JPH06288301A - Method and device for multi-stage acceleration - Google Patents

Method and device for multi-stage acceleration

Info

Publication number
JPH06288301A
JPH06288301A JP7580193A JP7580193A JPH06288301A JP H06288301 A JPH06288301 A JP H06288301A JP 7580193 A JP7580193 A JP 7580193A JP 7580193 A JP7580193 A JP 7580193A JP H06288301 A JPH06288301 A JP H06288301A
Authority
JP
Japan
Prior art keywords
stage
acceleration
missile
accelerating
rocket engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7580193A
Other languages
Japanese (ja)
Inventor
Kazunari Ikuta
一成 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP7580193A priority Critical patent/JPH06288301A/en
Publication of JPH06288301A publication Critical patent/JPH06288301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Engines (AREA)

Abstract

PURPOSE:To reduce a payload on a missile to attain ultra-high speed by accelerating the missile by a ram jet part and a rocket engine installed therein at the second and third stages, respectively, after the missile has been accelerated by an electrical acceleration means at a first stage. CONSTITUTION:After a missile 1A provided with a payload 1 at its top has been launched by an electrical acceleration means, a ram jet part 5 of the missile 1A is ignited and, as the final stage, the rocket engine 2 of the missile 1A is ignited to multi-accelerate the missile. Thus the weight of the missile 1A can be reduced in comparison with the conventional case to attain ultra-high speed easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多段加速方法及び装置
に関し、特に、1段目として電気的加速手段により飛翔
体を加速した後、飛翔体内のラムジェット部及びロケッ
トエンジンで2段目及び3段目の加速をすることによ
り、飛翔体への搭載荷重を少なくして超高速を得るため
の新規な改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multistage accelerating method and apparatus, and in particular, after accelerating a projectile by an electric accelerating means as a first stage, a ramjet section in a projectile and a second stage in a rocket engine. By accelerating the third stage, it relates to a new improvement for reducing the loading load on the flying object and obtaining an ultrahigh speed.

【0002】[0002]

【従来の技術】従来、用いられていたこの種の多段加速
方法としては、例えば、ペイロードが10kgから100
トン程度の場合、飛翔体に設けられたロケットエンジン
のみによって打ち上げていた。
2. Description of the Related Art As a conventional multi-stage acceleration method of this type, for example, a payload of 10 kg to 100
In the case of tons, it was launched only by the rocket engine installed in the projectile.

【0003】[0003]

【発明が解決しようとする課題】従来の多段加速方法
は、以上のように構成されていたため、次のような課題
が存在していた。すなわち、月面探査のNASAアポロ
計画に使用されたサターンVロケットは、全長約111
m、総重量2940トンもあり、大量の液体水素及び酸
化剤を必要とするため、その危険性は極めて高く、発射
準備が大変な作業となっていた。また、日本のH−1ロ
ケットにおいても全長約40m、総重量約140トン
で、0.5トン位のペイロードを静止軌道へ打ち上げて
いたため、ペイロードの大きさにしては飛翔体の大きさ
が異常であった。
Since the conventional multistage acceleration method is configured as described above, the following problems exist. That is, the Saturn V rocket used for the NASA Apollo program for lunar exploration has a total length of about 111
Since it has a total weight of 2,940 tons and requires a large amount of liquid hydrogen and an oxidizer, its danger is extremely high, and preparation for launch is a difficult task. The Japanese H-1 rocket also had a total length of about 40 m, a total weight of about 140 tons, and was launching a payload of about 0.5 tons into a geosynchronous orbit, so the size of the payload was abnormal. Met.

【0004】本発明は、以上のような課題を解決するた
めになされたもので、特に、1段目として電気的加速手
段により飛翔体を加速した後、飛翔体内のラムジェット
部及びロケットエンジンで2段目及び3段目の加速をす
ることにより、飛翔体への搭載荷重を少なくして超高速
を得るようにした多段加速方法及び装置を提供すること
を目的とする。
The present invention has been made to solve the above problems, and in particular, in the first stage, after accelerating the flying body by the electric accelerating means, the ramjet section and the rocket engine in the flying body are used. It is an object of the present invention to provide a multi-stage acceleration method and apparatus in which the second stage and the third stage are accelerated to reduce the load on the flying object and obtain an ultrahigh speed.

【0005】[0005]

【課題を解決するための手段】本発明による多段加速方
法は、電気的加速手段によりペイロードを先端に有する
飛翔体を発射した後、前記飛翔体のラムジェット部を点
火し、終段として前記飛翔体のロケットエンジンを点火
して多段加速する方法である。
According to the multi-stage acceleration method of the present invention, an electric accelerating means launches a projectile having a payload at its tip, and then ignites a ramjet portion of the projectile to make the final stage the flight. It is a method of igniting the rocket engine of the body to accelerate in multiple stages.

【0006】本発明による多段加速装置は、ペイロード
の後方にロケットエンジン及びラムジェット部を有する
飛翔体を、固定配置の電気的加速手段に装填し、前記飛
翔体を前記電気的加速手段にて初期加速する構成であ
る。
In the multistage accelerating device according to the present invention, a projectile having a rocket engine and a ramjet section behind a payload is loaded in a fixedly arranged electric accelerating means, and the projectile is initially initialized by the electric accelerating means. It is a configuration that accelerates.

【0007】さらに詳細には、前記電気的加速手段は電
熱化学反応手段よりなる構成である。
More specifically, the electric accelerating means is composed of electrothermal chemical reaction means.

【0008】[0008]

【作用】本発明による多段加速方法及び装置において
は、まず、1段目として電熱化学反応等の電気的加速手
段によりペイロードを先端に有する飛翔体を発射した
後、飛翔体の飛行中にラムジェット部を点火することに
よって2段目となると共に搭載燃料を可能な限り軽減で
き、終段として機体速がジェット噴射速約5km/sに近
づいた時点でラムジェット部を切り離すか又は空気吸入
口を閉めてロケットエンジンを点火することにより3段
点火による多段発射を達成することができる。従って、
1段目を電気的加速手段によって飛翔体を初期加速する
ため、飛翔体自体はラムジェット部とロケットエンジン
で済むことになり、小型軽量で超高速を容易に達成する
ことができる。
In the multistage accelerating method and apparatus according to the present invention, first, as a first stage, a projectile having a payload at its tip is launched by an electrical accelerating means such as an electrothermal chemical reaction, and then a ramjet is produced during flight of the projectile. By igniting the section, it becomes the second stage and the mounted fuel can be reduced as much as possible, and at the end when the aircraft speed approaches the jet injection speed of about 5 km / s, the ramjet section is disconnected or the air intake port is opened. By closing and igniting the rocket engine, multi-stage firing with three-stage ignition can be achieved. Therefore,
Since the flying body is initially accelerated by the electric accelerating means in the first stage, the flying body itself can be composed of the ramjet unit and the rocket engine, and it is possible to easily achieve ultra-high speed with a small size and light weight.

【0009】[0009]

【実施例】以下、図面と共に本発明による多段加速方法
及び装置の好適な実施例について詳細に説明する。図1
から図4迄は本発明による多段加速方法に適用した装置
を示すもので、図1は飛翔体を示す断面図、図2は装置
を示す断面構成図、図3は図2の矢視A方向からの構成
図、図4は図2の加速開始状態を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the multistage acceleration method and apparatus according to the present invention will be described in detail below with reference to the drawings. Figure 1
4 to 4 show an apparatus applied to the multi-stage acceleration method according to the present invention, FIG. 1 is a sectional view showing a flying object, FIG. 2 is a sectional configuration view showing the apparatus, and FIG. 3 is an arrow A direction in FIG. 4 is a cross-sectional view showing the acceleration starting state of FIG.

【0010】図1において符号1で示されるものは飛翔
体1Aの先端に設けられたペイロードであり、このペイ
ロード1はロケットエンジン2の先端に位置し、このロ
ケットエンジン2は、サボ4に装着されたラムジェット
部5の空気取入口5aに装着されている。このラムジェ
ット部5の機体3内には、固体燃料3a及びノズル3b
が設けられ、前述のペイロード1、ロケットエンジン
2、ラムジェット部5及びサボ4により前記飛翔体1A
を構成している。
In FIG. 1, reference numeral 1 denotes a payload provided at the tip of the flying vehicle 1A. The payload 1 is located at the tip of the rocket engine 2, and the rocket engine 2 is mounted on the sabot 4. It is attached to the air intake port 5a of the ramjet unit 5. Inside the body 3 of the ramjet unit 5, the solid fuel 3a and the nozzle 3b are provided.
Is provided with the payload 1, the rocket engine 2, the ramjet unit 5, and the sabot 4 described above.
Are configured.

【0011】図2及び図3は前記飛翔体1Aを加速する
時の1段目の加速を受け持つ周知の電熱化学反応手段を
用いた電気的加速手段10を示しており、この電気的加
速手段10は、この電熱化学反応手段のみに限ることな
く、周知の電熱加速等の他の手段を用いることもでき
る。なお、前述のロケットエンジン2とラムジェット部
5の結合は、周知の爆発ボルトを用いれば達成できる。
2 and 3 show an electric accelerating means 10 using a well-known electrothermochemical reaction means which is responsible for the first stage acceleration when accelerating the flying body 1A. Is not limited to this electrothermal chemical reaction means, and other known means such as electrothermal acceleration can be used. The rocket engine 2 and the ramjet unit 5 can be connected to each other by using a well-known explosion bolt.

【0012】図2及び図3において符号11a,11
b,11cで示されるものは、例えば水とアルミニウム
(他の材料も可)による電熱化学反応を用いて得られた
高温高圧の水素ガスを用いる複数の電熱化学反応手段と
しての電熱化学反応部であり、この各電熱化学反応部1
1a,11b,11cは、全体形状がL型をなす電熱化
学反応管12の各装填孔13a,13b,13cに装填
されていると共に、各々電熱導火線18a,18b,1
8cが接続されている。
Reference numerals 11a and 11 in FIGS.
What is indicated by b and 11c is an electrothermal chemical reaction section as a plurality of electrothermal chemical reaction means using hydrogen gas at high temperature and high pressure obtained by using an electrothermal chemical reaction between water and aluminum (other materials may be used). Yes, each electrothermal chemical reaction part 1
1a, 11b, 11c are loaded in the respective loading holes 13a, 13b, 13c of the electrothermal chemical reaction tube 12 having an L-shaped overall shape, and the electric heating fuses 18a, 18b, 1 are respectively provided.
8c is connected.

【0013】この電熱化学反応管12と前記電熱化学反
応部11cの電熱導火線18c間には、スイッチ14と
電源15が直列接続されている。前記電熱化学反応管1
2に形成された高圧気体導入管部16には、この高圧気
体導入管部16とは直交する方向に形成された加速管1
7が形成され、この加速管17は長さが例えば100m
から400mに形成されている。この加速管17の底部
には、突起部17aが形成されている。
A switch 14 and a power source 15 are connected in series between the electrothermal chemical reaction tube 12 and the electrothermal squib 18c of the electrothermal chemical reaction section 11c. The electrothermal chemical reaction tube 1
The high pressure gas introduction pipe portion 16 formed in 2 has an accelerating pipe 1 formed in a direction orthogonal to the high pressure gas introduction pipe portion 16.
7 is formed, and the acceleration tube 17 has a length of, for example, 100 m.
To 400 m. A protrusion 17 a is formed on the bottom of the acceleration tube 17.

【0014】次に加速方法について述べる。まず、図4
で示すように、加速管17内に飛翔体1Aを装填した
後、スイッチ14をオンとすると、装填孔13cの電熱
化学反応部11cが反応を開始し、この反応開始後の爆
発エネルギーが次の装填孔13bの壁を破り、電熱化学
反応を誘発する。その後、残りの各電熱化学部11b,
11aが次々に誘爆し、図3に示すような渦巻状の高圧
気体導入管部16は高温高圧水素ガス等からなる反応生
成気体で満され、この高圧気体導入管部16内で回転し
遠心分離された水素等の軽いガスは突起部17aの回り
を旋回しつつ飛翔体1Aを押すことになり、飛翔体1A
は電気的加速手段10を介して1段目の加速を経て効率
的に発射される。この発射された飛翔体1Aは、地上か
らの指令により、適当な位置でサボ4を切り離し、同時
に、ラムジェット部5を始動して最初の追加速(2段
目)を行うと共に、その終了後は、ロケットエンジン2
を点火して3段目の加速を経て最終到達速へ到る。な
お、前述の実施例は飛翔体1Aを上空に上げる場合につ
いて述べたが、地上で行う場合には、ロケット推進が終
了した時点でコイルガン、電磁ガン等によって追加速す
ることもできる。
Next, the acceleration method will be described. First, FIG.
As shown by, when the switch 14 is turned on after the flying body 1A is loaded into the accelerating tube 17, the electrothermal chemical reaction section 11c of the loading hole 13c starts the reaction, and the explosion energy after the start of the reaction is The wall of the loading hole 13b is broken to induce an electrothermal chemical reaction. After that, each of the remaining electrothermal chemistry parts 11b,
11a are successively induced to explode, and the spiral high-pressure gas introduction pipe 16 as shown in FIG. 3 is filled with a reaction product gas composed of high-temperature high-pressure hydrogen gas or the like. The high-pressure gas introduction pipe 16 is rotated and centrifuged. The generated light gas such as hydrogen pushes the flying body 1A while swirling around the protrusion 17a.
Is efficiently emitted through the first acceleration through the electric acceleration means 10. This launched projectile 1A disconnects the sabot 4 at an appropriate position according to a command from the ground, and at the same time, starts the ramjet unit 5 to perform the first additional speed (second step), and after that, Rocket engine 2
Is ignited and the final speed is reached after the third stage of acceleration. In the above-mentioned embodiment, the case where the flying body 1A is lifted up has been described, but when it is performed on the ground, the additional speed can be increased by the coil gun, the electromagnetic gun or the like when the rocket propulsion is completed.

【0015】[0015]

【発明の効果】本発明による多段加速方法及び装置は以
上のように構成されているため、次のような効果を得る
ことができる。すなわち、飛翔体を電気的加速手段によ
り1段目の初期加速をした後、ラムジェット部及びロケ
ットエンジンによって2段の追加速を行うため、従来よ
りも1段分軽減された重量の飛翔体で超高速(10km/
s)を達成することができる。また、従来のロケットに
おける1段目の燃料の質量(これらはロケット全体の約
50%以上の質量を有する)及び2段目の燃料の酸化剤
に相当する質量が必要でなくなるため、地上から発射さ
せる時のロケットの質量が約60〜70%少なくて済む
ことになる。また、逆に最終的な打上質量(例えば静止
衛星など)は60〜70%大きいものが打ち上げ可能と
なる。
Since the multistage acceleration method and apparatus according to the present invention are configured as described above, the following effects can be obtained. That is, after the initial acceleration of the first stage of the flying object by the electric accelerating means, the ramjet section and the rocket engine perform two additional speeds. Super high speed (10km /
s) can be achieved. In addition, since the mass of the first-stage fuel in the conventional rocket (these masses are about 50% or more of the whole rocket) and the mass corresponding to the oxidizer of the second-stage fuel are not required, they are launched from the ground. The mass of the rocket when it is caused to be reduced by about 60 to 70%. On the contrary, the final launch mass (for example, a geostationary satellite) that is 60 to 70% larger can be launched.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による飛翔体を示す断面図である。FIG. 1 is a sectional view showing a flying object according to the present invention.

【図2】本発明による多段加速装置を示す断面図であ
る。
FIG. 2 is a sectional view showing a multi-stage accelerator according to the present invention.

【図3】図2の矢視A側からの構成図である。FIG. 3 is a configuration diagram from the arrow A side of FIG.

【図4】図2の加速状態を示す構成図である。FIG. 4 is a configuration diagram showing an acceleration state of FIG.

【符号の説明】[Explanation of symbols]

1 ペイロード 1A 飛翔体 2 ロケットエンジン 5 ラムジェット部 10 電気的加速手段 11a〜11c 電熱化学反応部 DESCRIPTION OF SYMBOLS 1 Payload 1A Flying body 2 Rocket engine 5 Ramjet part 10 Electrical acceleration means 11a-11c Electrothermal chemical reaction part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電気的加速手段(10)により、ペイロード
(1)を先端に有する飛翔体(1A)を発射した後、前記飛翔
体(1A)のラムジェット部(5)を点火し、終段として前記
飛翔体(1A)のロケットエンジン(2)を点火して多段加速
することを特徴とする多段加速方法。
1. The payload by means of electrical acceleration means (10)
After launching the projectile (1A) having (1) at the tip, the ramjet section (5) of the projectile (1A) is ignited, and the rocket engine (2) of the projectile (1A) is used as the final stage. A multi-stage acceleration method characterized by igniting and multi-stage acceleration.
【請求項2】 ペイロード(1)の後方にロケットエンジ
ン(2)及びラムジェット部(5)を有する飛翔体(1A)を、固
定配置の電気的加速手段(10)に装填し、前記飛翔体(1A)
を前記電気的加速手段(10)にて初期加速する構成とした
ことを特徴とする多段加速装置。
2. A flying body (1A) having a rocket engine (2) and a ramjet section (5) behind a payload (1) is loaded into a fixedly arranged electric acceleration means (10), (1A)
A multistage accelerating device, characterized in that the electric accelerating means (10) is used for initial acceleration.
【請求項3】 前記電気的加速手段(10)は電熱化学反応
部(11a〜11c)よりなることを特徴とする請求項2記載の
多段加速装置。
3. The multistage accelerating apparatus according to claim 2, wherein the electric accelerating means (10) comprises electrothermal chemical reaction sections (11a to 11c).
JP7580193A 1993-04-01 1993-04-01 Method and device for multi-stage acceleration Pending JPH06288301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7580193A JPH06288301A (en) 1993-04-01 1993-04-01 Method and device for multi-stage acceleration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7580193A JPH06288301A (en) 1993-04-01 1993-04-01 Method and device for multi-stage acceleration

Publications (1)

Publication Number Publication Date
JPH06288301A true JPH06288301A (en) 1994-10-11

Family

ID=13586671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7580193A Pending JPH06288301A (en) 1993-04-01 1993-04-01 Method and device for multi-stage acceleration

Country Status (1)

Country Link
JP (1) JPH06288301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112666032A (en) * 2020-12-14 2021-04-16 中国科学院力学研究所 Multistage drive high-speed impact wear test bench
CN113628527A (en) * 2021-09-15 2021-11-09 西南石油大学 Novel recoverable two-stage model solid rocket

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112666032A (en) * 2020-12-14 2021-04-16 中国科学院力学研究所 Multistage drive high-speed impact wear test bench
CN112666032B (en) * 2020-12-14 2022-06-10 中国科学院力学研究所 Multistage drive high-speed impact wear test bench
CN113628527A (en) * 2021-09-15 2021-11-09 西南石油大学 Novel recoverable two-stage model solid rocket

Similar Documents

Publication Publication Date Title
US5600946A (en) Solid propellant dual pulse rocket motor loaded case and ignition system and method of manufacture
US3253511A (en) Launching process and apparatus
US9605932B2 (en) Gas generators, launch tubes including gas generators and related systems and methods
EP0663582A2 (en) Method for ram accelerating a projectile in a barrel and apparatus therefor
WO1990003918A1 (en) Overlapping stage burn for multistage launch vehicles
US5152136A (en) Solid fuel ducted rocket with gel-oxidizer augmentation propulsion
CN211448843U (en) Carrier rocket's last stage structure and carrier rocket
US11740039B2 (en) Apparatus and method for accelerating an object via an external free jet
US7051659B2 (en) Projectile structure
US4972673A (en) Solid rocket motor with dual interrupted thrust
EP0298586B1 (en) Multistage solid propellant rocket
US3491692A (en) Multi-stage rocket
US4964339A (en) Multiple stage rocket propelled missile system
EP0784781A1 (en) Solid fuel launch vehicle destruction system and method
US5172875A (en) Space launcher and method for launching objects into space
JPH06288301A (en) Method and device for multi-stage acceleration
US6481198B1 (en) Multi-stage rocket motor assembly including jettisonable launch motor integrated with flight igniter
US3000306A (en) Solid propellant propulsion system
US3286472A (en) Rocket motor and ignition system
Kaloupis et al. The ram accelerator-A chemically driven mass launcher
US3262266A (en) Rocket interstage adapter
US3461672A (en) Aft end igniter
US3380382A (en) Gun launched liquid rocket
Ikuta Two stage travelling charge accelerator for high velocity
RU2025645C1 (en) Rocket for space mission