JPH06285534A - Descaling method for hot rolled steel plate - Google Patents
Descaling method for hot rolled steel plateInfo
- Publication number
- JPH06285534A JPH06285534A JP8086493A JP8086493A JPH06285534A JP H06285534 A JPH06285534 A JP H06285534A JP 8086493 A JP8086493 A JP 8086493A JP 8086493 A JP8086493 A JP 8086493A JP H06285534 A JPH06285534 A JP H06285534A
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- rolled steel
- steel sheet
- hot
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱間圧延鋼板上のスケ
ールを高圧噴射水での除去することにより発生する熱間
圧延鋼板上の筋冷えを防止するためのデスケーリング方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a descaling method for preventing muscle cooling on a hot-rolled steel sheet caused by removing scale on the hot-rolled steel sheet with high-pressure jet water.
【0002】[0002]
【従来の技術】従来高圧水による鋼板のデスケーリング
は、デスケーリングノズルから圧延鋼板上に高圧水を噴
射し、この噴射水により圧延材表面スケールを浮かせ、
且つスケールを高圧水で吹き飛ばして除去している。こ
の時この高圧水の冷却により筋冷えが発生する。この筋
冷えは、圧延パスごとに回復時間を設け、圧延鋼板の板
厚中心部に存在する高温部分からの複熱を待つことによ
り回復させているが、満足できる結果は得ることができ
い。2. Description of the Related Art Conventionally, descaling of a steel sheet with high-pressure water is performed by injecting high-pressure water onto a rolled steel sheet from a descaling nozzle, and the jet water causes the surface scale of the rolled material to float.
Moreover, the scale is blown off with high-pressure water to remove it. At this time, muscle cooling occurs due to the cooling of this high-pressure water. This muscle chill is recovered by providing a recovery time for each rolling pass and waiting for multiple heat from the high temperature portion existing in the center of the thickness of the rolled steel sheet, but satisfactory results cannot be obtained.
【0003】したがって、熱間圧延鋼板のデスケーリン
グにおいて、ノズルの噴射水が重なるラップ部に対応し
て筋冷えは発生する。鋼板の圧延及び強制冷却が行われ
る場合、この筋冷えによる低温部分は、その後の圧延工
程に引き継がれ鋼板の形状に影響をもたらす。その結
果、圧延鋼板の形状は不均一となる。従来の方法では、
この鋼板の形状不良材は、形状を修正する工程を追加し
て行い、鋼板形状を修正している。しかし、この修正工
程は、冷却後に行われるため鋼板に塑性変形が加わり、
鋼板の引っ張り強度、伸び及び絞り等の機械的性質にば
らつきをもたらす。さらに、この工程数の増加によりた
め鋼板の製造価格の上昇を招く。したがって、形状修正
工程は、圧延鋼板の品位及び価格の面からも好ましい工
程でない。Therefore, during descaling of the hot rolled steel sheet, muscle coldness occurs corresponding to the lap portion where the jet water of the nozzle overlaps. When the steel sheet is rolled and forcedly cooled, the low temperature portion due to the muscle cooling is succeeded to the subsequent rolling step and affects the shape of the steel sheet. As a result, the rolled steel sheet has an uneven shape. In the traditional way,
The defective shape of the steel sheet is corrected by adding a step of correcting the shape to correct the shape of the steel sheet. However, since this correction process is performed after cooling, plastic deformation is added to the steel plate,
It causes variations in mechanical properties such as tensile strength, elongation and drawing of the steel sheet. Further, the increase in the number of steps causes an increase in the manufacturing cost of the steel sheet. Therefore, the shape correction process is not preferable in terms of quality and price of the rolled steel sheet.
【0004】また現在、厚板鋼板からタイトスケール鋼
板を製造する場合には、850℃前後で複数回の圧延を
行い、各圧延パス前にデスケーリングを行う。この85
0℃の温度域での鋼板の酸化は非常に激しく、スケール
の発生を防止するためには、酸化が進行しない約150
°の温度域まで強制冷却しなければならない。従って、
鋼板が持つ複熱を待って筋冷えを回復させる従来の方法
は用いることはできない。Further, at present, when a tight-scale steel plate is manufactured from a thick steel plate, rolling is performed plural times at about 850 ° C. and descaling is performed before each rolling pass. This 85
Oxidation of the steel sheet in the temperature range of 0 ° C is extremely severe, and in order to prevent the generation of scale, the oxidation does not proceed to about 150.
It must be forcibly cooled to a temperature range of °. Therefore,
The conventional method of recovering muscle cold by waiting for the double heat of the steel sheet cannot be used.
【0005】このため、鋼板表面を均一にデスケーリン
グすることができ、且つデスケーリングによる筋冷えが
防止できるデスケーリング方法を必要とする。Therefore, there is a need for a descaling method capable of uniformly descaling the surface of a steel sheet and preventing muscle coldness due to descaling.
【0006】[0006]
【発明が解決しようとする課題】熱間圧延鋼板のデスケ
ーリングにおいて、ノズルラップ部に対応して発生する
圧延鋼板部上の筋冷えは、鋼板板幅内のノズルラップ部
での噴出水量の不均一分布による。また、デスケリーン
グ性は噴射水の衝突圧力と衝突圧力分布によって決定さ
れる。In the descaling of hot-rolled steel sheet, the muscle chill on the rolled steel sheet portion corresponding to the nozzle lap portion is caused by the non-uniformity of the amount of water jetted at the nozzle lap portion within the steel sheet width. Due to uniform distribution. Further, the descaling property is determined by the collision pressure of the jet water and the collision pressure distribution.
【0007】本発明は、熱間圧延鋼板のデスケーリング
において、各ノズルからの噴射水の衝突圧力を一定値以
上として板幅方向にほぼ均一に分布させ、各ノズルから
の噴射水の鋼板幅方向の合成噴出水量分布を滑らかに均
一に分布させることを目的とする。According to the present invention, in the descaling of hot rolled steel plate, the collision pressure of the water jet from each nozzle is set to a certain value or more so as to be distributed almost uniformly in the plate width direction, and the water jet from each nozzle in the steel plate width direction. The objective is to make the distribution of the synthetic jet water volume of 3 smooth and even.
【0008】[0008]
【課題を解決するための手段】上記目的は、本発明にお
いては、可逆式熱間圧延機を用いて高温鋼板を圧延する
際、デスケーリング及び冷却を行いながら複数回圧延す
る熱間圧延鋼板の製造方法において、デスケーリングの
ため前記熱間圧延鋼板に向かって複数のノズルから噴出
する高圧噴射水を一定値以上の衝突圧力で板幅方向に概
ね均一に分布させ、且つ該ノズルのピッチL1 、噴射水
の衝突部の長さL2 及び該ノズルの噴射角度θ1 を圧延
条件に合わせて調整することにより、前記熱間圧延鋼板
上の衝突部での前記高圧噴射水のラップ率L2 /L1 を
決めて、前記熱間圧延鋼板の板幅方向の冷却能力を概ね
均一にすることを特徴とする熱間圧延鋼板のデスケーリ
ング方法によって達成される。Means for Solving the Problems The above object of the present invention is to provide a hot rolled steel sheet which is rolled a plurality of times while performing descaling and cooling when rolling a high temperature steel sheet using a reversible hot rolling mill. In the manufacturing method, high-pressure jet water jetted from a plurality of nozzles toward the hot-rolled steel sheet for descaling is substantially evenly distributed in the sheet width direction at a collision pressure of a certain value or more, and the nozzle pitch L 1 By adjusting the length L 2 of the impinging portion of the jet water and the jet angle θ 1 of the nozzle according to the rolling conditions, the lap ratio L 2 of the high-pressure jet water at the impinging portion on the hot-rolled steel sheet is adjusted. It is achieved by a descaling method for a hot-rolled steel sheet, characterized in that / L 1 is determined to make the cooling capacity of the hot-rolled steel sheet in the width direction substantially uniform.
【0009】[0009]
【作用】熱間圧延におけるデスケーリング性は、鋼材表
面が受ける噴射水の最高の衝突圧力(kg/cm2 )で
決定される。圧延鋼板表面上の噴射水の衝突圧力は、噴
射水にラップ部を設けることで圧延鋼板板幅方向に均一
に分布させることが可能である。また、圧延鋼板の表面
温度はノズルから噴射された水の冷却能力hで決定され
る。「鋼材の強制冷却」特別報告書No.29(日本鉄鋼協
会熱経済技術部会編集、1978年発行)において、一
般に冷却能力hは水量密度ρの0.6乗に比例し、次式
で表せるとしている。The descaling property in hot rolling is determined by the maximum impingement pressure (kg / cm 2 ) of jet water on the steel surface. The collision pressure of the jetted water on the surface of the rolled steel sheet can be uniformly distributed in the width direction of the rolled steel sheet by providing the jet water with a lap portion. The surface temperature of the rolled steel sheet is determined by the cooling capacity h of water sprayed from the nozzle. According to Special Report No. 29 of "Forced Cooling of Steel" (edited by Japan Iron and Steel Institute, Thermo-Economic Technology Section, published in 1978), the cooling capacity h is generally proportional to the water density ρ 0.6 to the power of There is.
【0010】Logh=2.694+0.5964×L
ogW−0.00179×TS 但し ρ:水量密度(L/m2 min) TS:鋼板表面温度(℃) ノズルからの噴射水は、ノズル中心部を最大圧力とし中
心から外側に向かって低下する。したがって一定圧力以
下の部分を隣のノズルでの噴射水を重ね合わせること
で、低圧力部分をなくすことができる。本発明にいて
は、各ノズルピッチL1 を調整することにより、噴射水
の衝突部にラップ幅L3 を設ける。さらに、360°全
周に噴射水が広がらず圧延板幅方向のみにノズル噴射角
度θ1 で広がるノズルを用いる。ノズル噴射角度θ1 と
ノズル高さHとから衝突部長さL2 が決定される。この
高圧噴射水のラップ率L2 /L1 は、ノズルピッチL1
及び衝突部長さL2 により表せる。本発明は噴射水の鋼
板衝突部での噴射水量W(L/cm min)を調節す
ることで冷却能力hを決定する。さらに、ラップ率L2
/L1 、ノズルピッチL1 、ノズル高さH、衝突部長さ
L2 及びノズル噴射角度θ1 の調整により熱間圧延鋼板
の冷却能力hを均一にする。このようなノズル構成をと
ることにより、鋼板表面上の噴射水衝突部で衝突圧力P
分布を均一に分布させ、デスケーリング性を向上させ、
且つ筋冷えの防止させることができる。Log = 2.694 + 0.5964 × L
ogW-0.00179 × TS However, ρ: Water amount density (L / m 2 min) TS: Steel plate surface temperature (° C.) The water jetted from the nozzle has a maximum pressure at the center of the nozzle and decreases outward from the center. Therefore, the low pressure portion can be eliminated by superimposing the water jets from the adjacent nozzles on the portion under a certain pressure. In the present invention, the lap width L 3 is provided at the collision portion of the jet water by adjusting each nozzle pitch L 1 . Further, a nozzle is used in which the sprayed water does not spread over the entire circumference of 360 ° and spreads at the nozzle spraying angle θ 1 only in the rolling plate width direction. The collision portion length L 2 is determined from the nozzle ejection angle θ 1 and the nozzle height H. The lap ratio L 2 / L 1 of this high-pressure jet water is the nozzle pitch L 1
And the collision portion length L 2 . In the present invention, the cooling capacity h is determined by adjusting the amount W (L / cm min) of the water jet at the steel plate collision portion of the water jet. Furthermore, the lap rate L 2
/ L 1 , the nozzle pitch L 1 , the nozzle height H, the collision portion length L 2 and the nozzle injection angle θ 1 are adjusted to make the cooling capacity h of the hot rolled steel sheet uniform. By adopting such a nozzle configuration, the collision pressure P at the jet water collision part on the steel plate surface
Distribute the distribution evenly, improve descaling,
Moreover, muscle cold can be prevented.
【0011】[0011]
【実施例】表1に従来方式と本発明の実施例(1)〜
(3)の諸元と具体値を記載する。表1に示した従来方
式による噴射水の衝突圧力Pと噴射水量Wとの圧延鋼板
板幅Dの方向の各分布を図1の(A),(B)及び
(C)に示す。図2に従来方式で実施した圧延鋼板板幅
Dの方向の鋼板表面温度TS分布を示す。図1の(B)
において、従来方式の噴射水量Wには噴射水ラップ部に
尖頭部が存在し、この尖頭部が存在することによって筋
冷えを発生し、図2に示すように圧延鋼板板幅Dの方向
に鋼板表面温度TSに大きな温度分布が生じた。EXAMPLES Table 1 shows the conventional method and the examples (1) to (1) of the present invention.
Describe the specifications and specific values of (3). 1A, 1B, and 1C of FIG. 1 show respective distributions of the impinging water pressure P and the injected water amount W in the direction of the rolled steel sheet width D according to the conventional method shown in Table 1. FIG. 2 shows a steel plate surface temperature TS distribution in the direction of the rolled steel plate width D performed by the conventional method. Figure 1 (B)
In the conventional method, the injection water amount W has a pointed portion in the water jet wrap portion, and the presence of the pointed portion causes muscle cooling, and as shown in FIG. A large temperature distribution occurred in the steel plate surface temperature TS.
【0012】[0012]
【表1】 [Table 1]
【0013】本発明の実施例(1)は、ノズル噴射角θ
1 を64°、ノズルピッチL1 を150mm、衝突部の
長さL2 を500mm、ラップ幅L3 を350mm及び
ラップ率L2 /L1 を3.3に変更調節し強冷却状態と
したものである。図3の(A)には本発明の実施例
(1)のノズルピッチL1 、衝突部の長さL2 及びラッ
プ幅L3 を示し、図3の(B)には圧延鋼板板幅Dの方
向の噴射水量Wの分布を示し、且つ図3の(B)には圧
延鋼板板幅Dの方向の噴射水の衝突圧力Pの分布を示
す。In the embodiment (1) of the present invention, the nozzle injection angle θ
1 is 64 °, nozzle pitch L 1 is 150 mm, collision part length L 2 is 500 mm, lap width L 3 is 350 mm, and lap ratio L 2 / L 1 is 3.3. Is. FIG. 3A shows the nozzle pitch L 1 , the collision portion length L 2 and the lap width L 3 of the embodiment (1) of the present invention, and FIG. 3B shows the rolled steel plate width D. Shows the distribution of the jet water amount W in the direction of, and FIG. 3 (B) shows the distribution of the jet pressure P of the jet water in the direction of the rolled steel plate width D.
【0014】次に、本発明の実施例(2)は、ノズル噴
射角θ1 を45°、ノズルピッチL 1 150mm、衝突
部の長さL2 を333mm、ラップ幅L3 を183mm
及びラップ率L2 /L1 を2.2に変更調節し半強冷却
状態としたものである。図4の(A)に本発明の実施例
(2)のノズルピッチL1 、衝突部の長さL2 及びラッ
プ幅L3 を示し、図4の(B)に圧延鋼板板幅Dの方向
の噴射水量Wの分布を示し、且つ図4の(C)に圧延鋼
板板幅Dの方向の噴射水の衝突圧力Pの分布を示す。Next, the embodiment (2) of the present invention will be described with reference to FIG.
Angle of incidence θ145 °, nozzle pitch L 1150mm, collision
Part length L2333 mm, lap width L3183 mm
And lap rate L2/ L1Change to 2.2 and adjust to semi-strong cooling
It is a state. An embodiment of the present invention is shown in FIG.
Nozzle pitch L of (2)1, Length of collision part L2And luck
Width L3FIG. 4B shows the direction of the rolled steel plate width D.
4 shows the distribution of the water injection amount W of the rolled steel, and FIG.
The distribution of the collision pressure P of the jet water in the direction of the plate width D is shown.
【0015】さらに、本発明の実施例(3)は、ノズル
噴射角θ1 を25°、ノズルピッチL1 を80mm、衝
突部の長さL2 を177mm、ラップ幅L3 を97mm
及びラップ率L2 /L1 を1.2に変更調節し弱冷却状
態としたものである。図5の(A)に本発明の実施例
(3)のノズルピッチL1 、衝突部の長さL2 及びラッ
プ幅L3 を示し、図5の(B)に圧延鋼板板幅Dの方向
の噴射水量Wの分布を示し、且つ図5の(C)に圧延鋼
板板幅Dの方向の噴射水の衝突圧力Pの分布を示す。Further, in the embodiment (3) of the present invention, the nozzle jet angle θ 1 is 25 °, the nozzle pitch L 1 is 80 mm, the collision portion length L 2 is 177 mm, and the wrap width L 3 is 97 mm.
Also, the lap ratio L 2 / L 1 was changed to 1.2 and adjusted to a weakly cooled state. 5A shows the nozzle pitch L 1 , the length L 2 of the collision portion and the lap width L 3 of the embodiment (3) of the present invention, and FIG. 5B shows the direction of the rolled steel plate width D. 5C shows the distribution of the jet water amount W, and FIG. 5C shows the distribution of the jet pressure P of the jet water in the direction of the rolled steel plate width D.
【0016】図3〜図5においてDで示す領域は圧延鋼
板板幅を示す。図3〜図5の(B)及び(C)の噴射水
量W及び衝突圧力Pの分布が示す結果から明らかなよう
に、各実施例(1)〜(3)は、圧延鋼板板幅Dで示す
領域の噴射水量W分布及び噴射水の衝突圧力Pがほぼ均
一であった。従って、噴射水の衝突圧力Pがほぼ均等で
あるため圧延鋼板のデスケーリング性は均一且つ良好で
あった。図6に本発明で実施例(3)の圧延鋼板板幅D
の方向の鋼板表面温度分布を示す。図6に示す如く噴射
水量W分布がほぼ均等であるため、且つ筋冷えが全く発
生しなった。The region indicated by D in FIGS. 3 to 5 indicates the rolled steel plate width. As is clear from the results of the distributions of the injection water amount W and the collision pressure P in (B) and (C) of FIGS. 3 to 5, each of Examples (1) to (3) is the rolled steel plate width D. The distribution W of the injected water and the collision pressure P of the injected water in the indicated region were substantially uniform. Therefore, since the impinging pressure P of the jet water is almost uniform, the descaling property of the rolled steel sheet was uniform and good. FIG. 6 shows the rolled steel sheet width D according to the embodiment (3) of the present invention.
The steel plate surface temperature distribution in the direction of is shown. As shown in FIG. 6, the distribution W of the injected water was almost uniform, and muscle chilling did not occur at all.
【0017】[0017]
【発明の効果】本発明のデスケーリング方法によって、
熱間圧延鋼板のスケール除去を好ましく行うことがで
き、且つ圧延鋼板の板幅方向の板厚不均一、及び圧延鋼
板の長手方向のうねりと曲がり(キャンバー)の発生を
防止することができる。これにより、圧延冷却後に鋼板
形状を修正する工程が除かれるため、鋼板の引っ張り強
度、伸び及び絞り等の機械的性質を均一にし且つ向上す
ることができる。さらに、鋼板の製造価格を抑えること
ができる。According to the descaling method of the present invention,
It is possible to preferably remove the scale of the hot-rolled steel sheet, and prevent uneven thickness of the rolled steel sheet in the sheet width direction and generation of waviness and bending (camber) in the longitudinal direction of the rolled steel sheet. This eliminates the step of correcting the shape of the steel sheet after rolling and cooling, so that the mechanical properties such as tensile strength, elongation and drawing of the steel sheet can be made uniform and improved. Further, the manufacturing cost of the steel sheet can be suppressed.
【0018】本発明のデスケーリング方法は、通常の厚
板及び薄板鋼板はもちろんこと、特に圧延温度から酸化
が進行しない温度域まで短時間に強制冷却しなければな
らないタイトスケール鋼板の製造には最適である。The descaling method of the present invention is suitable not only for production of ordinary thick and thin steel sheets, but also for production of tight-scale steel sheets that require forced cooling in a short time from the rolling temperature to a temperature range where oxidation does not proceed. Is.
【図1】従来技術による圧延鋼板板幅方向の、(A)は
ノズル単体の水量及び衝突圧力分布、(B)は合成され
た水量分布、(C)は合成した衝突圧力分布を示す。FIG. 1A shows a water amount and a collision pressure distribution of a nozzle alone, FIG. 1B shows a synthesized water amount distribution, and FIG. 1C shows a synthesized collision pressure distribution in a width direction of a rolled steel sheet according to a conventional technique.
【図2】従来技術による圧延鋼板板幅方向の鋼板表面温
度の分布を示す。FIG. 2 shows a distribution of a steel plate surface temperature in a width direction of a rolled steel plate according to a conventional technique.
【図3】表1に示す本発明の実施例(1)の条件による
圧延鋼板板幅方向の、(A)はノズル単体の水量及び衝
突圧力分布、(B)は合成された水量分布、(C)は合
成した衝突圧力分布を示す。FIG. 3 is a rolling plate widthwise sheet width direction according to the conditions of Example (1) of the present invention shown in Table 1, where (A) is the water amount and collision pressure distribution of the nozzle alone, (B) is the synthesized water amount distribution, ( C) shows the synthesized collision pressure distribution.
【図4】表1に示す本発明の実施例(2)の条件による
圧延鋼板板幅方向の、(A)はノズル単体の水量及び衝
突圧力分布、(B)は合成された水量分布、(C)は合
成した衝突圧力分布を示す。FIG. 4 is a rolled steel plate widthwise direction according to the conditions of Example (2) of the present invention shown in Table 1, where (A) is the water amount and collision pressure distribution of the nozzle alone, (B) is the synthesized water amount distribution, ( C) shows the synthesized collision pressure distribution.
【図5】表1に示す本発明の実施例(3)の条件による
圧延鋼板板幅方向の、(A)はノズル単体の水量及び衝
突圧力分布、(B)は合成された水量分布、(C)は合
成した衝突圧力分布を示す。5A and 5B, in the width direction of the rolled steel sheet according to the conditions of Example (3) of the present invention shown in Table 1, (A) is the water amount and collision pressure distribution of the nozzle alone, (B) is the synthesized water amount distribution, ( C) shows the synthesized collision pressure distribution.
【図6】表1に示す本発明の実施例(3)の条件による
圧延鋼板板幅方向の温度分布を示す。FIG. 6 shows the temperature distribution in the width direction of the rolled steel sheet under the conditions of Example (3) of the present invention shown in Table 1.
D…圧延鋼板板幅 L1 …ノズルピッチ L2 …噴射水の衝突部の長さ L3 …噴射水のラップ部の長さ L2 /L1 …ラップ率 P…噴射水の衝突圧力 TS…鋼板表面温度 W…噴射水量 θ1 …拡り角D: Rolled steel plate width L 1 ... Nozzle pitch L 2 ... Length of jet water collision part L 3 ... Length of jet water lap portion L 2 / L 1 ... Lapping rate P ... Jet water collision pressure TS ... Steel plate surface temperature W ... Jetted water amount θ 1 … Spread angle
Claims (1)
延する際、デスケーリング及び冷却を行いながら複数回
圧延する熱間圧延鋼板の製造方法において、 デスケーリングのため前記熱間圧延鋼板に向かって複数
のノズルから噴出する高圧噴射水を一定値以上の衝突圧
力で板幅方向に概ね均一に分布させ、且つ該ノズルのピ
ッチL1 、及び該ノズルの噴射角度θ1 を圧延条件に合
わせて調整することにより、前記熱間圧延鋼板上の衝突
部での前記高圧噴射水のラップ率L2 /L1 を決めて、 前記熱間圧延鋼板の板幅方向の冷却能力を概ね均一にす
ることを特徴とする熱間圧延鋼板のデスケーリング方
法。1. A method for producing a hot-rolled steel sheet, which comprises rolling multiple times while performing descaling and cooling when rolling a high-temperature steel sheet using a reversible hot rolling mill, wherein the hot-rolled steel sheet for descaling. The high-pressure jet water jetted from a plurality of nozzles toward the plate at a collision pressure of a certain value or more to be uniformly distributed in the plate width direction, and the pitch L 1 of the nozzles and the jet angle θ 1 of the nozzles are set as rolling conditions. By adjusting them together, the lap ratio L 2 / L 1 of the high-pressure jet water at the collision part on the hot-rolled steel sheet is determined, and the cooling capacity of the hot-rolled steel sheet in the plate width direction is made substantially uniform. A method for descaling a hot rolled steel sheet, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8086493A JPH06285534A (en) | 1993-04-07 | 1993-04-07 | Descaling method for hot rolled steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8086493A JPH06285534A (en) | 1993-04-07 | 1993-04-07 | Descaling method for hot rolled steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06285534A true JPH06285534A (en) | 1994-10-11 |
Family
ID=13730215
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8086493A Withdrawn JPH06285534A (en) | 1993-04-07 | 1993-04-07 | Descaling method for hot rolled steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06285534A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100368217B1 (en) * | 1998-07-21 | 2003-03-17 | 주식회사 포스코 | A method for cooling accelerated cooling steel sheets having uniform mechanical properties along width direction |
JP2010264498A (en) * | 2009-05-18 | 2010-11-25 | Jfe Steel Corp | Method and device for descaling steel sheet |
JP2010274297A (en) * | 2009-05-28 | 2010-12-09 | Jfe Steel Corp | Apparatus and method for descaling steel sheet |
-
1993
- 1993-04-07 JP JP8086493A patent/JPH06285534A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100368217B1 (en) * | 1998-07-21 | 2003-03-17 | 주식회사 포스코 | A method for cooling accelerated cooling steel sheets having uniform mechanical properties along width direction |
JP2010264498A (en) * | 2009-05-18 | 2010-11-25 | Jfe Steel Corp | Method and device for descaling steel sheet |
JP2010274297A (en) * | 2009-05-28 | 2010-12-09 | Jfe Steel Corp | Apparatus and method for descaling steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102361704B (en) | Steel plate manufacturing equipment and method of manufacturing | |
JP3796133B2 (en) | Thick steel plate cooling method and apparatus | |
JP3802830B2 (en) | Steel sheet descaling method and equipment | |
JP5515483B2 (en) | Thick steel plate cooling equipment and cooling method | |
JPH06285534A (en) | Descaling method for hot rolled steel plate | |
JP3656707B2 (en) | Controlled cooling method for hot rolled steel sheet | |
JP3551129B2 (en) | Manufacturing method and manufacturing equipment for hot rolled steel strip | |
JPS5838603A (en) | Roll cooler for hot strip mill | |
KR101140965B1 (en) | Cooling method for inverted angle | |
JP2008264786A (en) | Method of manufacturing steel plate | |
JP2002102915A (en) | Method for injecting descaling water | |
JP3287254B2 (en) | Method and apparatus for cooling high-temperature steel sheet | |
JPH11129015A (en) | Method of producing thin-scale steel sheet | |
JPH11267755A (en) | Manufacture of thick steel plate and straightening device used in it | |
JP3811380B2 (en) | Manufacturing method of thick steel plate by hot rolling | |
JP2809575B2 (en) | Descaling device for hot rolled steel sheet | |
JPH0852509A (en) | Method for rolling high temperature steel plate | |
JP3661434B2 (en) | Controlled cooling method for hot rolled steel sheet | |
KR100368263B1 (en) | A Descaling Method of Hot Rolled Steel Sheet | |
US6067836A (en) | Method and system for suppressing formation of scale defects during hot finish rolling | |
JPH09308907A (en) | Method for control-cooling thick steel plate and device therefor | |
JP3297216B2 (en) | Hot steel sheet rolling method | |
JP3617448B2 (en) | Steel plate draining method and apparatus | |
JP5764935B2 (en) | Thick steel plate descaling equipment and descaling method | |
JP3235784B2 (en) | Steel plate manufacturing line and steel plate manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000704 |