JPH06285364A - Method and device for circulated and fluidized catalytic reaction - Google Patents

Method and device for circulated and fluidized catalytic reaction

Info

Publication number
JPH06285364A
JPH06285364A JP10510193A JP10510193A JPH06285364A JP H06285364 A JPH06285364 A JP H06285364A JP 10510193 A JP10510193 A JP 10510193A JP 10510193 A JP10510193 A JP 10510193A JP H06285364 A JPH06285364 A JP H06285364A
Authority
JP
Japan
Prior art keywords
gas
reaction
liquid
catalytic reaction
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10510193A
Other languages
Japanese (ja)
Inventor
Fumihiko Uemura
文彦 植村
Hideki Sugiyama
秀樹 杉山
Chieko Nagasawa
知恵子 長沢
Takeshi Minami
武志 皆見
Kazuhiko Hamato
一彦 浜戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP10510193A priority Critical patent/JPH06285364A/en
Publication of JPH06285364A publication Critical patent/JPH06285364A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the contact efficiency of a reactant and to conduct a catalytic reaction without breaking a catalyst even if a solid catalyst is used in the gas-liq. or gas-solid-liq. catalytic reaction by introducing gaseous reactants into a catalytic reaction phase to generate the ascending and descending flow of the reaction phase, circulating and fluidizing the reaction phase. CONSTITUTION:A gas-liq. or gas-solid-liq. catalytic reaction vessel 1 is divided by a vertical partition wall 3 into 2 sections A and B, the sections are made to communicate with each other at the upper and lower parts, a gas blowing port 4 is arranged at the bottom of either the adjacent section A or B, and a liq. feed port 6 is set at the lowermost part of the vessel 1. Further, a gas storage space 11 is formed at the uppermost part of the vessel 1, and a liq. discharge port 8 is arranged above the communicating part and a gas discharge port 9 in the gas storage space 11. As a result, the contact efficiency of the reactant is improved, and a circulated and fluidized catalytic reaction is conducted without breaking a catalyst even if a solid catalyst is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、循環流動接触反応方法
及びその装置に関し、更に詳しくは、気液または気固液
接触反応の反応原料ガスにより反応液相を循環流動させ
る循環流動気液接触反応方法及びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulating fluidized catalytic reaction method and an apparatus therefor, and more specifically, a circulating fluidized gas / liquid catalytic contact for circulating and flowing a reaction liquid phase by a reaction raw material gas in a gas-liquid or gas-solid liquid catalytic reaction. The present invention relates to a reaction method and an apparatus thereof.

【0002】[0002]

【従来の技術】石油危機以来、界面活性剤、合成潤滑
剤、合成樹脂等の各種化学製品の基礎原料となる化合物
をエチレン等石油化学ガスを原料として用いないで合成
する研究が進んでいる。特に、一酸化炭素(CO)、メ
タノール等を原料とするいわゆるC1 化学の開発は著し
いものがある。それらのなかでも、コバルト(Co)、
ロジウム(Rh)等遷移金属のカルボニル錯体の触媒を
用いる気液接触反応プロセスの開発は盛んであり、上記
触媒の存在下でオレフィン、CO及び水素を反応させ
て、主にアルデヒドを合成するオキソ反応、アルコール
とCOとを反応させるカルボン酸の合成、オレフィンま
たはアルキン、CO及びアルコールを反応させるカルボ
ン酸エステルの合成のカルボキシル化反応は、既に工業
化されている。また、各種化学製造工程において広く適
用される水素化反応プロセスも気液接触反応プロセスの
一種である。
2. Description of the Related Art Since the petroleum crisis, research has been advanced to synthesize compounds that are basic raw materials for various chemical products such as surfactants, synthetic lubricants and synthetic resins without using petrochemical gas such as ethylene as a raw material. In particular, the development of so-called C1 chemistry using carbon monoxide (CO), methanol, etc. as a raw material is remarkable. Among them, cobalt (Co),
Development of a gas-liquid catalytic reaction process using a catalyst of a carbonyl complex of a transition metal such as rhodium (Rh) is active, and an oxo reaction for synthesizing an aldehyde mainly by reacting olefin, CO and hydrogen in the presence of the above catalyst. The carboxylation reaction for synthesizing a carboxylic acid for reacting an alcohol with CO, and for synthesizing a carboxylic acid ester for reacting an olefin or an alkyne, CO and an alcohol has already been industrialized. A hydrogenation reaction process widely applied in various chemical manufacturing processes is also a kind of gas-liquid contact reaction process.

【0003】[0003]

【発明が解決しようとする課題】上記気液接触反応に関
して、従来から、反応生成物を高収率で得るため、触媒
の開発や気液接触効率の向上等を目的とした種々の研究
開発が行われている。しかしながら、上記従来の研究開
発は主に触媒開発が中心であって、接触効率については
未だ確立された技術がなく、例えば攪拌機の改良やその
種類の選別を行っているのが現況である。特に、固体触
媒を用いる場合には気液固の3相の接触となり、十分な
接触を確保する必要があり、また、触媒によっては従来
の攪拌機を用いた場合には破壊されるおそれがあり、反
応物の接触効率を向上させる方法が望まれている。本発
明は、上記現状を鑑み、通常の攪拌操作では破壊のおそ
れのある固体触媒を用いても触媒を破壊することなく、
しかも反応物の接触効率の向上を図ることを目的とす
る。発明者らは、上記目的達成のため、主に気液または
気固液接触反応における反応機構を検討し、ガス吸収、
例えばC1化学反応でのCOガスの反応液相への溶解吸
収が反応律速となることから、反応ガスの吸収溶解の向
上について鋭意検討した結果、本発明を完成した。
With respect to the above gas-liquid contact reaction, various research and development aimed at developing catalysts and improving gas-liquid contact efficiency have hitherto been carried out in order to obtain reaction products in high yields. Has been done. However, the above-mentioned conventional research and development are mainly centered on catalyst development, and there is no established technique for contact efficiency, and for example, the current situation is to improve the stirrer and select its type. In particular, when a solid catalyst is used, gas-liquid solid three-phase contact is required, and it is necessary to secure sufficient contact, and depending on the catalyst, there is a risk of destruction when a conventional stirrer is used, A method for improving the contact efficiency of reactants is desired. In view of the above situation, the present invention does not destroy the catalyst even when using a solid catalyst that may be destroyed in a normal stirring operation,
Moreover, the purpose is to improve the contact efficiency of the reactants. In order to achieve the above-mentioned objects, the inventors have mainly investigated the reaction mechanism in a gas-liquid or gas-solid contact reaction, gas absorption,
For example, the dissolution and absorption of CO gas in the reaction liquid phase in the C1 chemical reaction is rate-determining reaction. Therefore, the present invention has been completed as a result of intensive studies on improvement of absorption and dissolution of reaction gas.

【0004】[0004]

【課題を解決するための手段】本発明によれば、気液接
触または気固液接触反応において、接触反応相に反応原
料ガス成分を導入して反応相の上昇流及び下降流を生じ
させ、該反応相内に循環流動を形成することを特徴とす
る循環流動接触反応方法が提供される。また、上記循環
流動接触反応方法を円滑に遂行可能な気液接触または気
固液接触反応槽であって、垂直方向に延びた隔壁により
2以上の区域に区分され、各区域は上部及び下部におい
て連通すると共に、隣接する区域のいずれか一方の底部
にガス吹込み口を配置し、且つ、該反応槽の最下部には
液供給口を設置し、該反応槽の最上部にはガス貯留空間
部をそれぞれ設置し、連通する該上部に液抜出し口及び
該ガス貯留空間部にガス抜出口を配置することを特徴と
する循環流動接触反応装置が提供される。本発明の気液
接触または気固液接触反応は、制限されるものでなく、
気液2相または気固液3相の反応であれば、いずれも適
用することができる。特に、本発明は均一系または不均
一系触媒反応のカルボニル化反応または水素化反応に好
適に適用される。
According to the present invention, in a gas-liquid contact or a gas-solid contact reaction, a reaction raw material gas component is introduced into a contact reaction phase to generate an upflow and a downflow of the reaction phase, There is provided a circulating fluidized catalytic reaction method characterized by forming a circulating fluid in the reaction phase. In addition, it is a gas-liquid contact or gas-solid contact reaction tank capable of smoothly performing the circulating fluidized contact reaction method, and is divided into two or more areas by a partition wall extending in the vertical direction, and each area is divided into an upper part and a lower part. While communicating with each other, a gas injection port is arranged at the bottom of one of the adjacent areas, a liquid supply port is installed at the bottom of the reaction tank, and a gas storage space is provided at the top of the reaction tank. There is provided a circulating fluidized contact reactor characterized in that each part is installed, and a liquid withdrawing port is provided at the upper part in communication with each other and a gas withdrawing port is provided at the gas storage space part. The gas-liquid contact or gas-liquid contact reaction of the present invention is not limited,
Any gas-liquid two-phase or gas-solid three-phase reaction can be applied. In particular, the present invention is suitably applied to a carbonylation reaction or hydrogenation reaction of a homogeneous or heterogeneous catalytic reaction.

【0005】[0005]

【作用】本発明は上記のように構成され、隣接する区域
の一区域の反応相の下部より、反応原料ガス成分を吹込
むため、該区域においてはガスの上昇と共に周辺の液相
部分が同伴され上昇すると同時に、その区域の反応相は
ガス成分を含有し気液相または気固液相となり嵩密度が
減少する。一方、隔壁で隣接するガス成分の吹込みのな
い区域の反応相は、ガス成分を含有せず液相または固液
相となるため嵩密度は、ガス成分吹込み区域の反応相の
嵩密度に比して相対的に増大することになる。また、ガ
ス成分吹込み区域とガス成分の吹込みのない区域とは隣
接して並設され、それぞれは上下部にて連通する。その
ためガス成分の吹込み区域の反応相は密度差により連続
的に上昇し、それと同時にガス成分の吹込みのない区域
の反応相は下降移動し、下部連通部ではガス吹込み区域
方向に移動することになる。即ち、反応相内で上昇流と
下降流とが連続的して生起され、動力を使用することな
く反応相が自動的に循環流動する。従って、反応原料の
気液成分及び触媒等の固体成分は、循環流動しながら十
分に接触することができ、ガス成分の反応液相への溶解
吸収は増大し、更に、各反応成分の接触効率が向上し、
反応転化率も向上する。また、従来法と異なり、反応相
内には攪拌機を設ける必要がなく、構造的に簡素化さ
れ、更に、触媒破壊のおそれもない。
The present invention is configured as described above, and since the reactant gas components are blown from the lower part of the reaction phase in one area of the adjacent area, the surrounding liquid phase portion is accompanied with the rise of gas in the area. At the same time, the reaction phase in that area contains a gas component and becomes a gas-liquid phase or a gas-solid phase, and the bulk density decreases. On the other hand, the bulk density is the same as the bulk density of the reaction phase in the gas component injection area because the reaction phase in the area adjacent to the partition wall where no gas component is injected becomes a liquid phase or a solid liquid phase containing no gas component. It will increase relatively. Further, the gas component blowing area and the area where no gas component is blowing are arranged adjacent to each other and communicate with each other at the upper and lower portions. Therefore, the reaction phase in the gas component blowing region continuously rises due to the density difference, and at the same time, the reaction phase in the region without gas component blowing moves downward and moves toward the gas blowing region in the lower communication part. It will be. That is, an upflow and a downflow are continuously generated in the reaction phase, and the reaction phase automatically circulates and flows without using power. Therefore, the gas-liquid component of the reaction raw material and the solid component such as the catalyst can be sufficiently contacted while circulating and flowing, the dissolution and absorption of the gas component in the reaction liquid phase is increased, and the contact efficiency of each reaction component is further increased. Is improved,
The reaction conversion rate is also improved. Further, unlike the conventional method, it is not necessary to provide a stirrer in the reaction phase, the structure is simplified, and there is no risk of catalyst destruction.

【0006】[0006]

【実施例】以下、本発明の一実施例について図面を参照
しながら詳細に説明する。但し、本発明は下記実施例に
より制限されるものでない。図1は、本発明の一実施例
の説明図である。図1において、反応槽1は、円筒二重
環構造であって、底部、上蓋及び外周胴体からなる外環
部2と内環部3とから構成される。内環部3は適当な支
持体(図示せず)により反応槽1内において底部及び上
蓋との間に空間を有して設けられる。反応槽1内は、内
環部3を隔壁として区域Aと区域Bとに区分され、且つ
区域A及び区域Bとは上下でそれぞれ連通する。本発明
において、反応槽は縦方向に長く延びていればよく、そ
の形状等は特に制限されるものでない。また、その内部
構造も特に制限されるものでなく、2以上の区域が、上
下で連通しながら隣接して並設される構造となるよう
に、ほぼ垂直方向に延びる隔壁により各区域が区分され
ていればよい。通常、円筒または角筒等の筒状体を複数
環状体にして用いられる。また、直方体等各種外形状体
の槽内を上下で連通するように1または2以上の隔壁を
設置して用いてもよい。槽の大きさ、隔壁、または区域
の数等は、目的とする反応及び反応条件に応じて適宜選
択することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. However, the present invention is not limited to the following examples. FIG. 1 is an explanatory diagram of an embodiment of the present invention. In FIG. 1, a reaction tank 1 has a cylindrical double ring structure and is composed of an outer ring portion 2 and an inner ring portion 3 each of which includes a bottom portion, an upper lid and an outer peripheral body. The inner ring portion 3 is provided in the reaction tank 1 with a space between the bottom portion and the upper lid by a suitable support (not shown). The inside of the reaction tank 1 is divided into an area A and an area B by using the inner ring portion 3 as a partition, and the area A and the area B communicate with each other vertically. In the present invention, the reaction tank has only to extend in the longitudinal direction and the shape and the like are not particularly limited. Also, the internal structure thereof is not particularly limited, and each region is divided by a partition wall extending in a substantially vertical direction so that two or more regions are vertically connected to each other and are arranged side by side. If you have. Usually, a plurality of tubular bodies such as a cylinder or a square tube is used as an annular body. Further, one or more partition walls may be installed and used so as to vertically communicate with each other in the tank of various external shapes such as a rectangular parallelepiped. The size of the tank, the number of partition walls, the number of zones, and the like can be appropriately selected according to the desired reaction and reaction conditions.

【0007】図1において、ガス吹込ノズルのスパージ
ャ4は、区域Aのみにガスが供給されるように区域A底
部に環状に配置され、スパージャ4に連結して反応ガス
供給ライン5が配設される。反応槽1の最下部には液供
給ライン6が配設される。区域Aの中間には、多孔板の
ガス分散板7が配備される。この分散板7は、ガスを反
応液相で均一に分散上昇させるために、再分散を目的と
して配備する。配備するガス分散板の形式、配備数等も
特に制限されない。通常、孔径が約1〜10mmの多孔
板が用いられ、また、反応槽の相当直径の約1〜10倍
の間隔で配備するのが好ましい。本発明のガス吹込みノ
ズルは、隣接する区域の一方に配置する。その配置方式
や型等は特に制限されるものでない。公知のガススプレ
ーノズルのいずれも用いることができ、配置する区域内
にガスを均一に分散して上向きに噴出できるものであれ
ばよい。その区域の大きさ、ガス吹込み量等に応じて適
宜選択することができる。通常、リングタイプスパージ
ャーが用いられる。
In FIG. 1, the sparger 4 of the gas injection nozzle is annularly arranged at the bottom of the area A so that the gas is supplied only to the area A, and the reaction gas supply line 5 is connected to the sparger 4 so as to be connected thereto. It A liquid supply line 6 is arranged at the bottom of the reaction tank 1. A gas distribution plate 7 which is a perforated plate is provided in the middle of the area A. This dispersion plate 7 is provided for the purpose of redispersion in order to uniformly disperse and raise the gas in the reaction liquid phase. The type of the gas distribution plate to be deployed, the number of deployments, etc. are not particularly limited. Usually, a perforated plate having a pore size of about 1 to 10 mm is used, and it is preferable to arrange the plates at intervals of about 1 to 10 times the equivalent diameter of the reaction tank. The gas injection nozzle of the present invention is located in one of the adjacent areas. The arrangement method, type, etc. are not particularly limited. Any known gas spray nozzle can be used as long as it can uniformly disperse the gas in the area where it is arranged and eject it upward. It can be appropriately selected depending on the size of the area, the gas injection amount, and the like. Usually a ring type sparger is used.

【0008】液抜出しライン8及びガス抜出しライン9
が、反応槽1の上部に設けられる。反応生成物が液体の
場合は、液抜出しライン8より、未反応液等と共に抜き
出される。固体触媒を用いる反応の場合には、液抜出し
ライン8の送入口部分にウェッジワイヤー型等の固体粒
子捕獲器10を設置し、反応槽外への流出を防止する。
また、反応液及び要すれば触媒等の固体物と分離された
ガスが貯留される反応槽最上部に設けたガス貯留空間部
11に、ガス抜出しライン9のガス抜出口を開口し、ガ
ス生成物及び未反応ガスを槽外に排出する。本発明の気
液及び気固液接触反応が発熱反応である場合は、図1に
示したように反応槽内上方部にU字型熱交換管路12を
設けて除熱することができる。熱交換器は、その他、胴
体部の外周部に設けるジャッケット型熱交換器等公知の
熱交換器を適宜選択して用いることができる。また、反
応温度条件によっては、熱交換器でスチーム等を発生さ
せ、熱回収を図ることもできる。
Liquid extraction line 8 and gas extraction line 9
Is provided in the upper part of the reaction tank 1. When the reaction product is a liquid, it is withdrawn from the liquid withdrawing line 8 together with the unreacted liquid and the like. In the case of a reaction using a solid catalyst, a wedge wire type solid particle trap 10 is installed at the inlet of the liquid extraction line 8 to prevent outflow to the outside of the reaction tank.
In addition, a gas outlet port of the gas outlet line 9 is opened in the gas storage space 11 provided at the uppermost portion of the reaction tank in which the gas separated from the reaction solution and solid matter such as a catalyst is stored, thereby generating gas. Material and unreacted gas are discharged outside the tank. When the gas-liquid and gas-solid contact reaction of the present invention is an exothermic reaction, heat can be removed by providing a U-shaped heat exchange pipe line 12 in the upper part of the reaction tank as shown in FIG. As the heat exchanger, other known heat exchangers such as a jacket type heat exchanger provided on the outer peripheral portion of the body can be appropriately selected and used. Further, depending on the reaction temperature conditions, it is also possible to generate steam or the like with a heat exchanger to recover heat.

【0009】次いで、上記のように構成された図1の反
応槽1における反応操作にについて説明する。図1にお
いて、反応槽1に、液供給ライン6から反応原料液、例
えば、カルボキシル化反応であればメタノール等アルコ
ール類と水を主成分とする原料液、オキソ反応のヒドロ
ホルミル化反応であればプロピレン等のオレフィン原料
液を供給する。Rh錯体担持触媒等の固体触媒の不均一
系触媒を用いる場合には、予め反応槽1に触媒を仕込
み、また、用いる触媒が、Rh錯体触媒等の均一系触媒
であれば原料液と一緒に反応槽1に導入して仕込むこと
ができる。次に、CO等の反応ガスを、反応ガス供給ラ
イン5を経てスパージャ4から反応槽1の区域Aへ連続
して上向きに噴出させ供給する。噴出供給されたガス
は、要すれば、中間に配置した分散板により再分散され
ながら、区域Aを上昇しつつ次第に液中に吸収され、更
に反応原料液と反応して消費される。
Next, the reaction operation in the reaction vessel 1 of FIG. 1 configured as described above will be described. In FIG. 1, a reaction raw material liquid from a liquid supply line 6 to a reaction tank 1, for example, a raw material liquid containing alcohols such as methanol and water as main components in a carboxylation reaction, and propylene in a hydroformylation reaction of an oxo reaction. Supply an olefin raw material liquid such as. When a solid catalyst heterogeneous catalyst such as a Rh complex-supported catalyst is used, the catalyst is charged in the reaction tank 1 in advance, and if the catalyst to be used is a homogeneous catalyst such as a Rh complex catalyst, it is used together with the raw material liquid. It can be introduced and charged into the reaction tank 1. Next, a reaction gas such as CO is continuously ejected upward from the sparger 4 to the area A of the reaction tank 1 through the reaction gas supply line 5 and supplied. The gas jetted and supplied is gradually re-dispersed by a dispersion plate arranged in the middle, is gradually absorbed in the liquid while rising in the zone A, and is further reacted with the reaction raw material liquid and consumed.

【0010】上記のように反応原料ガスを区域Aにのみ
噴出させるため、区域Aと区域B間の反応相に嵩密度差
が生じるため、区域Aの上昇流と区域Bの下降流とか循
環流動が形成される。この場合、ガス成分の噴出を区域
Bに行うときは、区域Bで上昇流、区域Aで下降流がそ
れぞれ生じて、図1とは逆方向に循環流動することにな
る。循環流動の速度は、反応相を構成する各成分の種
類、反応槽や各区域の形状及び容量等により、ガス吹込
み量を適宜選択することにより制御することができる。
好ましくは、ガス上昇空塔速度が1〜15cm/秒とな
るように選択する。区域Aの反応相に供給されたガス
は、上記したように上昇しつつ反応液相に吸収され反応
して消費されるが、未吸収の未反応ガスは区域Aの上部
連通部に達した後、反応槽の最上部のガス貯留空間部1
1において液または固液反応相から分離され、ガス抜出
口を経てガス抜出ライン9より槽外に排出される。
Since the reaction raw material gas is ejected only into the zone A as described above, a bulk density difference occurs in the reaction phase between the zone A and the zone B. Therefore, the upward flow in the zone A and the downward flow in the zone B, or circulation flow. Is formed. In this case, when the gas component is jetted to the area B, an upflow is generated in the area B and a downflow is generated in the area A, which causes circulation flow in the direction opposite to that in FIG. The circulation flow rate can be controlled by appropriately selecting the gas injection amount depending on the type of each component constituting the reaction phase, the shape and capacity of the reaction tank and each zone, and the like.
Preferably, the gas rising superficial velocity is selected to be 1 to 15 cm / sec. The gas supplied to the reaction phase of the zone A is absorbed by the reaction liquid phase while rising and reacts as described above, and is consumed, but the unabsorbed unreacted gas reaches the upper communication part of the zone A. , Gas storage space 1 at the top of the reaction tank
In 1 the liquid or solid-liquid reaction phase is separated and discharged from the gas extraction line 9 through the gas extraction outlet to the outside of the tank.

【0011】本発明において、反応槽内の反応相は、供
給液量に見合う量の液を固体粒子捕獲器10を経て固体
触媒等固形物を分離した後、液抜出ライン8より槽外に
排出することにより、常時、所定位置に保持することが
できる。気体生成物はガス抜出ライン9より、液体生成
物は液抜出ライン8より取り出され、その後の処理工程
に送られる。また、固体触媒は、反応槽内に保有され槽
外に流出させる必要がない。上記説明したように本発明
の気液または気固液接触反応は、接触効率を高め反応ガ
ス成分の吸収率を向上させ反応率を高めることができ
る。更に、動力を用いることなく反応相の自己循環流動
により操作することができるため、固体触媒等の固形物
をポンプ等の機械的手段で取扱うことがないため運転上
の不都合も生じることが少なく、連続して円滑に操作す
ることができる。
In the present invention, the reaction phase in the reaction vessel is such that an amount of liquid commensurate with the amount of the feed liquid is separated from the solid matter such as the solid catalyst through the solid particle trap 10 and then discharged from the liquid extraction line 8 to the outside of the tank. By discharging, it can be always held at a predetermined position. The gas product is taken out from the gas withdrawal line 9 and the liquid product is taken out from the liquid withdrawal line 8 and sent to the subsequent processing step. Further, the solid catalyst is held in the reaction tank and does not need to flow out of the tank. As described above, in the gas-liquid or gas-solid liquid contact reaction of the present invention, the contact efficiency can be increased, the absorption rate of the reaction gas component can be improved, and the reaction rate can be increased. Furthermore, since it can be operated by self-circulating flow of the reaction phase without using power, solid matters such as solid catalysts are not handled by mechanical means such as pumps, and therefore inconvenience in operation is less likely to occur. It can be operated continuously and smoothly.

【0012】実施例1 図1に示したように構成された全容量が1.0m3 で、
高さ15m、直径0.3mの外円筒体と、高さ10m、
直径0.2mの内円筒からなる二重環状の反応槽を用
い、ベンゼンを水素化してシクロヘキサンを製造した。
反応条件を表1に示した。なお、触媒のラネーニッケル
は、予め反応槽1に充填した。原料液供給ライン6から
ベンゼン2.89kgモル/時(226kg/時)を供
給し、反応相を形成した。その後、ガス供給ライン5よ
り水素ガス9.09kgモル/時(204Nm3 /時)
を供給し、スパージャ4より区域Aに噴出し、原料ベン
ゼンの常温密度(859kg/m3 )基準で反応槽内の
滞留時間が3時間となるように液抜出ライン8より反応
液を排出させて反応させた。また、発熱反応で生じた反
応熱は、反応槽上部に配設したU字管熱交換器により冷
却し反応温度を保持した。その結果、反応相の循環流動
が50cm/秒が生じた。また、ガス抜出ライン9より
排出されたガス成分を分析した結果、シクロヘキサン
2.74kgモル/時、水素0.87kgモル/時、ベ
ンゼン0.15kgモル/時及びその他0.01kgモ
ル/時であった。これはベンゼン転化率が94.8%、
シクロヘキサン選択率が99.7%である。
Example 1 A total capacity of 1.0 m 3 constructed as shown in FIG.
An outer cylinder with a height of 15 m and a diameter of 0.3 m, and a height of 10 m,
Cyclohexane was produced by hydrogenating benzene using a double-ring reaction tank composed of an inner cylinder having a diameter of 0.2 m.
The reaction conditions are shown in Table 1. Raney nickel as a catalyst was filled in the reaction tank 1 in advance. 2.89 kg mol / hour (226 kg / hour) of benzene was supplied from the raw material liquid supply line 6 to form a reaction phase. Then, from the gas supply line 5, hydrogen gas 9.09 kg mol / hr (204 Nm 3 / hr)
Was supplied to the area A from the sparger 4, and the reaction liquid was discharged from the liquid discharge line 8 so that the residence time in the reaction tank was 3 hours based on the room temperature density (859 kg / m 3 ) of the raw material benzene. To react. The heat of reaction generated by the exothermic reaction was cooled by a U-shaped tube heat exchanger arranged in the upper part of the reaction tank to maintain the reaction temperature. As a result, the circulating flow of the reaction phase was 50 cm / sec. Moreover, as a result of analyzing the gas components discharged from the gas extraction line 9, it was found that cyclohexane was 2.74 kg mol / hr, hydrogen was 0.87 kg mol / hr, benzene was 0.15 kg mol / hr and other 0.01 kg mol / hr. there were. This has a benzene conversion rate of 94.8%,
The cyclohexane selectivity is 99.7%.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例2 実施例1と同様の反応槽を用い、表1に示した反応条件
及び触媒でメタノールのカルボニル化反応により酢酸を
製造した。触媒は同様に予め反応槽に充填した。なお、
触媒濃度は、担持触媒の乾燥時基準で示した。原料液供
給ライン6から、メタノール3.40kgモル/時(1
08.9kg/時)、水1.46kgモル/時(26.
3kg/時)、ヨウ化メチル0.19kgモル/時(2
7.6kg/時)及び酢酸1.46kgモル/時(8
7.4kg/時)を供給し、ガス供給ライン5よりCO
ガス3.74kgモル/時(83.8Nm3 /時)を供
給し、原料メタノールの常温密度(780kg/m3
基準で反応槽内の滞留時間が6時間となるようにした以
外は、実施例1と同様にして反応させた。反応相の循環
流動は38cm/秒であった。若干の水性ガスの生成が
観察されたが、ガス抜出しライン9より排出されたガス
成分の分析結果は、酢酸4.79kgモル/時、水1.
46kgモル/時、メタノール0.03kgモル/時、
ヨウ化メチル0.19kgモル/時及びその他0.03
kgモル/時であった。これはメタノール転化率が99
%、酢酸選択率が99%である。
Example 2 Using the same reaction vessel as in Example 1, acetic acid was produced by the carbonylation reaction of methanol under the reaction conditions and catalysts shown in Table 1. The catalyst was likewise preloaded in the reaction vessel. In addition,
The catalyst concentration is shown on a dry basis of the supported catalyst. From the raw material liquid supply line 6, methanol 3.40 kg mol / hr (1
08.9 kg / hr), water 1.46 kg mol / hr (26.
3 kg / hr), methyl iodide 0.19 kg mol / hr (2
7.6 kg / hr) and acetic acid 1.46 kg mol / hr (8
(7.4 kg / hour) and CO from the gas supply line 5
Gas 3.74 kg mol / hr (83.8 Nm 3 / hr) was supplied, and room temperature density of raw material methanol (780 kg / m 3 )
The reaction was carried out in the same manner as in Example 1 except that the residence time in the reaction vessel was set to 6 hours as a standard. The circulating flow of the reaction phase was 38 cm / sec. Although a slight amount of water gas was observed to be produced, the analysis results of the gas components discharged from the gas extraction line 9 were as follows: acetic acid 4.79 kg mol / hr, water 1.
46 kg mol / hr, methanol 0.03 kg mol / hr,
Methyl iodide 0.19 kg mol / hr and others 0.03
It was kg mol / hour. This has a methanol conversion of 99
%, The acetic acid selectivity is 99%.

【0015】実施例3 実施例1と同様の反応槽を用い、表1に示した反応条件
及び触媒でプロピレンをオキソ反応でヒドロホルミル化
して、ブチルアルデヒドを製造した。触媒は同様に予め
反応槽に充填した。原料液供給ライン6から、プロピレ
ン1.90kgモル/時(80.0kg/時))を供給
し、ガス供給ライン5より容量比でH2 /COが60/
40の水素・一酸化炭素混合ガスを5.54kgモル/
時(124.1Nm3 /時)を供給し、原料プロピレン
の常温密度(520kg/m3 )基準で反応槽内の滞留
時間が5時間となるようにした以外は、実施例1と同様
にして反応させた。反応相の循環流動は 32cm/秒
であった。ガス抜出しライン9より排出されたガス成分
の分析結果は、iso−ブチルアルデヒド1.51kg
モル/時、n−ブチルアルデヒド0.08kgモル/
時、H2 1.67kgモル/時、CO0.63kgモル
/時、プロピレン0.31kgモル/時及びその他0.
02kgモル/時であった。これはプロピレン転化率が
83.7%、水素転化率が49.4%、一酸化炭素転化
率が71.9%で、iso−ブチルアルデヒド選択率が
95.0%及びn−ブチルアルデヒド選択率が5.0%
である。
Example 3 Using the same reactor as in Example 1, propylene was hydroformylated by oxo reaction under the reaction conditions and catalysts shown in Table 1 to produce butyraldehyde. The catalyst was likewise preloaded in the reaction vessel. 1.90 kg mol / hr (80.0 kg / hr) of propylene was supplied from the raw material liquid supply line 6, and H2 / CO was 60 / in volume ratio from the gas supply line 5.
40 hydrogen / carbon monoxide mixed gas at 5.54 kg mol /
Hour (124.1 Nm 3 / hour) was supplied, and the residence time in the reaction vessel was set to 5 hours based on the room temperature density (520 kg / m 3 ) of the raw material propylene. It was made to react. The circulating flow of the reaction phase was 32 cm / sec. The analysis result of the gas component discharged from the gas extraction line 9 is 1.51 kg of iso-butyraldehyde.
Mol / hr, n-butyraldehyde 0.08 kg mol / hr
Hour, H2 1.67 kg mol / hr, CO 0.63 kg mol / hr, propylene 0.31 kg mol / hr and others.
It was 02 kg mol / hour. This has a propylene conversion rate of 83.7%, a hydrogen conversion rate of 49.4%, a carbon monoxide conversion rate of 71.9%, an iso-butyraldehyde selectivity of 95.0% and an n-butyraldehyde selectivity. Is 5.0%
Is.

【0016】[0016]

【発明の効果】本発明の気液または気固液接触反応及び
装置は、動力を消費することなく反応相の自己循環流動
で各接触成分の接触効率を高めると同時に、反応律速と
なるガス成分の吸収率を向上させることができる。接触
反応に固体触媒を用いた場合でも、固形分を機械的に移
送する必要がなく、安定して連続操作をすることができ
る。
INDUSTRIAL APPLICABILITY The gas-liquid or gas-solid liquid contact reaction and apparatus of the present invention enhances the contact efficiency of each contact component by self-circulating flow of the reaction phase without consuming power, and at the same time, the gas component which becomes the reaction rate-determining agent. The absorption rate of can be improved. Even when a solid catalyst is used for the catalytic reaction, it is not necessary to mechanically transfer the solid content, and stable continuous operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A、B 区域 1 反応槽 2 外環部 3 内環部 4 スパージャ 5 分散板 6 液供給ライン 7 ガス供給ライン 8 液抜出ライン 9 ガス抜出ライン 10 固体粒子捕獲器 11 ガス貯留空間部 12 熱交換器 Areas A and B 1 Reaction tank 2 Outer ring part 3 Inner ring part 4 Sparger 5 Dispersion plate 6 Liquid supply line 7 Gas supply line 8 Liquid extraction line 9 Gas extraction line 10 Solid particle trap 11 Gas storage space part 12 Heat Exchanger

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長沢 知恵子 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 皆見 武志 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 浜戸 一彦 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Chieko Nagasawa Inventor Chieko Nagasawa 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kako Construction Co., Ltd. (72) Inventor Takeshi Minami Tsurumi-chu, Tsurumi-ku, Yokohama-shi, Kanagawa 2-12-1 Chiyoda Kakoh Construction Co., Ltd. (72) Inventor Kazuhiko Hamado 2-12-1 Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kakoh Construction Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 気液接触または気固液接触反応におい
て、接触反応相に反応原料ガス成分を導入して反応相の
上昇流及び下降流を生じさせ、該反応相内に循環流動を
形成することを特徴とする循環流動接触反応方法。
1. In a gas-liquid contact or a gas-solid contact reaction, a reaction raw material gas component is introduced into a contact reaction phase to generate an ascending flow and a descending flow of the reaction phase to form a circulating flow in the reaction phase. A circulating fluidized catalytic reaction method characterized by the above.
【請求項2】 該接触反応が、均一系または不均一系触
媒反応のカルボニル化反応または水素化反応である請求
項1記載の循環流動接触反応方法。
2. The circulating fluidized catalytic reaction method according to claim 1, wherein the catalytic reaction is a carbonylation reaction or a hydrogenation reaction of a homogeneous or heterogeneous catalytic reaction.
【請求項3】 気液接触または気固液接触反応槽であっ
て、垂直方向に延びた隔壁により2以上の区域に区分さ
れ、各区域は上部及び下部において連通すると共に、隣
接する区域のいずれか一方の底部にガス吹込み口を配置
し、且つ、該反応槽の最下部には液供給口を設置し、該
反応槽の最上部にはガス貯留空間部をそれぞれ設置し、
連通する該上部に液抜出し口及び該ガス貯留空間部にガ
ス抜出口を配置することを特徴とする循環流動接触反応
装置。
3. A gas-liquid contact or gas-solid contact reaction tank, which is divided into two or more areas by a partition wall extending in a vertical direction, and each area communicates with each other at an upper portion and a lower portion, and is adjacent to each other. A gas injection port is arranged at the bottom of one side, and a liquid supply port is installed at the bottom of the reaction tank, and a gas storage space is installed at the top of the reaction tank.
A circulating fluidized catalytic reaction device, characterized in that a liquid withdrawing port is provided in the upper part in communication with each other and a gas withdrawing port is arranged in the gas storage space part.
【請求項4】 該ガス吹込み口を配置した該区域の中間
部に1または2以上のガス分散板が配備される請求項3
記載の循環流動接触反応装置。
4. One or more gas dispersion plates are provided in an intermediate portion of the area where the gas injection port is arranged.
The circulating fluidized catalytic reactor described.
【請求項5】 該接触反応槽が筒状形状であって、二重
環構造である請求項3または4記載の循環流動接触反応
装置。
5. The circulating fluidized catalytic reactor according to claim 3, wherein the catalytic reaction tank has a cylindrical shape and has a double ring structure.
JP10510193A 1993-04-07 1993-04-07 Method and device for circulated and fluidized catalytic reaction Pending JPH06285364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10510193A JPH06285364A (en) 1993-04-07 1993-04-07 Method and device for circulated and fluidized catalytic reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10510193A JPH06285364A (en) 1993-04-07 1993-04-07 Method and device for circulated and fluidized catalytic reaction

Publications (1)

Publication Number Publication Date
JPH06285364A true JPH06285364A (en) 1994-10-11

Family

ID=14398499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10510193A Pending JPH06285364A (en) 1993-04-07 1993-04-07 Method and device for circulated and fluidized catalytic reaction

Country Status (1)

Country Link
JP (1) JPH06285364A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458995B1 (en) 2000-03-31 2002-10-01 Celanese International Corporation Catalytic composition for carbonylation including iridium and pyridine polymers
WO2007099807A1 (en) * 2006-03-02 2007-09-07 Idemitsu Kosan Co., Ltd. Reactor vessel for production of secondary butanol
US7387769B2 (en) 1999-04-16 2008-06-17 Minerals Technologies Inc. Method and apparatus for continuous gas liquid reactions
WO2010083899A1 (en) * 2009-01-22 2010-07-29 G+R Technology Group Ag Reactor for producing polycrystalline silicon using the monosilane process
KR101690978B1 (en) * 2015-07-22 2016-12-29 부경대학교 산학협력단 Jet loop fludized bed reactor
KR20210056425A (en) * 2018-12-26 2021-05-18 완후아 케미컬 그룹 코., 엘티디 Apparatus and method for oxidation of organic matter
CN114432974A (en) * 2022-01-11 2022-05-06 北京思达流体科技有限公司 Micro-nano bubble stirred tank reactor and application thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387769B2 (en) 1999-04-16 2008-06-17 Minerals Technologies Inc. Method and apparatus for continuous gas liquid reactions
US6458995B1 (en) 2000-03-31 2002-10-01 Celanese International Corporation Catalytic composition for carbonylation including iridium and pyridine polymers
WO2007099807A1 (en) * 2006-03-02 2007-09-07 Idemitsu Kosan Co., Ltd. Reactor vessel for production of secondary butanol
JP2007230937A (en) * 2006-03-02 2007-09-13 Idemitsu Kosan Co Ltd Reactor for producing secondary butanol
WO2010083899A1 (en) * 2009-01-22 2010-07-29 G+R Technology Group Ag Reactor for producing polycrystalline silicon using the monosilane process
CN102482103A (en) * 2009-01-22 2012-05-30 施密特硅技术股份有限公司 Reactor for producing polycrystalline silicon using the monosilane process
US8858894B2 (en) 2009-01-22 2014-10-14 Schmid Silicon Technology Gmbh Reactor for producing polycrystalline silicon using the monosilane process
KR101690978B1 (en) * 2015-07-22 2016-12-29 부경대학교 산학협력단 Jet loop fludized bed reactor
KR20210056425A (en) * 2018-12-26 2021-05-18 완후아 케미컬 그룹 코., 엘티디 Apparatus and method for oxidation of organic matter
JP2022504657A (en) * 2018-12-26 2022-01-13 万華化学集団股▲分▼有限公司 Equipment and methods for oxidizing organic matter
EP3903925A4 (en) * 2018-12-26 2022-07-27 Wanhua Chemical Group Co., Ltd. Device and method for oxidizing organic substance
CN114432974A (en) * 2022-01-11 2022-05-06 北京思达流体科技有限公司 Micro-nano bubble stirred tank reactor and application thereof

Similar Documents

Publication Publication Date Title
JP4891480B2 (en) Reactor for continuous gas-liquid reaction, liquid-liquid reaction, or gas-liquid-solid reaction
JP4517180B2 (en) Operation method and apparatus of bubble three-phase column with application to Fischer-Tropsch synthesis
AU2012205237B2 (en) Fischer-Tropsch process in a radial reactor
CN108473406B (en) Cylindrical reactor and use thereof for continuous hydroformylation
US3929421A (en) Tubular catalytic reactor with premixing means for multiple reactants of different densities
US6790417B2 (en) Monolith loop reactors
JP2002530189A5 (en)
Cybulski et al. Monolithic reactors for fine chemicals industries: a comparative analysis of a monolithic reactor and a mechanically agitated slurry reactor
JP3980366B2 (en) Continuous process and reactor for hydroformylation of olefins
US7232848B2 (en) Gas agitated multiphase reactor with stationary catalyst solid phase
KR101066329B1 (en) Method of manufacturing acetic acid
JPH06285364A (en) Method and device for circulated and fluidized catalytic reaction
US6150564A (en) Selective liquid-phase hydrogenation of α,β-unsaturated carbonyl compounds
RU2036713C1 (en) Reactor for conducting reactions in gas-liquid phase, mainly by air oxidation of n-xylene and monomethyl ester of toluic acid
CN110526807B (en) Continuous reaction device and method for preparing aldehyde through hydroformylation reaction
KR101291015B1 (en) Reactor for the hydroformylation of olefin and method for the hydroformylation using the same
DE2736872A1 (en) PROCESS FOR THE PREPARATION OF HYDROXYLAMMONIUM SALT
US3929900A (en) Continuous process for the production of oxygen containing compounds
US20060182673A1 (en) Apparatus for heterogeneous catalysed reactions
KR101251714B1 (en) Reactor for the hydroformylation of olefin and method for the hydroformylation using the same
JP3090584B2 (en) Contact reaction method and apparatus
RU2815838C1 (en) Propionates, n-propanol and propionic acid production plant
JPH05306254A (en) Production of acetic acid by carbonylating methanol
CN115650833B (en) Process method for strengthening olefin hydroformylation by microbubble flow
JPH0627080B2 (en) Hydrocarbon oxidation method and apparatus