JPH06283531A - Al thin film forming method - Google Patents

Al thin film forming method

Info

Publication number
JPH06283531A
JPH06283531A JP7191193A JP7191193A JPH06283531A JP H06283531 A JPH06283531 A JP H06283531A JP 7191193 A JP7191193 A JP 7191193A JP 7191193 A JP7191193 A JP 7191193A JP H06283531 A JPH06283531 A JP H06283531A
Authority
JP
Japan
Prior art keywords
film
dmah
substrate
gas
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7191193A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takeyasu
伸行 竹安
Hidekazu Kondo
英一 近藤
Hiroshi Yamamoto
浩 山本
Tomohiro Oota
与洋 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7191193A priority Critical patent/JPH06283531A/en
Publication of JPH06283531A publication Critical patent/JPH06283531A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an Al thin film to be formed in a specific region at sufficient film forming rate without deteriorating the selectivity thereof by a method wherein the temperature of a substrate and the partial pressure of dimethylaluminum hydride gas are respectively specified in specific ranges. CONSTITUTION:A material gas containing dimethyl aluminum hydride (DMAH) is fed to a reactor vessel to deposit Al or Al alloy on the specific region of a substrate 10 so that pure Al or Al alloy film may be formed. In order to form the Al thin film in such a procedure, the temperature of the substrate 10 is specified to be 180 deg.-220 deg.C while the partial pressure of the DMAH gas to be 1mTorr-100mTorr. For example, a via hole 50 is bored through an insulating film 40 covering a lower layer metallic wiring 30 comprising an Al alloy film. Finally, Al is to be selectively deposited inside the via hole 50 only by thermal CVD process using the DMAH gas and hydrogen as material gas so as to form a via plug 52.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学気相成長法(CV
D法)を用いた純Al膜又はAl合金膜の形成方法に関
するものであり、特に半導体装置に用いる配線に関する
ものである。
The present invention relates to a chemical vapor deposition method (CV).
The present invention relates to a method of forming a pure Al film or an Al alloy film by using the D method), and particularly to wiring used in a semiconductor device.

【0002】[0002]

【従来の技術】近年、基板上に金属薄膜を形成する技術
として、有機金属ガスを原料としたCVD法を用いる技
術が提案されている。
2. Description of the Related Art In recent years, as a technique for forming a metal thin film on a substrate, a technique using a CVD method using an organic metal gas as a raw material has been proposed.

【0003】特に半導体装置の製造分野では、半導体素
子の高密度化、高集積化にともない多層配線技術及び金
属配線の微細化に関する技術が要求されていることか
ら、従来のスパッタ法を用いた技術では対応できなくな
りつつあり、これに代わるものとしてCVD法を用いる
技術が注目されている。
Particularly, in the field of manufacturing semiconductor devices, a technique using a conventional sputtering method is required because a multi-layer wiring technique and a technique relating to the miniaturization of metal wiring are required as the density and integration of semiconductor elements increase. However, the technology using the CVD method is drawing attention as an alternative to this.

【0004】そこで、提案されているのが、原料ガスと
してジメチルアルミニウムハイドライド(DMAH)を
用いてAl薄膜を形成するCVD法(例えば、特開平3
−291920等)である。このCVD法は、配線の微
細化のみならず、微細孔に対して十分な埋め込みを行う
技術としても有効なものである。
Therefore, a proposal has been made of a CVD method for forming an Al thin film by using dimethyl aluminum hydride (DMAH) as a source gas (see, for example, Japanese Patent Laid-Open No. Hei 3
-291920). This CVD method is effective not only as a fine wiring, but also as a technique for sufficiently filling fine holes.

【0005】ここで、従来技術で開示されているCVD
法によれば、DMAHを原料としてAlを堆積させると
きの条件は、基板温度は230℃〜300℃の間、ま
た、DMAHのガスの分圧も100mTorr〜500
mTorrの間で行われているか、あるいは0.1mT
orr〜1mTorrの間で行われていた。より具体的
には、基板温度については、260℃で行われているも
の(特開平3−291920、特開平03−15513
3等)がある。また、DMAHのガスの分圧について
も、具体的には0.15mTorrで行われているもの
(特開平03−37121、特開平03−110838
等)や、500mTorrで行われているもの(特開平
04−291920等)がある。
Here, the CVD disclosed in the prior art.
According to the method, the conditions for depositing Al using DMAH as a raw material are that the substrate temperature is between 230 ° C. and 300 ° C., and the partial pressure of the DMAH gas is between 100 mTorr and 500 mTorr.
between mTorr or 0.1mT
It was performed between orr and 1 mTorr. More specifically, the substrate temperature is set to 260 ° C. (JP-A-3-291920, JP-A-03-15513).
3 etc.) Further, the partial pressure of the gas of DMAH is also specifically set to 0.15 mTorr (Japanese Patent Laid-Open Nos. 03-37121 and 03-110838).
Etc.) and those performed at 500 mTorr (Japanese Patent Laid-Open No. 04-291920 etc.).

【0006】[0006]

【発明が解決しようとする課題】しかし、DMAHを原
料としてCVD法を用いてAlを堆積する際に、基板温
度を230℃〜300℃の間に設定すると、基板上に付
着したDMAH分子が直ちに反応して基板上に析出して
しまい、その結果、核が生成されてCVD法の利点とさ
れる選択性が損なわれることになった。また、選択成長
が起きる際の核が生成されるかどうかは気相中のガス濃
度によって決定されることから、DMAHの分圧によっ
て選択性の良否が決まることになる。DMAHの分圧が
低い場合、即ち、ガス濃度が低い場合には核生成が不十
分になったり十分な成膜速度を得られない一方、ガス濃
度が高い場合には必要以上に核生成が生じて選択性が阻
害されてしまうことになる。
However, when the substrate temperature is set between 230 ° C. and 300 ° C. when Al is deposited using the CVD method using DMAH as a raw material, the DMAH molecules attached on the substrate are immediately formed. It reacts and precipitates on the substrate, and as a result, nuclei are generated and the selectivity, which is an advantage of the CVD method, is impaired. Further, whether or not nuclei are generated when the selective growth occurs is determined by the gas concentration in the gas phase, so that the partial pressure of DMAH determines the selectivity. When the partial pressure of DMAH is low, that is, when the gas concentration is low, nucleation becomes insufficient or a sufficient film formation rate cannot be obtained, whereas when the gas concentration is high, nucleation occurs more than necessary. As a result, selectivity is hindered.

【0007】そこで、本発明は、このような問題点を解
決するAl薄膜形成方法を提供することを目的とする。
Therefore, an object of the present invention is to provide an Al thin film forming method which solves such a problem.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明に係るAl薄膜形成方法、ジメチルアルミ
ニウムハイドライド(Al(CH3 2 H)を含む原料
ガスを反応容器内に供給し、基板上の所望の領域に化学
気相成長法によってAlまたはAl合金を堆積させて純
Al膜又はAl合金膜を形成するAl薄膜形成方法にお
いて、基板の温度は180℃〜220℃であるととも
に、ジメチルアルミニウムハイドライドのガスの分圧は
1mTorr〜100mTorrであることを特徴とす
る。
In order to solve the above problems, an Al thin film forming method according to the present invention, a source gas containing dimethylaluminum hydride (Al (CH 3 ) 2 H) is supplied into a reaction vessel. In a method for forming an Al thin film in which a pure Al film or an Al alloy film is formed by depositing Al or an Al alloy in a desired region on a substrate by a chemical vapor deposition method, the temperature of the substrate is 180 ° C. to 220 ° C. The partial pressure of the dimethylaluminum hydride gas is 1 mTorr to 100 mTorr.

【0009】[0009]

【作用】上記の方法によれば、DMAHを原料としたC
VD法を用いてAlを堆積する際のDMAHのガスの分
圧は1mTorr〜100mTorrの範囲であるとと
もに、基板の温度の範囲は180℃〜220℃なので、
選択性が損なわれずに核生成が成されてAl膜を形成す
ることができる。
According to the above method, C prepared from DMAH as a raw material is used.
The partial pressure of the gas of DMAH when depositing Al using the VD method is in the range of 1 mTorr to 100 mTorr, and the temperature range of the substrate is 180 ° C. to 220 ° C.
The Al film can be formed by nucleation without impairing the selectivity.

【0010】[0010]

【実施例】以下、添付図面を参照して本発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】なお、本発明に係るAl薄膜を形成するに
あたっては、基本的には次の工程によって行う。各工程
については図1及び図2に基づいて説明する。
The Al thin film according to the present invention is basically formed by the following steps. Each step will be described with reference to FIGS. 1 and 2.

【0012】まず、図1(a)に示すように、Si基板
10の表面に下地絶縁膜20を形成し、この下地絶縁膜
20上にスパッタ法でAl合金を300ないし800n
mの膜厚に堆積させ、Al合金膜31を形成する。次
に、Al合金膜31を所定の配線パターンに加工して下
層金属配線30を形成する。配線パターンの形成は、露
光装置を用いてレジストパターンを形成した後、塩素系
のガスを用いたRIE(リアクティブ・イオン・エッチ
ング)によってなされる。次に、図1(b)に示すよう
に、下層金属配線30の形成された下地絶縁膜20上に
厚さ8000オングストロームの絶縁膜40を形成す
る。この絶縁膜40は、プラズマCVD法によってSi
2 を堆積させてSiO2膜を形成し、SOG(Spi
n on Glass)を塗布してSOG膜を形成し、
必要な温度で加熱処理を行うことによって形成される。
その後、再びプラズマCVD法によってSiO2 を堆積
させてSiO2 膜を形成する。
First, as shown in FIG. 1A, a base insulating film 20 is formed on the surface of a Si substrate 10, and an Al alloy of 300 to 800 n is formed on the base insulating film 20 by a sputtering method.
Then, the Al alloy film 31 is formed by depositing the Al alloy film 31 with a thickness of m. Next, the Al alloy film 31 is processed into a predetermined wiring pattern to form the lower layer metal wiring 30. The wiring pattern is formed by RIE (reactive ion etching) using a chlorine-based gas after forming a resist pattern using an exposure device. Next, as shown in FIG. 1B, an insulating film 40 having a thickness of 8000 angstrom is formed on the base insulating film 20 on which the lower layer metal wiring 30 is formed. The insulating film 40 is formed of Si by plasma CVD.
O 2 is deposited to form a SiO 2 film, and SOG (Spi
non glass) to form an SOG film,
It is formed by performing heat treatment at a required temperature.
After that, SiO 2 is deposited again by the plasma CVD method to form a SiO 2 film.

【0013】次に、絶縁膜40の上にフォトマスクをセ
ットし、露光装置を用いてレジストパターンを形成した
後、RIE室でフッ素系のガスを用いたRIEによって
図2(a)に示すように、絶縁膜40に、内径が0.5
μmのヴィア孔50を形成する。次に、塩素系ガスを用
いたプラズマエッチングによりヴィア孔50底部に露出
した下層金属配線30(Al合金膜)の清浄化処理を行
う。この清浄化処理を行うのは、ヴィア孔50底部に露
出した下層金属配線30の表面には、RIEを行った際
及びRIEの後に大気に曝した際に堆積物やアルミナ膜
等が付着し、これらの堆積物やアルミナ膜はCVD法に
おけるAl堆積を阻害するため除去する必要があるから
である。
Next, a photomask is set on the insulating film 40, a resist pattern is formed using an exposure apparatus, and then RIE using a fluorine-based gas is performed in an RIE chamber as shown in FIG. The insulating film 40 has an inner diameter of 0.5
A μm via hole 50 is formed. Next, the lower metal wiring 30 (Al alloy film) exposed at the bottom of the via hole 50 is cleaned by plasma etching using a chlorine-based gas. This cleaning process is performed because deposits, alumina films, and the like adhere to the surface of the lower-layer metal wiring 30 exposed at the bottom of the via hole 50 during RIE and when exposed to the atmosphere after RIE. This is because these deposits and alumina film must be removed because they interfere with Al deposition in the CVD method.

【0014】次に、Al原料であるDMAHのガスと、
水素とを原料とする熱CVD法でヴィア孔50内にのみ
底面から選択的にAlを堆積させることによって図2
(b)に示すように、ヴィア孔50内にヴィアプラグ5
2を形成する。
Next, a gas of DMAH, which is an Al raw material,
By selectively depositing Al from the bottom surface only in the via hole 50 by a thermal CVD method using hydrogen as a raw material, as shown in FIG.
As shown in (b), the via plug 5 is placed in the via hole 50.
Form 2.

【0015】このときのCVDを行う条件は、水素ガス
流量100sccm、バブリング温度25℃で行う。な
お、この成膜を行うCVD反応容器内の全圧は2Tor
rである。そして、このときのDMAHの分圧及び基板
温度は、後述するように変化させる。
At this time, the CVD is carried out at a hydrogen gas flow rate of 100 sccm and a bubbling temperature of 25 ° C. The total pressure in the CVD reaction container for performing this film formation is 2 Torr.
r. Then, the partial pressure of the DMAH and the substrate temperature at this time are changed as described later.

【0016】以上の工程によって得られるヴィアプラグ
52の形成に関するCVD条件を次のように変えたとこ
ろ、そのときの成膜速度及び成膜後の選択性について以
下のような結果が得られた。なお、ここで、堆積時間に
ついては、それぞれ行うCVD条件によって異なるので
特定することはできないが、予め行う予備調査によって
ヴィア孔が丁度埋まる程度の時間体積を行った。また、
選択性に関する評価は、成膜後のSEM(走査型電子顕
微鏡:Scanning ElectronMicro
scopy)観察によって100μm四方の絶縁膜上の
析出物を観察し、ヴィア孔以外の絶縁膜上に1箇所でも
0.5μm径以上の寸法のAlの析出があるものは不合
格と判断することとした。
When the CVD conditions for forming the via plug 52 obtained by the above steps were changed as follows, the following results were obtained regarding the film forming rate and the selectivity after film forming. The deposition time cannot be specified because it depends on the respective CVD conditions, but the time volume was set to the extent that the via hole was just filled by the preliminary investigation performed in advance. Also,
The selectivity is evaluated by SEM (Scanning Electron Micro) after film formation.
By observing the deposits on the insulating film of 100 μm square by observation, it is judged that the deposits of Al having a diameter of 0.5 μm or more on any part of the insulating film other than the via holes are judged to be unacceptable. did.

【0017】まず、DMAHの分圧を33mTorrに
固定して、基板温度を変化させたところ表1に示すよう
な結果が得られた。
First, when the partial pressure of DMAH was fixed at 33 mTorr and the substrate temperature was changed, the results shown in Table 1 were obtained.

【0018】[0018]

【表1】 [Table 1]

【0019】次に、基板温度を220℃に固定して、D
MAHの分圧を変化させたところ表2に示すような結果
が得られた。
Next, the substrate temperature is fixed at 220 ° C. and D
When the partial pressure of MAH was changed, the results shown in Table 2 were obtained.

【0020】[0020]

【表2】 [Table 2]

【0021】そして、基板温度及びDMAHの分圧をそ
れぞれ変化させてCVD法で成膜したところ表3に示す
ような結果が得られた。
Then, when the substrate temperature and the partial pressure of DMAH were changed to form a film by the CVD method, the results shown in Table 3 were obtained.

【0022】[0022]

【表3】 [Table 3]

【0023】そこで、DMAHを原料としたCVD法を
用いてAlを堆積する際に、基板の温度の範囲は180
℃〜220℃であるとともに、DMAHのガスの分圧は
1mTorr〜100mTorrの範囲とすれば、選択
性が損なわれずに核生成が成される。これは、本発明の
発明者らの鋭意努力によって見出だされたものである。
Therefore, when Al is deposited by the CVD method using DMAH as a raw material, the temperature range of the substrate is 180.
If the partial pressure of the gas of DMAH is in the range of 1 mTorr to 100 mTorr, the nucleation is performed without impairing the selectivity. This was discovered by the earnest efforts of the inventors of the present invention.

【0024】[0024]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、DMAHを原料としたCVD法を用いてAlを
堆積する際のDMAHのガスの分圧は1mTorr〜1
00mTorrの範囲であるとともに、基板の温度の範
囲は180℃〜220℃なので、選択性が損なわれずに
核生成が成される。このため選択性を阻害することなく
所望の領域にAl膜を形成することができる。なお、こ
のときのCVD条件である基板の温度及びDMAHのガ
スの分圧の範囲は、本発明の発明者らの鋭意努力によっ
て見出だされた。
As described above in detail, according to the present invention, the partial pressure of the gas of DMAH is 1 mTorr to 1 when Al is deposited by the CVD method using DMAH as a raw material.
Since the substrate temperature is in the range of 00 mTorr and the temperature range of the substrate is 180 ° C to 220 ° C, nucleation is performed without impairing the selectivity. Therefore, the Al film can be formed in a desired region without impeding the selectivity. The ranges of the substrate temperature and the DMAH gas partial pressure, which are the CVD conditions at this time, have been found out by the inventors of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るAl薄膜の各形成工程を
示す図である。
FIG. 1 is a diagram showing each step of forming an Al thin film according to an example of the present invention.

【図2】本発明の実施例に係るAl薄膜の各形成工程を
示す図である。
FIG. 2 is a diagram showing each step of forming an Al thin film according to an example of the present invention.

【符号の説明】[Explanation of symbols]

10…Si基板、20…下地絶縁膜、30…下層金属配
線、40…絶縁膜、50…ヴィア孔、51…Al膜
10 ... Si substrate, 20 ... Base insulating film, 30 ... Lower metal wiring, 40 ... Insulating film, 50 ... Via hole, 51 ... Al film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 浩 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 太田 与洋 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Yamamoto 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Pref., Technical Research Division, Kawasaki Steel Co., Ltd. (72) Yoyo Ota 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Address: Kawasaki Iron & Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ジメチルアルミニウムハイドライド(A
l(CH3 2 H)を含む原料ガスを反応容器内に供給
し、基板上の所望の領域に化学気相成長法によってAl
またはAl合金を堆積させて純Al膜又はAl合金膜を
形成するAl薄膜形成方法において、 前記基板の温度は180℃〜220℃であるとともに、
前記ジメチルアルミニウムハイドライドのガスの分圧は
1mTorr〜100mTorrであることを特徴とす
るAl薄膜形成方法。
1. A dimethyl aluminum hydride (A
A source gas containing 1 (CH 3 ) 2 H) is supplied into the reaction vessel, and Al is deposited in a desired region on the substrate by chemical vapor deposition.
Alternatively, in the Al thin film forming method of depositing an Al alloy to form a pure Al film or an Al alloy film, the temperature of the substrate is 180 ° C. to 220 ° C., and
The method for forming an Al thin film, wherein the partial pressure of the dimethylaluminum hydride gas is 1 mTorr to 100 mTorr.
JP7191193A 1993-03-30 1993-03-30 Al thin film forming method Pending JPH06283531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7191193A JPH06283531A (en) 1993-03-30 1993-03-30 Al thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7191193A JPH06283531A (en) 1993-03-30 1993-03-30 Al thin film forming method

Publications (1)

Publication Number Publication Date
JPH06283531A true JPH06283531A (en) 1994-10-07

Family

ID=13474198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7191193A Pending JPH06283531A (en) 1993-03-30 1993-03-30 Al thin film forming method

Country Status (1)

Country Link
JP (1) JPH06283531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100298128B1 (en) * 1998-04-16 2001-08-07 정명식 Method of decreasing viscosity of dimethylaluminum hydride which is useful as precursor in prepration of aluminum thin membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100298128B1 (en) * 1998-04-16 2001-08-07 정명식 Method of decreasing viscosity of dimethylaluminum hydride which is useful as precursor in prepration of aluminum thin membrane

Similar Documents

Publication Publication Date Title
US6602770B2 (en) Silicon layer to improve plug filling by CVD
EP0414267B1 (en) Process for deposition of a tungsten layer on a semiconductor wafer
JP4202593B2 (en) Method of forming ruthenium film by chemical vapor deposition while changing process conditions and ruthenium film formed thereby
US6399490B1 (en) Highly conformal titanium nitride deposition process for high aspect ratio structures
US6913996B2 (en) Method of forming metal wiring and semiconductor manufacturing apparatus for forming metal wiring
US6025269A (en) Method for depositioning a substantially void-free aluminum film over a refractory metal nitride layer
JPH0794425A (en) Method and device for forming metallic thin film
JP3628570B2 (en) Method for forming tungsten thin film and method for manufacturing semiconductor device
JPH06283531A (en) Al thin film forming method
JP3149912B2 (en) Semiconductor device and method of manufacturing the same
JP2937998B1 (en) Wiring manufacturing method
JPH0722416A (en) Formation of aluminum wiring
JP3287042B2 (en) Method for manufacturing semiconductor device
JPH06275727A (en) Depositing method for high melting point metal film
JPH06275624A (en) Forming method of conducting layer
US6306765B1 (en) Method for the formation of thin films for use as a semiconductor device
JPH0864676A (en) Fabrication of semiconductor device
JP3058053B2 (en) Method of forming aluminum thin film
JP4248056B2 (en) Method for producing metal copper thin film by CVD method and CVD apparatus
JPH0819521B2 (en) Metal coating growth method
JP2701722B2 (en) Method for manufacturing semiconductor device
JPH0529316A (en) Manufacture of semiconductor device
JPH05343354A (en) Close contact layer of semiconductor device and forming method for metal plug
JPH10223556A (en) Manufacturing method of semiconductor device
JP2677230B2 (en) Method for forming TiN film