伝導磁力計のA
/D変換器の後に増減判別回路の増減信号を入力してリ
セット時に生ずる過渡信号を相殺する過渡信号打消し回
路を追加し、Φ0 の磁界変化毎に生じるリセット時の瘤
状の過渡信号を打消して防止するようにしたので計測誤
差の少ない超伝導磁力計を得ることができる。さらに、
上記過渡信号の防止をマイクロプロセッサ等のソフトウ
ェアで処理することができるので、より簡単に、低コス
トで実現できるという長所がある。
The present invention also relates to the conventional superconducting magnetometer A
A transient signal canceling circuit that inputs the increase / decrease signal of the increase / decrease determination circuit and cancels the transient signal generated at the time of reset is added after the / D converter, and the bump-like transient signal at the time of reset generated for each magnetic field change of Φ 0 is added. The superconducting magnetometer with less measurement error can be obtained because it is canceled and prevented. further,
Since the prevention of the transient signal can be processed by software such as a microprocessor, there is an advantage that it can be realized more easily and at low cost.

【0040】さらにこの発明は、従来の超伝導磁力計の
ローパスフィルタの代わりに上記駆動回路の出力及び増
減判別回路のリセット信号を入力して上記駆動回路の雑
音を除去しかつリセット時の過渡信号を防止する過渡信
号防止型ローパスフルイタを備え、Φ0 の磁界変化毎の
リセット時に瘤状の過渡信号を発生しないようにしたの
で、計測誤差の少ない超伝導磁力計をほとんど新たな回
路を追加することなく得ることができる。
Further, according to the present invention, instead of the low-pass filter of the conventional superconducting magnetometer, the output of the drive circuit and the reset signal of the increase / decrease determination circuit are input to eliminate noise of the drive circuit and a transient signal at the time of reset. It is equipped with a transient signal prevention type low-pass filter to prevent the occurrence of a bump-shaped transient signal at each reset of Φ 0 magnetic field, so a new circuit is added to the superconducting magnetometer with few measurement errors. You can get it without doing.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示すブロック図である。FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】過渡信号防止回路21の構成の一例を示すブロ
ック図である。
2 is a block diagram showing an example of the configuration of a transient signal prevention circuit 21. FIG.

【図3】この発明の実施例2を示すブロック図である。FIG. 3 is a block diagram showing a second embodiment of the present invention.

【図4】過渡信号打消し回路24の構成の一例を示すブ
ロック図である。
FIG. 4 is a block diagram showing an example of the configuration of a transient signal cancellation circuit 24.

【図5】この発明の実施例3を示すブロック図である。FIG. 5 is a block diagram showing a third embodiment of the present invention.

【図6】過渡信号防止型ローパスフィルタ27の構成の
一例を示すブロック図である。
FIG. 6 is a block diagram showing an example of the configuration of a transient signal prevention type low-pass filter 27.

【図7】従来の超伝導磁力計の一実施例を示すブロック
図である。
FIG. 7 is a block diagram showing an example of a conventional superconducting magnetometer.

【図8】SQUID素子の動作を示す図である。FIG. 8 is a diagram showing an operation of the SQUID element.

【図9】超伝導磁力計の被測定磁界と粗出力、精出力、
粗精合成出力との関係を示す図である。
FIG. 9: Measured magnetic field of superconducting magnetometer and coarse output, fine output,
It is a figure which shows the relationship with a coarse refinement | synthesis output.

【符号の説明】[Explanation of symbols]

1 SQUID素子 2 超伝導リング 3A ジョセフソン素子 3B ジョセフソン素子 4 変調帰還コイル 5 駆動回路 6 バイアス回路 7 プリアンプ 8 乗算器 9 位相器 10 発振器 11 積分器 12 帰還抵抗器 13 積分器スイッチ 14 積分コンデンサ 15 増幅器 16A ローパスフィルタ 16B ローパスフィルタ 17 増減判別回路 18 A/D変換器 19 増減カウンタ 20 粗精合成回路 21 過渡信号防止回路 22 基準電圧発生回路 23 減算器 24 過渡信号打消し回路 25 過渡信号発生回路 26 加算/減算回路 27 過渡信号防止型ローパスフィルタ 28 フィルタ抵抗 29 フィルタコンデンサ 30 スイッチ 1 SQUID element 2 Superconducting ring 3A Josephson element 3B Josephson element 4 Modulation feedback coil 5 Driving circuit 6 Bias circuit 7 Preamplifier 8 Multiplier 9 Phaser 10 Oscillator 11 Integrator 12 Feedback resistor 13 Integrator switch 14 Integrating capacitor 15 Amplifier 16A Low-pass filter 16B Low-pass filter 17 Increase / decrease determination circuit 18 A / D converter 19 Increase / decrease counter 20 Coarse synthesis circuit 21 Transient signal prevention circuit 22 Reference voltage generation circuit 23 Subtractor 24 Transient signal cancellation circuit 25 Transient signal generation circuit 26 Adder / subtractor circuit 27 Transient signal prevention type low-pass filter 28 Filter resistor 29 Filter capacitor 30 Switch

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超伝導量子干渉素子と、上記超伝導量子
干渉素子を駆動し所望の出力を得る駆動回路と、上記駆
動回路の雑音を除去するローパスフィルタと、上記駆動
回路の出力を基に被測定磁界の増減を示す増減信号及び
上記駆動回路をリセットするリセット信号を出力する増
減判別回路と、上記ローパスフィルタの出力をディジタ
ル量に変換するA/D変換器と、上記増減判別回路の増
減信号を基に被測定磁界の周期的な増減量を計測する増
減カウンタと、上記駆動回路の出力及び増減判別回路の
増減信号を入力してリセット時に生ずる過渡信号を相殺
する過渡信号防止回路と、上記過渡信号防止回路及び増
減カウンタの出力を合成して被測定磁界を算出する粗精
合成回路とを備えたことを特徴とする超伝導磁力計。
1. A superconducting quantum interference device, a drive circuit for driving the superconducting quantum interference device to obtain a desired output, a low-pass filter for removing noise of the drive circuit, and an output of the drive circuit. An increase / decrease determination circuit that outputs an increase / decrease signal indicating an increase / decrease of the magnetic field to be measured and a reset signal that resets the drive circuit, an A / D converter that converts the output of the low-pass filter into a digital amount, and an increase / decrease of the increase / decrease determination circuit An increase / decrease counter that measures the cyclic increase / decrease amount of the magnetic field to be measured based on the signal, and a transient signal prevention circuit that inputs the output of the drive circuit and the increase / decrease signal of the increase / decrease determination circuit to cancel the transient signal generated at reset, A superconducting magnetometer, comprising: a transient signal preventing circuit; and a coarse-fine combining circuit that combines outputs of the increase / decrease counter to calculate a magnetic field to be measured.
【請求項2】 超伝導量子干渉素子と、上記超伝導量子
干渉素子を駆動し所望の出力を得る駆動回路と、上記駆
動回路の雑音を除去するローパスフィルタと、上記駆動
回路の出力を基に被測定磁界の増減を示す増減信号及び
上記駆動回路をリセットするリセット信号を出力する増
減判別回路と、上記ローパスフィルタの出力をディジタ
ル量に変換するA/D変換器と、上記増減判別回路の増
減信号を基に被測定磁界の周期的な増減量を計測する増
減カウンタと、上記A/D変換器の出力及び増減判別回
路の増減信号を入力してリセット時に生ずる過渡信号を
相殺する過渡信号打消し回路と、上記過渡信号打消し回
路及び増減カウンタの出力を合成して被測定磁界を算出
する粗精合成回路とを備えたことを特徴とする超伝導磁
力計。
2. A superconducting quantum interference device, a drive circuit for driving the superconducting quantum interference device to obtain a desired output, a low-pass filter for removing noise of the drive circuit, and an output of the drive circuit. An increase / decrease determination circuit that outputs an increase / decrease signal indicating an increase / decrease of the magnetic field to be measured and a reset signal that resets the drive circuit, an A / D converter that converts the output of the low-pass filter into a digital amount, and an increase / decrease of the increase / decrease determination circuit An increase / decrease counter that measures the periodic increase / decrease amount of the magnetic field to be measured based on the signal, and a transient signal cancellation that cancels the transient signal generated at reset by inputting the output of the A / D converter and the increase / decrease signal of the increase / decrease determination circuit A superconducting magnetometer, comprising: a rectifying circuit; and a coarse synthesizing circuit for synthesizing outputs of the transient signal canceling circuit and the increase / decrease counter to calculate a magnetic field to be measured.
【請求項3】 超伝導量子干渉素子と、上記超伝導量子
干渉素子を駆動し所望の出力を得る駆動回路と、上記駆
動回路の出力を基に被測定磁界の増減を示す増減信号及
び上記駆動回路をリセットするリセット信号を出力する
増減判別回路と、上記駆動回路の出力及び増減判別回路
のリセット信号を入力して上記駆動回路の雑音を除去し
かつリセット時の過渡信号を防止する過渡信号防止型ロ
ーパスフィルタと、上記過渡信号防止型ローパスフィル
タの出力をディジタル量に変換するA/D変換器と、上
記増減判別回路の増減信号を基に被測定磁界の周期的な
増減量を計測する増減カウンタと、上記過渡信号防止型
ローパスフィルタ及び増減カウンタの出力を合成して被
測定磁界を算出する粗精合成回路とを備えたことを特徴
とする超伝導磁力計。
3. A superconducting quantum interference device, a drive circuit for driving the superconducting quantum interference device to obtain a desired output, an increase / decrease signal indicating an increase / decrease of a magnetic field to be measured based on the output of the drive circuit, and the drive. An increase / decrease determination circuit that outputs a reset signal that resets the circuit, and a transient signal prevention that inputs the output of the drive circuit and the reset signal of the increase / decrease determination circuit to remove noise of the drive circuit and prevent a transient signal at the time of reset Type low pass filter, an A / D converter for converting the output of the transient signal prevention type low pass filter into a digital amount, and an increase / decrease for measuring the periodic increase / decrease amount of the magnetic field to be measured based on the increase / decrease signal of the increase / decrease determination circuit. A superconducting magnetometer, comprising: a counter; and a coarse-fine combining circuit that combines the outputs of the transient signal prevention type low-pass filter and the increase / decrease counter to calculate a magnetic field to be measured. .
JP5079642A 1993-04-06 1993-04-06 Superconductive magnetometer Pending JPH06289110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5079642A JPH06289110A (en) 1993-04-06 1993-04-06 Superconductive magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5079642A JPH06289110A (en) 1993-04-06 1993-04-06 Superconductive magnetometer

Publications (1)

Publication Number Publication Date
JPH06289110A true JPH06289110A (en) 1994-10-18

Family

ID=13695763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5079642A Pending JPH06289110A (en) 1993-04-06 1993-04-06 Superconductive magnetometer

Country Status (1)

Country Link
JP (1) JPH06289110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005119283A1 (en) * 2004-06-03 2005-12-15 Japan Science And Technology Agency Hysteresis characteristic type digital fll apparatus using squid counter system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005119283A1 (en) * 2004-06-03 2005-12-15 Japan Science And Technology Agency Hysteresis characteristic type digital fll apparatus using squid counter system
US7248044B2 (en) 2004-06-03 2007-07-24 Japan Science And Technology Agency Magnetic flux measuring apparatus by hysteresis characteristic type digital FLL using counter system for squid

Similar Documents

Publication Publication Date Title
US7805993B2 (en) Operating method for a Coriolis gyro, and evaluation/control electronics which are suitable for this purpose
JPS63284480A (en) Digitizing and linearizing system of transducer having quasi-sinusoid period characteristic
JPS61109307A (en) Frequency stable 2-state modulation system
US5696575A (en) Digital flux gate magnetometer
US4851776A (en) Weak field measuring magnetometer with flux modulated current conducting Josephson junction
JP2005345289A (en) Hysteresis characteristic type digital fll device by double counter system for squid
JP2662903B2 (en) High sensitivity magnetic field detector
JP2999468B2 (en) Method and apparatus for discrete time measurement of reactance
JPH06289110A (en) Superconductive magnetometer
US7522691B2 (en) Phase-locked circuit
JPS62187256A (en) Digital value conversion method of measured voltage and device thereof
JPS63100381A (en) Phase detector
US5287058A (en) Digital magnetic flux measuring apparatus using superconducting quantum interference device with flux trapping prevention features
JP3492124B2 (en) Frequency detector
JPS63290979A (en) Superconducting quantum interference element
JP2570422B2 (en) DC current measurement method
SU1613966A1 (en) Digital meter of a.c.power
JPH09257895A (en) Magnetometer
JPH01257233A (en) Detecting method of signal
Eminoglu et al. Novel, simple, and Q-independent self oscillation loop designed for vibratory MEMS gyroscopes
JPH10341599A (en) Control equipment of motor
JPH04204267A (en) Automatic balancing apparatus
JPH071868B2 (en) Analog-digital converter
JPH03131781A (en) Squid fluxmeter measurement system
JPS6332384A (en) Magnetic field detector