JPH06287745A - Production of composite superfine particle - Google Patents

Production of composite superfine particle

Info

Publication number
JPH06287745A
JPH06287745A JP5075715A JP7571593A JPH06287745A JP H06287745 A JPH06287745 A JP H06287745A JP 5075715 A JP5075715 A JP 5075715A JP 7571593 A JP7571593 A JP 7571593A JP H06287745 A JPH06287745 A JP H06287745A
Authority
JP
Japan
Prior art keywords
ultrafine particles
superfine particle
chamber
particles
cdte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5075715A
Other languages
Japanese (ja)
Inventor
Keiji Tsunetomo
啓司 常友
Tadashi Koyama
正 小山
Shuhei Tanaka
修平 田中
Shunsuke Otsuka
俊介 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP5075715A priority Critical patent/JPH06287745A/en
Publication of JPH06287745A publication Critical patent/JPH06287745A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably produce a composite superfine particle excellent in selectivity of a superfine particle and a coating-film metal by forming a coating film of metal vapor on a part or the whole of the surface of the superfine particle formed by thermal vaporization. CONSTITUTION:A vaporization chamber 1 contg. a target 4 by a CdTe wafer, for example, as a superfine particle material is evacuated, the target 4 is irradiated with a laser beam, heated and vaporized, an inert gas such as Ar is supplied from an inlet tube 6 to cool and solidify the vapor of the target 4, and a superfine particle of CdTe is produced. In this case, the pressure in the vapor- contg. chamber 1 is controlled to 5Torr, the CdTe superfine particle is introduced into a reaction chamber 2 connected to the chamber 1 through a pipe 10a and with the internal pressure kept at 0.05Torr by the pressure difference, Au is vaporized from a Knudsen cell 7 contg. the metallic material such as Au and deposited on a part or the whole of the surface of the CdTe superfine particle to form a composite superfine particle, which is introduced into a collecting chamber 3 with the internal pressure held at 10<-3>Torr by the pressure difference, and the composite superfine particle is collected on the surface of a quartz collecting sheet 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微粒子の表面の一部あ
るいは全面を金属膜で被覆した複合超微粒子の製造方法
に関し、特に気相中で製造した超微粒子に気相中で金属
皮膜を施すことにより、気相中で製造できるさまざまな
半導体あるいは金属あるいは有機物の微粒子に、さまざ
まな種類の金属皮膜を施すことを特徴とする複合超微粒
子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing composite ultrafine particles in which a part or the whole surface of fine particles is coated with a metal film, and in particular, ultrafine particles produced in the gas phase are coated with a metal film in the gas phase. The present invention relates to a method for producing composite ultrafine particles, which comprises applying various types of metal coatings to various semiconductor, metal or organic fine particles that can be produced in a gas phase by applying the treatment.

【0002】[0002]

【従来の技術】超微粒子はバルクの持つ性質とは異なっ
た性質を持つことが知られており、機能性材料としての
応用が期待されている。例えばCdS等の化合物半導体
超微粒子は、粒径が小さくなるにしたがってバンド構造
が離散化し、吸収端が高エネルギ側へシフトする等、い
わゆる量子サイズ効果が生じる(例えば、A. J. Nozice
t al., J. Phys. Chem., 89, 397 (1987) )。また、こ
のような量子サイズ効果を有する材料は、大きな非線形
光学効果を持つことも知られており、超高速の光スイッ
チや光論理素子等の非線形光学効果を用いた光制御素子
への応用が期待されている。
2. Description of the Related Art Ultrafine particles are known to have properties different from those of bulk, and are expected to be applied as functional materials. For example, ultrafine compound semiconductor particles such as CdS have a so-called quantum size effect in which the band structure becomes discrete as the particle size decreases, and the absorption edge shifts to the high energy side (for example, AJ Nozice
t al., J. Phys. Chem., 89, 397 (1987)). It is also known that such a material having a quantum size effect has a large non-linear optical effect, and thus it can be applied to an optical control element using the non-linear optical effect such as an ultrafast optical switch or an optical logic element. Is expected.

【0003】超微粒子の製造法としては、古くから溶液
中での酸化還元反応を用いてコロイド分散系として超微
粒子を得る方法が知られている。例えば、金(Au)コ
ロイドは塩化金酸カリウム溶液に過酸化水素やクエン酸
等の適当な還元剤を加えることで容易に生成できる。ま
た化合物コロイドの例として硫化カドミウム(CdS)
の場合には、過塩素酸カドミウム(Cd(Cl
4 2 )溶液に硫化ナトリウム(Na2 S)溶液を加
えると酸化還元反応が生じてCdS分散系が得られる
(例えば、R. Rossetti et al., J. Chem. Phys. 82, 5
52 (1985) )。いずれも製造条件によって得られる超微
粒子の粒径は異なるが、直径5nm以下でかつ粒径分布
の分散が小さなコロイド粒子を容易に製造することがで
きる。
As a method for producing ultrafine particles, a method for obtaining ultrafine particles as a colloidal dispersion system using an oxidation-reduction reaction in a solution has long been known. For example, a gold (Au) colloid can be easily produced by adding an appropriate reducing agent such as hydrogen peroxide or citric acid to a potassium chloroaurate solution. Also, as an example of a compound colloid, cadmium sulfide (CdS)
In the case of, cadmium perchlorate (Cd (Cl
When a sodium sulfide (Na 2 S) solution is added to the O 4 ) 2 ) solution, a redox reaction occurs to obtain a CdS dispersion system (for example, R. Rossetti et al., J. Chem. Phys. 82, 5).
52 (1985)). Although the particle diameter of the obtained ultrafine particles differs depending on the manufacturing conditions, colloidal particles having a diameter of 5 nm or less and a small particle size distribution dispersion can be easily manufactured.

【0004】超微粒子の製造方法として上記の液相中で
の酸化還元・沈澱反応を利用した方法以外に、ガス中蒸
発法が知られている。これはアルゴン(Ar)等の不活
性ガス雰囲気中で物質を加熱蒸発させると、その蒸気が
雰囲気ガス分子と衝突して運動エネルギを失い、かつ急
冷されるためにその物質の微粒子を形成する。粒子の大
きさは蒸発源からの距離に依存して変化し、蒸発源付近
で捕集すると小さな粒径の超微粒子が得られる。また生
成した粒子を例えば酸素(O2 )ガスと反応させること
により、酸化物微粒子が製造できる。
As a method for producing ultrafine particles, an evaporation method in a gas is known in addition to the above method utilizing the oxidation-reduction / precipitation reaction in a liquid phase. This is because when a substance is heated and evaporated in an atmosphere of an inert gas such as argon (Ar), the vapor collides with atmospheric gas molecules, loses kinetic energy, and is rapidly cooled to form fine particles of the substance. The size of the particles changes depending on the distance from the evaporation source, and ultrafine particles having a small particle size can be obtained by collecting the particles in the vicinity of the evaporation source. Further, oxide fine particles can be produced by reacting the generated particles with, for example, oxygen (O 2 ) gas.

【0005】これらの方法により製造した超微粒子を光
制御素子等に応用する場合、超微粒子を固体マトリック
ス中に分散させる技術が必要である。
When the ultrafine particles produced by these methods are applied to a light control element or the like, a technique of dispersing the ultrafine particles in a solid matrix is required.

【0006】その例としては、超微粒子とそれを保持す
るガラスとを同時に製造する溶融急冷法がある。この方
法では微粒子の原料となる物質とガラス原料を混合し、
溶融温度以上に加熱した後急冷し、より低い温度で再加
熱して微粒子を析出させる。この方法により、直径10
nm以下の化合物微粒子がガラス中に分散した、いわゆ
る微粒子分散ガラスを製造することができる。
As an example thereof, there is a melt quenching method for simultaneously producing ultrafine particles and glass holding them. In this method, the raw material for the fine particles and the glass raw material are mixed,
After heating above the melting temperature, it is rapidly cooled and reheated at a lower temperature to precipitate fine particles. With this method, a diameter of 10
So-called fine particle-dispersed glass in which compound fine particles having a particle size of nm or less are dispersed in glass can be produced.

【0007】また、他の例として、溶液中で製造した化
合物半導体超微粒子をゾルゲル法を用いてガラス中に埋
め込む方法も知られている。
As another example, there is also known a method of embedding compound semiconductor ultrafine particles in a solution in glass by using a sol-gel method.

【0008】一方、最近微粒子をそのまま固体マトリッ
クス中に閉じこめるだけでなく、微粒子表面を金属膜で
覆った後に固体マトリックス中に閉じこめると、金属薄
膜と微粒子表面の相互作用により新たな機能を持つ材料
が得られることを示唆する研究がいくつかなされている
(例えば、M. H. Birnboim and W. P. Ma, Mat. Res.Sy
mp. Proc. Vol. 164, 277 (1990) )。以下、このよう
な微粒子を複合超微粒子と呼ぶこととする。
On the other hand, recently, when not only the fine particles are confined in the solid matrix as they are, but also the fine particle surfaces are covered with a metal film and then confined in the solid matrix, a material having a new function due to the interaction between the metal thin film and the fine particle surface is obtained. There have been several studies suggesting that it will be obtained (eg MH Birnboim and WP Ma, Mat. Res. Sy.
mp. Proc. Vol. 164, 277 (1990)). Hereinafter, such fine particles will be referred to as composite ultrafine particles.

【0009】複合超微粒子を実際に製造する試みとし
て、例えば、カドミウムイオン(Cd2+)を含む溶液中
に硫化水素(H2 S)を導入しCdSを製造しておき、
さらにロジウムイオン(Rh3+)を加えてCdS微粒子
の表面にロジウムを成長させた例がある(Y. M. Tricot
and J. H. Fendler, J. Am. Chem. Soc. 106, 7359 (1
984))。
As an attempt to actually produce composite ultrafine particles, for example, hydrogen sulfide (H 2 S) was introduced into a solution containing cadmium ions (Cd 2+ ) to produce CdS,
Furthermore, there is an example in which rhodium ions (Rh 3+ ) are added to grow rhodium on the surface of CdS fine particles (YM Tricot
and JH Fendler, J. Am. Chem. Soc. 106, 7359 (1
984)).

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記の
方法は溶液中で製造できる微粒子あるいはコロイドのみ
に応用できる方法であって、任意の微粒子に金属皮膜を
施すことができないという問題点がある。また、微粒子
表面を被覆する金属の種類についても、溶液中の化学反
応で生成できる金属に限られるという問題点を持ってい
る。この問題点は例えば非線形光学材料への応用を考え
た場合、その効果を最大に引き出すための材料の組み合
わせの選択に大きな障害となる。
However, the above method is a method that can be applied only to fine particles or colloids that can be produced in a solution, and has a problem that a metal coating cannot be applied to arbitrary fine particles. Further, there is also a problem that the kind of metal that coats the surface of the fine particles is limited to the metal that can be generated by a chemical reaction in a solution. This problem becomes a great obstacle to selection of a combination of materials for maximizing the effect when the application to a nonlinear optical material is considered.

【0011】つまり複合超微粒子では、光学非線形性の
大きさが、核となる微粒子と表面の金属の組み合わせに
依存するので、材料探索の上では、組み合わせの自由度
ができるだけ大きい方が望ましい。また、材料の非線形
性の大きさは、一般に波長依存性を持っており、材料の
組み合わせにより光学非線形性が最も大きくなる波長が
変化する。したがって使用する光源の種類(波長)によ
り、その波長で光学非線形性の大きな材料を選ぶ必要が
ある。これらの要求に対して、既存の溶液中での複合超
微粒子の製造では、材料の組み合わせに制限が多く、こ
れが材料選択の上で大きな障害となっている。
That is, in the composite ultrafine particles, the magnitude of the optical non-linearity depends on the combination of the core particles and the metal on the surface. Therefore, it is desirable that the degree of freedom of the combination is as large as possible in the material search. In addition, the magnitude of nonlinearity of a material generally has wavelength dependency, and the wavelength at which the optical nonlinearity becomes maximum varies depending on the combination of materials. Therefore, depending on the type (wavelength) of the light source used, it is necessary to select a material having large optical nonlinearity at that wavelength. In order to meet these requirements, in the production of composite ultrafine particles in existing solutions, there are many restrictions on the combination of materials, which is a major obstacle in selecting materials.

【0012】本発明は上記の問題点を解決し、超微粒子
の選択性および金属皮膜材料の選択性の両方の面ですぐ
れた複合超微粒子の製造方法を提供することを目的とす
る。
An object of the present invention is to solve the above problems and to provide a method for producing composite ultrafine particles which is excellent in both the selectivity of the ultrafine particles and the selectivity of the metal coating material.

【0013】[0013]

【課題を解決するための手段】本発明の上記目的は次の
構成により達成される。
The above object of the present invention can be achieved by the following constitutions.

【0014】すなわち、超微粒子の原料となる材料を不
活性ガス中で加熱蒸発して、原料の超微粒子を形成し、
超微粒子の存在下で加熱蒸発により金属原料を蒸発さ
せ、前記超微粒子表面の一部あるいは全面に金属皮膜を
形成する複合超微粒子の製造方法である。
That is, the raw material of the ultrafine particles is heated and evaporated in an inert gas to form the ultrafine particles of the raw material,
This is a method for producing composite ultrafine particles in which a metal raw material is evaporated by heating in the presence of ultrafine particles to form a metal film on a part or the whole surface of the ultrafine particles.

【0015】微粒子の製造法の一つに、ガス中蒸発法が
ある。この方法では、Ar等の不活性ガス中で原料を蒸
発させ、蒸発した元素をガス中で急冷することにより微
粒子を製造する。特に、原料の蒸発に高パワーのレーザ
ー光を用いて原料を瞬間的に蒸発させる、いわゆるレー
ザー加熱ガス中蒸発法を用いると、製造できる微粒子の
種類は飛躍的に増加する。
One of the methods for producing fine particles is an in-gas evaporation method. In this method, fine particles are produced by evaporating a raw material in an inert gas such as Ar and quenching the evaporated element in the gas. In particular, when using a so-called laser heating gas vaporization method in which the raw material is instantly vaporized by using a high-power laser beam for vaporization of the raw material, the number of types of fine particles that can be produced is dramatically increased.

【0016】本発明は、このガス中蒸発法等により気相
中で合成した超微粒子を、気相中で金属膜で覆い複合超
微粒子を製造するもので、気相中で合成した超微粒子を
差圧を用いて移動させつつ、金属の加熱蒸発を用いて気
相中でその超微粒子の表面の一部あるいは全面を金属膜
で覆うことにより、複合超微粒子を製造するものであ
る。
The present invention is for producing composite ultrafine particles by covering the ultrafine particles synthesized in the gas phase by the gas evaporation method or the like with a metal film in the gas phase. The composite ultrafine particles are produced by covering a part or the whole surface of the ultrafine particles with a metal film in the vapor phase by heating and evaporating the metal while moving the particles using a differential pressure.

【0017】[0017]

【作用】本発明の複合超微粒子では以下の効果を得るこ
とができる。第1に、前記のとおり気相中で微粒子を製
造すると、製造可能な微粒子の種類が飛躍的に増加す
る。第2に、微粒子を覆う金属の種類も、抵抗加熱や電
子ビーム加熱で溶融することのできるさまざまな金属の
中から選ぶことができる。すなわち、本発明による複合
超微粒子の製造法は、超微粒子の選択性および金属皮膜
材料の選択性の両方の面ですぐれた製造法であり、前記
溶液中の複合微粒子にみられた問題点を解決できる。
The following effects can be obtained with the composite ultrafine particles of the present invention. First, when fine particles are produced in the gas phase as described above, the types of fine particles that can be produced are dramatically increased. Second, the kind of metal that covers the fine particles can be selected from various metals that can be melted by resistance heating or electron beam heating. That is, the method for producing the composite ultrafine particles according to the present invention is an excellent production method in terms of both the selectivity of the ultrafine particles and the selectivity of the metal coating material. Solvable.

【0018】[0018]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は複合超微粒子を製造するために用いた製造
装置を示す。本装置は超微粒子をガス中で製造する蒸発
室1、製造した超微粒子の表面に金属被膜を被覆する反
応室2および金属被膜を被覆された複合超微粒子を捕集
する捕集室3の3つのチャンバからなる。蒸発室1は超
微粒子の原料である原料ターゲット4を有し、これにレ
ーザ導入窓5を通して導入したレーザ光を照射して原料
を加熱蒸発させ、超微粒子を製造する。蒸発した原料を
急冷するための不活性ガスは導入管6から導入する。反
応室2は金属原料を入れたクヌーゼンセル7を有してお
り、クヌーゼンセル7を加熱することにより金属材料を
蒸発させる。また捕集室3内には製造した複合超微粒子
を捕集するために石英基板11を設置した。これら3つ
のチャンバはそれぞれパイプ10a、10bで結合され
ており、差動排気により蒸発室1の圧力が最も高く捕集
室3の圧力が最も低く設定されている。反応室2の圧力
が蒸発室1の圧力よりも低いため、生成した超微粒子は
差圧によってパイプ10aを経て反応室2へ導入され
る。同様に反応室内で生成した複合超微粒子は捕集室と
の差圧のためパイプ10bを通って捕集室へと導かれ
る。これらの差圧は複合超微粒子を製造する上で非常に
重要なファクタで、蒸発室と反応室との間の圧力差は超
微粒子の粒径を決めるパラメータの一つであり、また反
応室と捕集室間の圧力差は複合超微粒子の粒径を決める
パラメータの一つである。なお本製造装置において超微
粒子の粒径は上記の圧力差以外に蒸発室内の圧力、レー
ザ光強度、原料ターゲット4からパイプ10aまでの距
離、パイプ10aの内径等で決まる。一方、複合超微粒
子の粒径も、反応室内の圧力、パイプ10bの内径や捕
集室との圧力差等によって決まる反応室内における超微
粒子の流速等により制御可能である。それぞれのチャン
バの圧力は、チャンバごとに設けられた真空計12a、
12b、12cにより測定した。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a manufacturing apparatus used for manufacturing composite ultrafine particles. This apparatus is composed of an evaporation chamber 1 for producing ultrafine particles in a gas, a reaction chamber 2 for coating the surface of the produced ultrafine particles with a metal coating, and a collection chamber 3 for collecting composite ultrafine particles coated with a metal coating. It consists of two chambers. The evaporation chamber 1 has a raw material target 4 which is a raw material for ultrafine particles, and irradiates this with a laser beam introduced through a laser introduction window 5 to heat and vaporize the raw material to produce ultrafine particles. An inert gas for quenching the evaporated raw material is introduced through the introduction pipe 6. The reaction chamber 2 has a Knuzen cell 7 containing a metal raw material, and heating the Knuzen cell 7 evaporates the metal material. A quartz substrate 11 was installed in the collection chamber 3 to collect the produced composite ultrafine particles. These three chambers are connected by pipes 10a and 10b, respectively, and the pressure of the evaporation chamber 1 is set to be the highest and the pressure of the collection chamber 3 is set to be the lowest by differential exhaust. Since the pressure in the reaction chamber 2 is lower than the pressure in the evaporation chamber 1, the generated ultrafine particles are introduced into the reaction chamber 2 via the pipe 10a due to the differential pressure. Similarly, the composite ultrafine particles generated in the reaction chamber are guided to the collection chamber through the pipe 10b due to the pressure difference between the ultrafine particles and the collection chamber. These differential pressures are very important factors in producing composite ultrafine particles, and the pressure difference between the evaporation chamber and the reaction chamber is one of the parameters that determine the particle size of the ultrafine particles. The pressure difference between the collection chambers is one of the parameters that determine the particle size of the composite ultrafine particles. In this manufacturing apparatus, the particle size of the ultrafine particles is determined by the pressure in the evaporation chamber, the laser light intensity, the distance from the raw material target 4 to the pipe 10a, the inner diameter of the pipe 10a, etc., in addition to the above pressure difference. On the other hand, the particle size of the composite ultrafine particles can also be controlled by the pressure in the reaction chamber, the flow rate of the ultrafine particles in the reaction chamber, which is determined by the inner diameter of the pipe 10b, the pressure difference from the collection chamber, and the like. The pressure of each chamber is the vacuum gauge 12a provided for each chamber,
It was measured by 12b and 12c.

【0019】本装置を用いて、金(Au)で被覆された
テルル化カドミウム(CdTe)超微粒子(複合超微粒
子)を製造する方法について説明する。原料ターゲット
として市販のCdTe多結晶ウェハー(直径2インチ、
厚さ2mm)を用いた。まず蒸発室1にはArガスを導
入し、圧力を5Torr程度に制御した。反応室2内の
圧力は0.05Torrとして、波長532nm、パル
ス幅70ns、パルスパワー50J/cm2 のNd:Y
AGレーザを照射しCdTeを蒸発させ、パイプ10a
から噴出したCdTe超微粒子を捕集、分析したところ
粒径が約8nmで粒径分布の分散が非常に小さいことが
わかった。
A method for producing gold (Au) -coated cadmium telluride (CdTe) ultrafine particles (composite ultrafine particles) using this apparatus will be described. Commercially available CdTe polycrystalline wafer (2 inch diameter,
A thickness of 2 mm) was used. First, Ar gas was introduced into the evaporation chamber 1, and the pressure was controlled to about 5 Torr. The pressure in the reaction chamber 2 is 0.05 Torr, the wavelength is 532 nm, the pulse width is 70 ns, and the pulse power is 50 J / cm 2 , Nd: Y.
Irradiate AG laser to evaporate CdTe, and pipe 10a
The CdTe ultrafine particles ejected from the sample were collected and analyzed, and it was found that the particle size was about 8 nm and the dispersion of the particle size distribution was very small.

【0020】次に、金属原料としてAu(純度99.999
%)を、反応室2に取り付けられたクヌーゼンセル7に
入れた後、その圧力を約10-4Torrとした状態で、
上記レーザ光を蒸発室1に導入し、同時にクヌーゼンセ
ルを加熱した。なお捕集室の圧力は10-5Torr程度
とした。この結果、捕集室内の石英基板11上には目的
の複合超微粒子20が付着した。
Next, Au (purity 99.999) was used as a metal raw material.
%) In the Knudsen cell 7 attached to the reaction chamber 2 and then at a pressure of about 10 −4 Torr,
The laser light was introduced into the evaporation chamber 1, and at the same time, the Knuzen cell was heated. The pressure in the collection chamber was set to about 10 -5 Torr. As a result, the intended composite ultrafine particles 20 adhered to the quartz substrate 11 in the collection chamber.

【0021】基板上に析出した複合超微粒子20を高分
解能透過型電子顕微鏡で観察したときの、観察像の模式
図を図2と図3に示す。複合超微粒子20の形状として
いくつかの種類のものが観察され、そのほとんどは図2
のようなCdTe超微粒子21の表面にAu金属微粒子
22が付着した構造(製造例1)をとっていたが、わず
かに図3のようにCdTe微粒子21表面全面をAuの
被膜23で覆われた超微粒子(製造例2)も観測され
た。製造例1の付着したAu微粒子22の大きさは直径
数nmであり、これが確かにAu微粒子であることは、
電子線回折パターンと高倍率で微粒子表面観察したとき
に観測される格子面像の面間隔により確認した。製造例
2のAu被膜23の場合はその厚さが約3nmであり、
その被膜が確かにAuであることが、前記と同様な方法
により確かめられた。
2 and 3 show schematic views of observed images when the composite ultrafine particles 20 deposited on the substrate are observed with a high resolution transmission electron microscope. Several types of composite ultrafine particles 20 have been observed, most of which are shown in FIG.
Although a structure (manufacturing example 1) in which the Au metal fine particles 22 are attached to the surface of the CdTe ultrafine particles 21 as described above was taken, the entire surface of the CdTe fine particles 21 was slightly covered with the Au coating film 23 as shown in FIG. Ultrafine particles (Production Example 2) were also observed. The size of the attached Au fine particles 22 in Production Example 1 is several nm in diameter, and it is true that this is Au fine particles.
This was confirmed by the electron beam diffraction pattern and the plane spacing of the lattice plane image observed when the surface of the fine particles was observed at high magnification. In the case of the Au coating 23 of Production Example 2, its thickness is about 3 nm,
It was confirmed by a method similar to the above that the coating was indeed Au.

【0022】今回、CdTe超微粒子21をAuで被覆
した複合超微粒子20について述べたがこれに限ること
なく、前記の通りガス中蒸発法はさまざまな種類の超微
粒子の製造に応用できるので、例えばCdSSe、Zn
Se、CdSをはじめとする2−6族化合物半導体、G
aAs、InP、InGaAsP等の3−5族化合物半
導体、あるいは磁気記録材料として鉄(Fe)、コバル
ト(Co)、ニッケル(Ni)あるいはそれらの合金や
他の元素との化合物、酸素ガス中での種々の金属の蒸発
で得られる酸化物等のさまざまな材料について適用でき
る。本実施例では原料の加熱蒸発にレーザ加熱蒸発を、
金属原料の蒸発には抵抗加熱を用いたが、これ以外に
も、誘導加熱、電子ビーム加熱、蒸発室内の圧力によっ
てはアーク放電等種々の方法を適用できる。もちろん、
微粒子原料の蒸発と金属原料の蒸発を同一の方式で行う
ことも可能である。
This time, the composite ultrafine particles 20 in which the CdTe ultrafine particles 21 are coated with Au have been described, but the present invention is not limited to this, and as described above, the gas evaporation method can be applied to the production of various kinds of ultrafine particles. CdSSe, Zn
2-6 group compound semiconductors including Se and CdS, G
a 3-5 group compound semiconductor such as aAs, InP, InGaAsP, or a magnetic recording material of iron (Fe), cobalt (Co), nickel (Ni) or their alloys or compounds with other elements, in oxygen gas It can be applied to various materials such as oxides obtained by evaporation of various metals. In this embodiment, laser heating evaporation is used for heating evaporation of the raw material,
Although resistance heating was used for evaporation of the metal raw material, other than this, various methods such as induction heating, electron beam heating, and arc discharge may be applied depending on the pressure in the evaporation chamber. of course,
It is also possible to evaporate the fine particle raw material and the metal raw material in the same manner.

【0023】本実施例では金属原料としてAuを用いた
場合についてのみ述べたが、この他に例えばアルミニウ
ム(Al)、クロム(Cr)、タングステン(W)等反
応室において蒸発可能なさまざまな材料にも応用でき
る。
In the present embodiment, only the case where Au is used as the metal raw material has been described, but in addition to this, various materials such as aluminum (Al), chromium (Cr) and tungsten (W) which can be evaporated in the reaction chamber are used. Can also be applied.

【0024】気相中で超微粒子を製造する方法として、
ここで述べたガス中蒸発法以外にもスパッタリング法、
プラズマ法等種々の方法が考案され、超微粒子の製造に
用いられているが、本発明は生成した超微粒子を気流を
利用して反応室に輸送できればいかなる超微粒子の製造
方法にも適用できる。
As a method for producing ultrafine particles in the gas phase,
In addition to the gas evaporation method described here, the sputtering method,
Various methods such as a plasma method have been devised and used for producing ultrafine particles, but the present invention can be applied to any method for producing ultrafine particles as long as the produced ultrafine particles can be transported to a reaction chamber by using an air stream.

【0025】[0025]

【発明の効果】本発明によれば、気相中で製造した超微
粒子に気相中で金属被膜を被覆することができるので、
超微粒子ならびに金属材料の選択性を飛躍的に増加させ
ることができる。
According to the present invention, since it is possible to coat the ultrafine particles produced in the vapor phase with the metal coating in the vapor phase,
The selectivity of ultrafine particles and metallic materials can be dramatically increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた複合超微粒子の製造装
置の模式図である。
FIG. 1 is a schematic view of an apparatus for producing composite ultrafine particles used in an example of the present invention.

【図2】本発明の実施例に用いた複合超微粒子の製造装
置により製造した複合超微粒子の模式図である(製造例
1)。
FIG. 2 is a schematic view of composite ultrafine particles produced by an apparatus for producing composite ultrafine particles used in an example of the present invention (Production Example 1).

【図3】本発明の実施例に用いた複合超微粒子の製造装
置により製造した複合超微粒子の模式図である(製造例
2)。
FIG. 3 is a schematic view of composite ultrafine particles produced by an apparatus for producing composite ultrafine particles used in an example of the present invention (Production Example 2).

【符号の説明】[Explanation of symbols]

1…蒸発室、2…反応室、3…捕集室、4…原料ターゲ
ット、5…レーザ導入窓、6…導入管、7…クヌーゼン
セル、8a、8b、8c…ゲートバルブ、10a、10
b…パイプ、11…石英基板、12a、12b、12c
…真空計、20…複合超微粒子、21…CdTe超微粒
子、22…Au微粒子、23…Au皮膜、
DESCRIPTION OF SYMBOLS 1 ... Evaporation chamber, 2 ... Reaction chamber, 3 ... Collection chamber, 4 ... Raw material target, 5 ... Laser introduction window, 6 ... Introduction pipe, 7 ... Knuzen cell, 8a, 8b, 8c ... Gate valve, 10a, 10
b ... pipe, 11 ... quartz substrate, 12a, 12b, 12c
... vacuum gauge, 20 ... composite ultrafine particles, 21 ... CdTe ultrafine particles, 22 ... Au particles, 23 ... Au coating,

フロントページの続き (72)発明者 大塚 俊介 大阪府大阪市中央区道修町3丁目5番11号 日本板硝子株式会社内Front Page Continuation (72) Inventor Shunsuke Otsuka 3-5-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Inside Nippon Sheet Glass Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 超微粒子の原料となる材料を不活性ガス
中で加熱蒸発して、原料の超微粒子を形成し、超微粒子
の存在下で加熱蒸発により金属原料を蒸発させ、前記超
微粒子表面の一部あるいは全面に金属皮膜を形成するこ
とを特徴とする複合超微粒子の製造方法。
1. A raw material of ultrafine particles is heated and evaporated in an inert gas to form ultrafine particles of the raw material, and the metal raw material is evaporated by heating and evaporation in the presence of the ultrafine particles, and the surface of the ultrafine particles is obtained. A method for producing composite ultrafine particles, which comprises forming a metal coating on a part or the whole surface of
JP5075715A 1993-04-01 1993-04-01 Production of composite superfine particle Pending JPH06287745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5075715A JPH06287745A (en) 1993-04-01 1993-04-01 Production of composite superfine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5075715A JPH06287745A (en) 1993-04-01 1993-04-01 Production of composite superfine particle

Publications (1)

Publication Number Publication Date
JPH06287745A true JPH06287745A (en) 1994-10-11

Family

ID=13584228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5075715A Pending JPH06287745A (en) 1993-04-01 1993-04-01 Production of composite superfine particle

Country Status (1)

Country Link
JP (1) JPH06287745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014180611A (en) * 2013-03-19 2014-09-29 Hitachi Zosen Corp Particulate manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014180611A (en) * 2013-03-19 2014-09-29 Hitachi Zosen Corp Particulate manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP5876123B2 (en) Method for producing metal oxide layer having a predetermined structure by arc evaporation
Beyene et al. Preparation and plasmonic properties of polymer-based composites containing Ag–Au alloy nanoparticles produced by vapor phase co-deposition
US8491972B2 (en) Method of producing encapsulated nanopowders and installation for its realization
Benelmekki et al. On the formation of ternary metallic-dielectric multicore-shell nanoparticles by inert-gas condensation method
Abbas et al. Fabrication and characterization of silver thin films using physical vapor deposition, and the investigation of annealing effects on their structures
Kukreja et al. Pulsed laser deposition of plasmonic-metal nanostructures
Paszti et al. Pressure dependent formation of small Cu and Ag particles during laser ablation
Jiang et al. Grain growth behavior of nanocrystalline Inconel 718 and Ni powders and coatings
Sergievskaya et al. Sputtering onto liquids: a critical review
Henkes et al. Micromachining with cluster ions
Urban Iii et al. Nanophase films deposited from a high-rate, nanoparticle beam
WO2016013984A1 (en) Process for depositing metal or metalloid chalcogenides
Polyakov et al. Direct co-deposition of mono-sized nanoparticles during sputtering
JPH06287745A (en) Production of composite superfine particle
Jankowski et al. From nanocrystalline to amorphous structure in beryllium-based coatings
Saxena et al. Target swapping in PLD: An efficient approach for CdS/SiO2 and CdS: Ag (1%)/SiO2 nanocomposite thin films with enhanced luminescent properties
JP3200743B2 (en) Preparation method of ultrafine particle dispersion material
JPH06287758A (en) Production of composite superfine particle
Chawla et al. Synthesis and structural characterization of nanostructured copper
Li et al. Escape of carbon element in surface ablation of cobalt cemented tungsten carbide with pulsed UV laser
Nikov et al. Single-step fabrication of oriented composite nanowires by pulsed laser deposition in magnetic field
Ahadi et al. Core@ shell nanoparticles by inflight controlled coating
JPH06292826A (en) Production of composite super fine particles
De Toro et al. Types of Cluster Sources
Vishnoi et al. Thermally induced plasmonic resonance of Cu nanoparticles in fullerene C70 matrix