JPH06284599A - Power supply switching circuit - Google Patents

Power supply switching circuit

Info

Publication number
JPH06284599A
JPH06284599A JP5074384A JP7438493A JPH06284599A JP H06284599 A JPH06284599 A JP H06284599A JP 5074384 A JP5074384 A JP 5074384A JP 7438493 A JP7438493 A JP 7438493A JP H06284599 A JPH06284599 A JP H06284599A
Authority
JP
Japan
Prior art keywords
battery
power supply
external
voltage
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5074384A
Other languages
Japanese (ja)
Inventor
Shigeo Ishii
茂雄 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP5074384A priority Critical patent/JPH06284599A/en
Publication of JPH06284599A publication Critical patent/JPH06284599A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Abstract

PURPOSE:To reduce a power consumption of a battery by disconnecting a battery voltage detecting circuit from a power power supply when the battery is connected to a load circuit and an external DC power supply is not connected thereto. CONSTITUTION:When a voltage Vb of a battery 3 is higher than a voltage Va of an external DC power supply 1 or when the battery 3 is connected to a load circuit 2 and the exeternal power supply 1 is not connected thereto, a transistor Q8 turns on and the field effect transistors(FET) Q10, Q11 turn off because the gates thereof become to have a low level. Therefore, the load circuit 2 is fed by the battery 3 through FET Q2 and simultaneously the resistor (battery voltage detecting circuit) R7 is shielded from the ground, causing a current to disappear through the resistors (battery voltage detecting circuit) R7, R8. Thereby, power consumption of the battery 3 can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部直流電源からバッ
テリに充電し且つ外部直流電源又はバッテリ電源から選
択的に負荷に電流を流すべくこれら各切り替えを自動的
に行う電源切替回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply switching circuit for charging a battery from an external DC power supply and automatically switching between the external DC power supply and the battery power supply so as to selectively supply a current to a load. is there.

【0002】[0002]

【従来の技術】携帯用機器等においては、外部供給電源
に基づいて直流を供給する外部直流電源から内蔵バッテ
リに充電し外部直流電源と内蔵バッテリとを自動的に切
り替えて使用することにより内蔵バッテリの消耗を低減
する方法が取られている。このような外部直流電源と内
蔵バッテリ電源とを自動的に切り替える電源切替回路に
関して、本出願と同一出願人による特願平4−2149
32号の出願がある。
2. Description of the Related Art In portable equipment and the like, a built-in battery is used by charging the built-in battery from an external DC power supply that supplies DC based on an external power supply and automatically switching between the external DC power supply and the built-in battery. Methods have been taken to reduce the consumption of the. Regarding a power supply switching circuit that automatically switches between the external DC power supply and the built-in battery power supply, Japanese Patent Application No. 4-2149 filed by the same applicant as the present application
There is an application for No. 32.

【0003】図2は該出願に示す回路に考慮し得るバッ
テリ充電回路を付加してなる電源切替回路の回路図であ
り、外部直流電源から内蔵バッテリへの充電と外部直流
電源使用と内蔵バッテリ使用とを自動的に切り替えるよ
うにしたものである。
FIG. 2 is a circuit diagram of a power supply switching circuit in which a battery charging circuit which can be considered in the circuit shown in the application is added, and charging from an external DC power supply to an internal battery, use of the external DC power supply and use of the internal battery. It is designed so that and are automatically switched.

【0004】同図において、1は商用電源等による外部
供給電源に基づいて直流を供給する外部直流電源、2は
負荷回路、3はバッテリ、4は負荷接続電源切替制御
部、5はバッテリ充電切替制御部である。
In the figure, 1 is an external DC power supply for supplying DC based on an external power supply such as a commercial power supply, 2 is a load circuit, 3 is a battery, 4 is a load connection power supply switching control section, and 5 is battery charge switching. It is a control unit.

【0005】外部直流電源1及びバッテリ3の正極は、
負荷接続電源切替制御部4の入力端子IN1,IN2に
接続され、負極は接地端子Gに接続されている。また、
負荷回路2の電源入力端子は負荷接続電源切替制御部4
の出力端子OUTに接続されている。
The external DC power supply 1 and the positive electrode of the battery 3 are
The load connection power supply switching control unit 4 is connected to the input terminals IN1 and IN2, and the negative electrode is connected to the ground terminal G. Also,
The power supply input terminal of the load circuit 2 is the load connection power supply switching control unit 4
Of the output terminal OUT.

【0006】負荷接続電源切替制御部4は、MOS型P
チャネルの電界効果トランジスタ(以下、FETと称す
る)Q1,Q2と、差動スイッチング回路41とにより
構成されている。FETQ1は、そのドレインが第1の
入力端子IN1を介して外部直流電源1の正極端子に接
続され、ソースは出力端子OUTを介して負荷回路2の
正極入力端子に接続されている。また、FETQ2は、
そのドレインが第2の入力端子IN2を介してバッテリ
3の正極端子に接続され、ソースは出力端子OUTに接
続されている。上記のFETQ1とFETQ2は本発明
の第1と第2の電界効果トランジスタをなす。
The load connection power supply switching control unit 4 is a MOS type P
It is composed of field effect transistors (hereinafter, referred to as FETs) Q1 and Q2 of the channel and a differential switching circuit 41. The drain of the FET Q1 is connected to the positive electrode terminal of the external DC power supply 1 via the first input terminal IN1, and the source is connected to the positive electrode input terminal of the load circuit 2 via the output terminal OUT. Further, the FET Q2 is
The drain is connected to the positive terminal of the battery 3 via the second input terminal IN2, and the source is connected to the output terminal OUT. The above-mentioned FETQ1 and FETQ2 form the first and second field effect transistors of the present invention.

【0007】差動スイッチング回路41は、接合型Nチ
ャネルの電界効果トランジスタ(以下、FETと称す
る)Q3,Q4,Q5と、PNP型のトランジスタQ
6,Q8と、NPN型のトランジスタQ7,Q9と、M
OS型Nチャネルの電界効果トランジスタ(以下、FE
Tと称する)Q10,Q11と、抵抗R1〜R6等によ
り構成され、抵抗R1とR3と、抵抗R2とR4と、抵
抗R5とR6とはそれぞれ互いに同一抵抗値のものが使
用されている。FETQ1とFETQ2のゲートは、F
ETQ10とQ11の各ドレインにそれぞれ接続され、
FETQ3とQ4は、FETQ1とFETQ2のゲート
に出力端子OUTからそれぞれ定電流を供給する。そし
てFETQ5は各トランジスタQ6,Q8のエミッタに
同様に定電流を供給する。トランジスタQ6は、ベース
に第2の入力端子IN2の電圧を抵抗R3,R4で分圧
して受け、コレクタが、トランジスタQ9のコレクタと
FETQ10のゲートに接続されると共に抵抗R5を介
してトランジスタQ7のベースに接続されている。そし
てトランジスタQ8は、ベースに第1の入力端子IN1
の電圧を抵抗R1,R2で分圧して受け、コレクタが、
トランジスタQ7のコレクタとFETQ11のゲートに
接続されると共に抵抗R6を介してトランジスタQ9の
ベースに接続されている。また、各トランジスタQ7,
Q9のエミッタとFETQ10,Q11の各ドレインは
接地されている。
The differential switching circuit 41 includes a junction type N-channel field effect transistor (hereinafter referred to as FET) Q3, Q4, Q5 and a PNP type transistor Q.
6, Q8, NPN type transistors Q7, Q9, and M
OS type N-channel field effect transistor (hereinafter referred to as FE
(Referred to as T) Q10 and Q11, resistors R1 to R6, etc., and resistors R1 and R3, resistors R2 and R4, and resistors R5 and R6 having the same resistance value are used. The gates of FETQ1 and FETQ2 are F
Connected to each drain of ETQ10 and Q11,
The FETs Q3 and Q4 supply constant currents from the output terminal OUT to the gates of the FETs Q1 and Q2, respectively. The FET Q5 similarly supplies a constant current to the emitters of the transistors Q6 and Q8. The transistor Q6 receives at its base the voltage of the second input terminal IN2 by being divided by the resistors R3 and R4, its collector is connected to the collector of the transistor Q9 and the gate of the FET Q10, and the base of the transistor Q7 via the resistor R5. It is connected to the. The transistor Q8 has a base connected to the first input terminal IN1.
Is divided by resistors R1 and R2, and the collector receives
It is connected to the collector of the transistor Q7 and the gate of the FET Q11, and is also connected to the base of the transistor Q9 via the resistor R6. In addition, each transistor Q7,
The emitter of Q9 and the drains of the FETs Q10 and Q11 are grounded.

【0008】バッテリ充電切替制御部5は、抵抗R7,
R8と、MOS型Nチャネルの電界効果トランジスタ
(以下、FETと称する)Q12,Q13と、接合型N
チャネルの電界効果トランジスタ(以下、FETと称す
る)Q14と、抵抗R9,R10,R11と、IC化さ
れたシャントレギュレータSR等よりなる。抵抗R7,
R8はバッテリ電圧検出回路をなし、バッテリ3の端子
間に接続されていてその分電圧を取り出す。FETQ1
2は該分電圧をゲートに受けドレインが外部直流電源1
に接続されソースが抵抗R9を介して接地されていて、
該分電圧に応じてそのドレイン電流が調節される。FE
TQ14は抵抗R10,R11に対する定電流回路を形
成し、抵抗R10,R11はシャントレギュレータSR
のトリップ電圧を設定している。FETQ13はシャン
トレギュレータSRの該設定電圧をゲートに受けドレイ
ンがFETQ2のゲートに接続されソースが抵抗R9を
介して接地されていて、FETQ11がオフのときに、
FETQ12のドレイン電流に応じて抵抗R9による電
圧降下が該設定電圧以下になると抵抗R9を介してFE
TQ2のゲートを接地させる。
The battery charge switching controller 5 includes a resistor R7,
R8, a MOS type N-channel field effect transistor (hereinafter referred to as FET) Q12 and Q13, and a junction type N
It is composed of a field effect transistor (hereinafter referred to as FET) Q14 of a channel, resistors R9, R10 and R11, and an IC-shaped shunt regulator SR. Resistance R7,
R8 constitutes a battery voltage detection circuit, which is connected between the terminals of the battery 3 and extracts the voltage correspondingly. FET Q1
2 is the external DC power supply 1 whose drain receives the corresponding voltage at its gate
And the source is grounded through a resistor R9,
The drain current is adjusted according to the divided voltage. FE
TQ14 forms a constant current circuit for the resistors R10 and R11, and the resistors R10 and R11 are the shunt regulator SR.
The trip voltage of is set. The FET Q13 receives the set voltage of the shunt regulator SR at the gate, the drain is connected to the gate of the FET Q2, the source is grounded through the resistor R9, and the FET Q11 is off,
When the voltage drop by the resistor R9 becomes equal to or lower than the set voltage according to the drain current of the FET Q12, the FE is passed through the resistor R9.
The gate of TQ2 is grounded.

【0009】上記の図2の構成において例えば、バッテ
リ3の電圧Vbが外部直流電源1の電圧Vaよりも高い
とき、或いはバッテリ3が接続され、外部直流電源1が
接続されていないときは、トランジスタQ6のベース電
圧は、トランジスタQ8のベース電圧より高くなる。一
般にMOS型のFETQ1,Q2にはドレイン・ソース
間に寄生ダイオードが形成されており、更に、トランジ
スタQ6,Q8のそれぞれのエミッタ電圧は同一である
ので、トランジスタQ6のベース・エミッタ間電圧は、
トランジスタQ8のベース・エミッタ間電圧よりも高く
なってトランジスタQ8がオンになり、バッテリ3から
FETQ2の寄生ダイオード及びFETQ5を介して流
れる電流がトランジスタQ8を介してQ9をオンにす
る。これによりトランジスタQ8のコレクタが高レベル
になって、FETQ11がオンになり、FETQ2のゲ
ートが接地され、FETQ2のゲート・ソース間に逆バ
イアス電圧が印加されてFETQ2はオンになり、バッ
テリ3からFETQ2を介して負荷回路2に通電され
る。一方、トランジスタQ6はオフになっていて、トラ
ンジスタQ9がオンになっているのでFETQ10はオ
フとなる。これにより、FETQ1はオフとなり、外部
直流電源1(第1の入力端子IN1)と出力端子OUT
との間は遮断される。
In the configuration of FIG. 2 described above, for example, when the voltage Vb of the battery 3 is higher than the voltage Va of the external DC power supply 1, or when the battery 3 is connected and the external DC power supply 1 is not connected, the transistor The base voltage of Q6 will be higher than the base voltage of transistor Q8. Generally, in the MOS type FETs Q1 and Q2, a parasitic diode is formed between the drain and the source, and since the respective emitter voltages of the transistors Q6 and Q8 are the same, the base-emitter voltage of the transistor Q6 is
When the voltage becomes higher than the base-emitter voltage of the transistor Q8 and the transistor Q8 is turned on, the current flowing from the battery 3 through the parasitic diode of the FET Q2 and the FET Q5 turns on the transistor Q9 through the transistor Q8. As a result, the collector of the transistor Q8 becomes high level, the FET Q11 is turned on, the gate of the FET Q2 is grounded, the reverse bias voltage is applied between the gate and source of the FET Q2, the FET Q2 is turned on, and the battery 3 causes the FET Q2 to turn on. The load circuit 2 is energized via. On the other hand, since the transistor Q6 is off and the transistor Q9 is on, the FET Q10 is off. As a result, the FET Q1 is turned off, and the external DC power supply 1 (first input terminal IN1) and the output terminal OUT
Is cut off between and.

【0010】また、バッテリ3の電圧Vbが外部直流電
源1の電圧Vaよりも低いとき、或いは外部直流電源1
が接続され、バッテリ3が接続されていないときは、前
述とは対称的な状態になる。即ち、トランジスタQ8の
ベースに印加される電圧は、トランジスタQ6のベース
に印加される電圧より高くなってトランジスタQ6がオ
ンになり、外部直流電源1からFETQ1の寄生ダイオ
ード及びFETQ5を介して流れる電流がトランジスタ
Q6を介してQ7をオンにする。これによりトランジス
タQ6のエミッタが高レベルになって、FETQ10が
オンになりFETQ1のゲートが接地され、FETQ1
のゲート・ソース間に逆バイアス電圧が印加されてFE
TQ1はオンになり、外部直流電源1からFETQ1を
介して負荷回路2に通電される。一方、トランジスタQ
8はオフになっていて、トランジスタQ7がオンになっ
ているのでFETQ11はオフとなる。これにより、F
ETQ2はオフとなり、バッテリ3(第2の入力端子I
N2)と出力端子OUTとの間は遮断される。
When the voltage Vb of the battery 3 is lower than the voltage Va of the external DC power supply 1, or when the external DC power supply 1
Is connected and the battery 3 is not connected, the state is symmetrical to the above. That is, the voltage applied to the base of the transistor Q8 becomes higher than the voltage applied to the base of the transistor Q6, the transistor Q6 is turned on, and the current flowing from the external DC power supply 1 through the parasitic diode of the FET Q1 and the FET Q5 is generated. Turn on Q7 through transistor Q6. As a result, the emitter of the transistor Q6 becomes high level, the FET Q10 is turned on, the gate of the FET Q1 is grounded, and the FET Q1 is turned on.
Reverse bias voltage is applied between the gate and source of
The TQ1 is turned on, and the load circuit 2 is energized from the external DC power supply 1 through the FET Q1. On the other hand, transistor Q
8 is off and the transistor Q7 is on, so the FET Q11 is off. This gives F
The ETQ2 is turned off, and the battery 3 (second input terminal I
The connection between N2) and the output terminal OUT is cut off.

【0011】バッテリ3の電圧Vbが外部直流電源1の
電圧Vaよりも低いときは、このときバッテリ3の電圧
Vbが所定電圧以上になっていると、FETQ12はオ
ンして外部直流電源1から電流供給されて抵抗R9の電
位が上昇し、FETQ13はオフになる。よってFET
Q2は、上記のバッテリ3の電圧Vbが外部直流電源1
の電圧Vaよりも高いとき、の条件に従う。また、バッ
テリ3の電圧Vbが外部直流電源1の電圧Vaよりも低
く且つ所定電圧以下のときは、FETQ12はオフして
抵抗R9の電位が下降する。このときFETQ11がオ
フならば、FETQ13はオンになる。よってFETQ
2は、FETQ11の作動に優先してFETQ13に従
って作動してオンになり、バッテリ3が充電される。
When the voltage Vb of the battery 3 is lower than the voltage Va of the external DC power supply 1, if the voltage Vb of the battery 3 is equal to or higher than a predetermined voltage at this time, the FET Q12 is turned on and a current is supplied from the external DC power supply 1. When supplied, the potential of the resistor R9 rises and the FET Q13 is turned off. Therefore FET
Q2 indicates that the voltage Vb of the battery 3 is the external DC power source 1
When the voltage is higher than the voltage Va of, the condition of is followed. Further, when the voltage Vb of the battery 3 is lower than the voltage Va of the external DC power supply 1 and equal to or lower than the predetermined voltage, the FET Q12 is turned off and the potential of the resistor R9 drops. At this time, if the FET Q11 is off, the FET Q13 is on. Therefore FETQ
2 operates in accordance with the FET Q13 in preference to the operation of the FET Q11 to be turned on, and the battery 3 is charged.

【0012】[0012]

【発明が解決しようとする課題】しかしながら上記の電
源切替回路においては、バッテリ3は抵抗R7,R8を
介して常に放電されているので、充放電頻度が大になっ
てバッテリ3の寿命が低減するという問題点があった。
However, in the above power supply switching circuit, the battery 3 is constantly discharged through the resistors R7 and R8, so that the charging / discharging frequency is increased and the life of the battery 3 is shortened. There was a problem.

【0013】本発明の目的は、バッテリの不用の放電を
極力少なくした電源切替回路を提供することにある。
An object of the present invention is to provide a power supply switching circuit in which unnecessary discharge of a battery is minimized.

【0014】[0014]

【課題を解決するための手段】本発明は上記の目的を達
成するために、外部供給電源に基づいて直流を供給する
外部直流電源からバッテリに充電し且つ外部直流電源又
はバッテリ電源から選択的に負荷に電流を流すべくこれ
ら各切り替えを行う電源切替回路において、外部直流電
源と負荷との間に接続された第1の電界効果トランジス
タと、バッテリ電源と負荷との間に接続された第2の電
界効果トランジスタと、バッテリ電源の電圧が外部直流
電源の電圧よりも低いときに第1の電界効果トランジス
タをオンに且つ第2の電界効果トランジスタをオフに制
御し高いときに第2の電界効果トランジスタをオンに且
つ第1の電界効果トランジスタをオフに制御する差動ス
イッチング回路と、バッテリ電源の端子間に接続されて
いてバッテリ電圧を検出するバッテリ電圧検出回路を含
んでなり該バッテリ電圧検出回路によるバッテリ電圧が
外部直流電源の電圧よりも所定の水準値をもって低いと
き前記差動スイッチング回路に優先させて第2の電界効
果トランジスタをオンに制御するバッテリ充電切替制御
回路と、差動スイッチング回路が第1の電界効果トラン
ジスタをオンに制御すべく作動したときバッテリ電圧検
出回路をバッテリ電源から切り離しオフに制御すべく作
動したときこれを接続する電圧検出回路開閉手段とを設
けた。
In order to achieve the above-mentioned object, the present invention charges a battery from an external DC power supply which supplies DC based on an external power supply and selectively from the external DC power supply or the battery power supply. In a power supply switching circuit that performs each of these switching operations so that a current flows through a load, a first field effect transistor connected between an external DC power supply and the load and a second field effect transistor connected between the battery power supply and the load. A field effect transistor, and a second field effect transistor when the voltage of the battery power supply is lower than the voltage of the external DC power supply, the first field effect transistor is turned on and the second field effect transistor is turned off, and when the voltage is high, the second field effect transistor Connected between the terminals of the battery power supply and the differential switching circuit for controlling the on-state and the first field-effect transistor to turn off the battery voltage. When the battery voltage detected by the battery voltage detection circuit is lower than the voltage of the external DC power supply by a predetermined level value, the differential switching circuit is prioritized to turn on the second field effect transistor. Connect the battery charge switching control circuit that controls the power supply to the battery and the differential switching circuit that operates to control the first field-effect transistor to turn on when the battery voltage detection circuit disconnects from the battery power supply and controls to turn off. And a voltage detection circuit opening / closing means for operating the voltage detection circuit.

【0015】[0015]

【作用】本発明によれば、バッテリ電圧が外部直流電源
電圧よりも高いとき、或いはバッテリが接続され外部直
流電源が接続ていないときは、差動スイッチング回路に
より、第2の電界効果トランジスタがオンに且つ第1の
電界効果トランジスタがオフになる。よって外部直流電
源が遮断された上でバッテリから負荷回路に通電され
る。また、バッテリ電圧が外部直流電源電圧よりも低い
とき、或いは外部直流電源が接続され、バッテリが接続
されていないときは、差動スイッチング回路により、第
1の電界効果トランジスタがオンに且つ第2の電界効果
トランジスタがオフになる。よってバッテリが遮断され
た上で外部直流電源から負荷回路に通電される。そして
また、バッテリ電圧が外部直流電源電圧よりも低く且つ
所定電圧以下のときは、バッテリ充電切替制御回路のバ
ッテリ電圧検出回路によりこれが検出されて、差動スイ
ッチング回路に優先させて第2の電界効果トランジスタ
がオンに制御されて、バッテリが充電される。上記の差
動スイッチング回路が第1の電界効果トランジスタをオ
ンに制御すべく作動したときには、電圧検出回路開閉手
段により、バッテリ電圧検出回路がバッテリ電源から切
り離される。
According to the present invention, when the battery voltage is higher than the external DC power supply voltage, or when the battery is connected and the external DC power supply is not connected, the second field effect transistor is turned on by the differential switching circuit. In addition, the first field effect transistor is turned off. Therefore, the load circuit is energized after the external DC power supply is cut off. Further, when the battery voltage is lower than the external DC power supply voltage, or when the external DC power supply is connected and the battery is not connected, the differential switching circuit turns on the first field effect transistor and turns on the second field effect transistor. The field effect transistor is turned off. Therefore, the battery is shut off and then the load circuit is energized from the external DC power supply. When the battery voltage is lower than the external DC power supply voltage and equal to or lower than the predetermined voltage, this is detected by the battery voltage detection circuit of the battery charge switching control circuit, and the second field effect is given priority over the differential switching circuit. The transistor is controlled to turn on and the battery is charged. When the differential switching circuit operates to control the first field effect transistor to be turned on, the voltage detection circuit opening / closing means disconnects the battery voltage detection circuit from the battery power supply.

【0016】[0016]

【実施例】図1は本発明の一実施例を示す電源切替回路
の回路図である。同図において、図2と同等の部分には
同一の符号を付して示し、以下に異なる部分について説
明する。
1 is a circuit diagram of a power supply switching circuit showing an embodiment of the present invention. In the figure, the same parts as those in FIG. 2 are designated by the same reference numerals, and different parts will be described below.

【0017】Q15は電圧検出回路開閉手段としてのM
OS型Nチャネルの電界効果トランジスタ(以下、FE
Tと称する)で、抵抗R7と直列にしてドレインが抵抗
R7に接続され、ソースが接地され、ゲートがFETQ
12のゲートに接続されている。
Q15 is an M as a voltage detecting circuit opening / closing means.
OS type N-channel field effect transistor (hereinafter referred to as FE
T), the drain is connected to the resistor R7 in series with the resistor R7, the source is grounded, and the gate is FETQ.
It is connected to 12 gates.

【0018】以上の図1の構成において例えば、バッテ
リ3の電圧Vbが外部直流電源1の電圧Vaよりも低い
とき、或いは外部直流電源1が接続され、バッテリ3が
接続されていないときは、トランジスタQ6がオンにな
り、FETQ10とFETQ15はそれぞれゲートが高
レベルとなってオンになる。よって図2の電源切替回路
におけると同等な回路が形成されて、外部直流電源1か
らFETQ1を介して負荷回路2に通電され、そしてF
ETQ15がオンになったことによりバッテリ充電切替
制御部5は正常に作動して、FETQ2を介して適時に
バッテリ3に充電される。尚、該充電時にはFETQ1
5はオンになるが、このときの抵抗R7,R8を介する
電流は外部直流電源1から供給されるのでこのときバッ
テリ3から放電されることはない。
In the configuration of FIG. 1 described above, for example, when the voltage Vb of the battery 3 is lower than the voltage Va of the external DC power supply 1, or when the external DC power supply 1 is connected and the battery 3 is not connected, the transistor Q6 is turned on, and the gates of the FETs Q10 and Q15 are turned to high level and turned on. Therefore, a circuit equivalent to that in the power supply switching circuit of FIG. 2 is formed, the load circuit 2 is energized from the external DC power supply 1 through the FET Q1, and F
Since the ETQ 15 is turned on, the battery charge switching control unit 5 operates normally, and the battery 3 is charged in a timely manner via the FET Q2. In addition, at the time of the charging, FETQ1
5 is turned on, but the current flowing through the resistors R7 and R8 at this time is supplied from the external DC power supply 1 and therefore is not discharged from the battery 3 at this time.

【0019】バッテリ3の電圧Vbが外部直流電源1の
電圧Vaよりも高いとき、或いはバッテリ3が接続され
ていて外部直流電源1が接続されていないときは、トラ
ンジスタQ8がオンになり、FETQ10とFETQ1
5はそれぞれゲートが低レベルとなってオフになる。よ
ってバッテリ3からFETQ2を介して負荷回路2に通
電され、同時に抵抗R7と接地間が遮断されて抵抗R
7,R8を介する電流がなくなってバッテリ3の消費電
力が低減される。
When the voltage Vb of the battery 3 is higher than the voltage Va of the external DC power supply 1, or when the battery 3 is connected and the external DC power supply 1 is not connected, the transistor Q8 is turned on and the FET Q10 is connected. FET Q1
In each of the gates 5, the gate becomes low level and is turned off. Therefore, the load circuit 2 is energized from the battery 3 through the FET Q2, and at the same time, the resistor R7 is disconnected from the ground, and the resistor R
7, the current flowing through R8 is eliminated, and the power consumption of the battery 3 is reduced.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、負
荷回路にバッテリが接続されていて外部直流電源が接続
されていないときは、電圧検出回路開閉手段により、バ
ッテリ電圧検出回路がバッテリ電源から切り離されるよ
うにしたので、バッテリが負荷回路に放電中において、
バッテリ電圧検出回路を介するバッテリ放電回路が遮断
されて、バッテリ3の消費電力が低減される。
As described above, according to the present invention, when the battery is connected to the load circuit and the external DC power supply is not connected, the battery voltage detection circuit is switched to the battery power supply by the voltage detection circuit opening / closing means. Since the battery is being discharged to the load circuit,
The battery discharge circuit via the battery voltage detection circuit is cut off, and the power consumption of the battery 3 is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す電源切替回路の回路図FIG. 1 is a circuit diagram of a power supply switching circuit showing an embodiment of the present invention.

【図2】従来の電源切替回路の回路図FIG. 2 is a circuit diagram of a conventional power supply switching circuit.

【符号の説明】[Explanation of symbols]

1…外部直流電源、2…負荷回路、3…バッテリ、4…
負荷接続電源切替制御部、41…差動スイッチング回
路、5…バッテリ充電切替制御部、Q1,Q2…Pチャ
ネルの電界効果トランジスタ、Q10〜Q13,Q15
…Nチャネルの電界効果トランジスタ、Q6,Q8…P
NP型のトランジスタ、Q7,Q9…NPN型のトラン
ジスタ、R1〜R8…抵抗、IN1,IN2…入力端
子、OUT…出力端子、G…接地端子。
1 ... External DC power supply, 2 ... Load circuit, 3 ... Battery, 4 ...
Load connection power supply switching control unit, 41 ... Differential switching circuit, 5 ... Battery charge switching control unit, Q1, Q2 ... P-channel field effect transistor, Q10-Q13, Q15
... N-channel field effect transistors, Q6, Q8 ... P
NP type transistors, Q7, Q9 ... NPN type transistors, R1 to R8 ... Resistors, IN1, IN2 ... Input terminals, OUT ... Output terminals, G ... Ground terminals.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外部供給電源に基づいて直流を供給する
外部直流電源からバッテリに充電し且つ外部直流電源又
はバッテリ電源から選択的に負荷に電流を流すべくこれ
ら各切り替えを行う電源切替回路において、 外部直流電源と負荷との間に接続された第1の電界効果
トランジスタと、 バッテリ電源と負荷との間に接続された第2の電界効果
トランジスタと、 バッテリ電源の電圧が外部直流電源の電圧よりも低いと
きに第1の電界効果トランジスタをオンに且つ第2の電
界効果トランジスタをオフに制御し高いときに第2の電
界効果トランジスタをオンに且つ第1の電界効果トラン
ジスタをオフに制御する差動スイッチング回路と、 バッテリ電源の端子間に接続されていてバッテリ電圧を
検出するバッテリ電圧検出回路を含んでなり該バッテリ
電圧検出回路によるバッテリ電圧が外部直流電源の電圧
よりも所定の水準値をもって低いとき前記差動スイッチ
ング回路に優先させて第2の電界効果トランジスタをオ
ンに制御するバッテリ充電切替制御回路と、 差動スイッチング回路が第1の電界効果トランジスタを
オンに制御すべく作動したときバッテリ電圧検出回路を
バッテリ電源から切り離しオフに制御すべく作動したと
きこれを接続する電圧検出回路開閉手段とを設けた、 ことを特徴とする電源切替回路。
1. A power supply switching circuit that charges a battery from an external DC power supply that supplies DC based on an external power supply and performs each of these switching operations so that a current flows selectively from an external DC power supply or a battery power supply, A first field-effect transistor connected between the external DC power supply and the load; a second field-effect transistor connected between the battery power supply and the load; Is low, the first field effect transistor is turned on and the second field effect transistor is turned off, and when high, the second field effect transistor is turned on and the first field effect transistor is turned off. Dynamic switching circuit and a battery voltage detection circuit connected between the terminals of the battery power source to detect the battery voltage. A battery charge switching control circuit for controlling the second field effect transistor to be turned on by giving priority to the differential switching circuit when the battery voltage by the revoltage detection circuit is lower than the voltage of the external DC power source by a predetermined level value; And a voltage detection circuit opening / closing means for connecting the dynamic voltage switching circuit when the dynamic switching circuit operates to control the first field effect transistor to be turned on and to disconnect the battery voltage detection circuit from the battery power source to operate to control to the off state. A power supply switching circuit characterized by the above.
JP5074384A 1993-03-31 1993-03-31 Power supply switching circuit Pending JPH06284599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5074384A JPH06284599A (en) 1993-03-31 1993-03-31 Power supply switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5074384A JPH06284599A (en) 1993-03-31 1993-03-31 Power supply switching circuit

Publications (1)

Publication Number Publication Date
JPH06284599A true JPH06284599A (en) 1994-10-07

Family

ID=13545625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5074384A Pending JPH06284599A (en) 1993-03-31 1993-03-31 Power supply switching circuit

Country Status (1)

Country Link
JP (1) JPH06284599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505417B1 (en) * 2007-11-27 2009-01-15 Poetzelberger Ulrich Dipl Ing DEVICE FOR UNLOCKING VOLTAGE SOURCES
JP2011101586A (en) * 2009-11-03 2011-05-19 Samsung Sdi Co Ltd Battery pack

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505417B1 (en) * 2007-11-27 2009-01-15 Poetzelberger Ulrich Dipl Ing DEVICE FOR UNLOCKING VOLTAGE SOURCES
JP2011101586A (en) * 2009-11-03 2011-05-19 Samsung Sdi Co Ltd Battery pack

Similar Documents

Publication Publication Date Title
US7088015B2 (en) Smooth voltage regulation transition circuit having fast recovery
JP2925470B2 (en) Series control type regulator
US6002295A (en) Voltage regulator with automatic selection of a highest supply voltage
US8164309B2 (en) Battery charging system with trickle charging/discharging control
US5467009A (en) Voltage regulator with multiple fixed plus user-selected outputs
US5559451A (en) Bicmos push-pull type logic apparatus with voltage clamp circuit and clamp releasing circuit
US5436588A (en) Click/pop free bias circuit
JP2003046380A (en) Load drive circuit
US20060126864A1 (en) Circuit and method for eliminating pop noise in digital audio amplifier using dual power supply
US6373295B2 (en) Rail-to-rail driver for use in a regulator, and method
JPH06284599A (en) Power supply switching circuit
US6891708B2 (en) Reduced current and power consumption structure of drive circuit
JPH02153616A (en) Driver circuit
US7116537B2 (en) Surge current prevention circuit and DC power supply
JPH07321621A (en) Semiconductor integrated circuit
JPH0670487A (en) Power supply switching-over circuit
JPH06319234A (en) Power supply changeover circuit
JPH0684757U (en) Power supply switching circuit
JPH01223520A (en) Dc power source
US6064184A (en) Charging circuit for charging a rechargeable battery and for preventing consumption of rechargeable battery power by the charging circuit
US20050253558A1 (en) Battery charger
JP3489197B2 (en) Constant voltage power supply circuit
JP2776034B2 (en) Constant current circuit
JP3928473B2 (en) Current clamp circuit
JPH1169624A (en) Switching circuit with rush current limitter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020625