JPH062823A - Crematory - Google Patents

Crematory

Info

Publication number
JPH062823A
JPH062823A JP18990792A JP18990792A JPH062823A JP H062823 A JPH062823 A JP H062823A JP 18990792 A JP18990792 A JP 18990792A JP 18990792 A JP18990792 A JP 18990792A JP H062823 A JPH062823 A JP H062823A
Authority
JP
Japan
Prior art keywords
combustion chamber
exhaust gas
atomizer
ammonia solution
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18990792A
Other languages
Japanese (ja)
Inventor
Koshiro Miyamoto
幸司朗 宮本
Shigeo Furubayashi
繁男 古林
Tetsuji Fukushima
徹二 福島
Mitsugi Noguchi
貢 野口
Shozo Hirano
祥三 平野
Katsumichi Aizawa
功道 会沢
Takashi Suzuki
昂 鈴木
Yuichi Dan
有一 団
Kazuyoshi Kohama
一好 小浜
Kazuo Watanabe
一夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYAMOTO KOGYOSHO KK
YOKOHAMA TOWN
YOKOHAMASHI
Original Assignee
MIYAMOTO KOGYOSHO KK
YOKOHAMA TOWN
YOKOHAMASHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYAMOTO KOGYOSHO KK, YOKOHAMA TOWN, YOKOHAMASHI filed Critical MIYAMOTO KOGYOSHO KK
Priority to JP18990792A priority Critical patent/JPH062823A/en
Publication of JPH062823A publication Critical patent/JPH062823A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To permit the promotion of reduction of NOx as well as the retention of durability of a furnace wall without elongating a cremating time. CONSTITUTION:In a cremator equipped with a main combustion chamber 1 and a re-combustion chamber 2, sprayers 9, spraying ammonia solution against the inside of the re-combustion chamber 2 by spraying medium through an air pressure, is provided near the outlet port communicated with the flue of the re-combustion chamber 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主燃焼室と再燃焼室と
を備えており、火葬中に発生する窒素酸化物(NOx)
を低減する脱硝機能を備えている火葬炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a main combustion chamber and a recombustion chamber, and nitrogen oxides (NOx) generated during cremation.
The present invention relates to a cremation furnace having a denitrification function for reducing the above.

【0002】[0002]

【従来の技術】周知のように火葬炉の燃焼技術が向上し
その排ガスは無煙、無臭化が促進されているが、遺体及
び副葬品には有機態窒素が多く含まれているもので、火
葬した際に有機態窒素が燃焼して多量の窒素酸化物が発
生して公害問題を引き起こすことから、NOxの低減化
が要求される。これに対処するために従来は、過剰空気
の流入を避け、火炎の温度を注水によって低下し、排ガ
スの炉内での滞留時間を増加するなど種々の手段によっ
て行われている。
As is well known, the combustion technology of cremation furnaces has improved and the exhaust gas has been made smokeless and odorless. However, the bodies and burial items contained a large amount of organic nitrogen and were cremated. At this time, since organic nitrogen burns to generate a large amount of nitrogen oxides, which causes pollution problems, reduction of NOx is required. In order to deal with this, conventionally, various measures have been taken, such as avoiding the inflow of excess air, lowering the flame temperature by water injection, and increasing the residence time of exhaust gas in the furnace.

【0003】更に排煙脱硝技術としてアンモニアを用い
た無触媒分解法が特公昭50−23664号公報によっ
て開示してあり、その方法は、排ガスにアンモニア源を
高温の雰囲気内で添加して、窒素酸化物を水と窒素に転
化するものであって、その技術をごみ焼却炉に採用して
いることが報告されており、その場合アンモニア水溶液
を圧縮してその圧力によって噴入している。
Further, as a flue gas denitration technology, a non-catalytic decomposition method using ammonia is disclosed in Japanese Patent Publication No. 50-23664, which is a method in which an ammonia source is added to exhaust gas in a high-temperature atmosphere to produce nitrogen gas. It is reported that the oxide is converted into water and nitrogen, and the technique is applied to a refuse incinerator, in which case an aqueous ammonia solution is compressed and injected by the pressure.

【0004】[0004]

【発明が解決しようとする課題】従来の手段はバーナー
や炉自体の構成によってある程度低減化することができ
るが、一方火葬炉においては、火葬を短時間で行われる
ことが要望され、NOx低減機能を持つ従来のバーナー
ではその要求に対応することができず、殊に火葬の初期
には夥しい有機態窒素が発生し、その低減に限界があっ
た。
Although the conventional means can be reduced to some extent by the structure of the burner and the furnace itself, in the cremation furnace, it is desired that the cremation be performed in a short time, and the NOx reduction function is required. The conventional burner having the above-mentioned structure cannot meet the requirement, and particularly, in the early stage of cremation, a lot of organic nitrogen is generated, and there is a limit to the reduction.

【0005】また前記公報にはアンモニアによる脱硝技
術について開示され、アンモニアと窒素酸化物との接触
効果を上げるため、流通経路に耐熱障害物を配置する技
術が記載してあるが、火葬炉での適用要件が何も記載さ
れていない。即ち火葬炉は前述のように有機態窒素の発
生が夥しく、しかも短時間で処理する点について示唆し
てない。またごみ焼却炉に採用している技術では、噴霧
する点が公知となっているが、水を圧縮して噴射しても
その噴射された粒の大きさが一般に500〜1000μ
と大きく、これを火葬炉に採用すると、炉の内壁に水滴
が付着して脱硝効果が低下することは勿論、炉壁の劣化
を早める大きな欠点を発生する問題があった。
Further, the above-mentioned publication discloses a denitration technology using ammonia, and describes a technology in which a heat-resistant obstacle is arranged in a distribution channel in order to enhance the contact effect between ammonia and nitrogen oxides. No applicable requirements are listed. That is, as described above, the cremation furnace produces a large amount of organic nitrogen, and does not suggest that it should be processed in a short time. Further, in the technology adopted for the refuse incinerator, the point of spraying is known, but even if water is compressed and sprayed, the size of the sprayed particles is generally 500 to 1000 μm.
When this is adopted in a cremation furnace, there is a problem that water drops are attached to the inner wall of the furnace and the denitration effect is lowered, and also a large defect that accelerates deterioration of the furnace wall occurs.

【0006】本発明は以上の問題を解決するために開発
したもので、火葬時間が延長されることなく、しかもN
Oxの低減化をより促進でき、また炉壁の耐久性が保持
される火葬炉を提供することにある。
The present invention has been developed to solve the above problems, and does not extend the cremation time, and
Another object of the present invention is to provide a cremation furnace in which the reduction of Ox can be further promoted and the durability of the furnace wall is maintained.

【0007】[0007]

【課題を解決するための手段】本発明による解決手段
は、主燃焼室と再燃焼室とを備える火葬炉において、再
燃焼室の煙道へ通じる出口部近傍に、再燃焼室の室内に
向かってアンモニア水溶液を空気圧による噴射媒体によ
って噴射する噴霧器を設けることを要旨とする。更に、
噴霧器を排ガスの流動方向に対して直交する方向に向か
って噴射するように設けることが好ましい。また、噴霧
器を排ガスの流動方向に対して対向する方向に噴射する
ように設ける場合もある。
In a cremation furnace having a main combustion chamber and a re-combustion chamber, the solution according to the present invention is directed to the interior of the re-combustion chamber in the vicinity of the outlet portion leading to the flue of the re-combustion chamber. The gist of the present invention is to provide a sprayer for spraying the aqueous ammonia solution with a spray medium by air pressure. Furthermore,
It is preferable that the atomizer is provided so as to inject in a direction orthogonal to the flow direction of the exhaust gas. Further, the atomizer may be provided so as to inject in a direction opposite to the flow direction of the exhaust gas.

【0008】[0008]

【作用】噴霧器は、空気圧を噴射媒体としてアンモニア
水溶液を噴霧するものであるから、その粒形が非常に細
かくなり、霧状のアンモニア水滴と排ガスとの混合が著
しく促進され、多量のNOxを迅速に低減することがで
きると共に、アンモニア水溶液のリークを阻止すること
ができる。また噴霧器を排ガスの流動方向に対して直交
または対向する方向より噴射することによって、その噴
射力によって排ガスが攪拌され、アンモニア水滴と排ガ
スとの混合が更に促進されるものである。
[Function] Since the atomizer sprays the aqueous ammonia solution using the air pressure as the injection medium, the particle shape becomes extremely fine, the mixing of the mist-like ammonia water droplets and the exhaust gas is significantly promoted, and a large amount of NOx is rapidly discharged. The leakage of the aqueous ammonia solution can be prevented. Further, by injecting the sprayer from a direction orthogonal to or opposite to the flow direction of the exhaust gas, the injection force stirs the exhaust gas, further promoting the mixing of the ammonia water droplets and the exhaust gas.

【0009】[0009]

【実施例】本発明を具体的に説明すると、図1と図2は
並流式の火葬炉を示しており、下に主燃焼室1を有し、
上に再燃焼室2を備え、主燃焼室1における台車3を出
し入れする前口が防火扉4で開閉され、後壁に主バ−ナ
−5を設け、主燃焼室1に生じた排煙を、前側より再燃
焼室2の後側へ連通路6を通じて誘導するようになって
いる。再燃焼室2はその後壁に副バ−ナ−7を有し、前
側の出口に煙道8を連結したものである。上記火葬炉の
構造は従来のものと同様であるが、その再燃焼室2にお
いて、その出口部の両側壁にそれぞれ噴霧器9,9を互
いに上下に食い違いに相対向して突入して設け、各噴霧
器9,9には空気圧注入口10とアンモニア水溶液注入
口11とを備えるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS To explain the present invention in detail, FIGS. 1 and 2 show a co-current type cremation furnace having a main combustion chamber 1 below.
Exhaust gas generated in the main combustion chamber 1 is provided with a re-combustion chamber 2 on the upper side, a front door for loading and unloading the truck 3 in the main combustion chamber 1 is opened and closed by a fire door 4, and a main burner 5 is provided on the rear wall. Are guided from the front side to the rear side of the re-combustion chamber 2 through the communication passage 6. The re-combustion chamber 2 has a sub-burner 7 on its rear wall, and a flue 8 is connected to the outlet on the front side. The structure of the cremation furnace is the same as the conventional one, but in the reburning chamber 2, sprayers 9, 9 are provided on both side walls of the outlet part thereof so as to vertically oppose each other so as to face each other. The sprayers 9 and 9 are provided with an air pressure inlet 10 and an aqueous ammonia solution inlet 11.

【0010】図3と図4に示す火葬炉は向流式とも称さ
れるもので、同様に主燃焼室1と再燃焼室2を備え、主
燃焼室1で発生した排ガスを主燃焼室1の後側に設けた
連通路6より再燃焼室2の後側へ誘導するもので、これ
も従来炉の構造と同様であるが、その再燃焼室2に前記
例と同様に一対の噴霧器9,9を設けたものである。
The cremation furnace shown in FIGS. 3 and 4 is also called a countercurrent type, and similarly has a main combustion chamber 1 and a recombustion chamber 2, and the exhaust gas generated in the main combustion chamber 1 is discharged into the main combustion chamber 1. It is guided to the rear side of the re-combustion chamber 2 from the communication passage 6 provided at the rear side of the re-combustion chamber 2, which has the same structure as that of the conventional furnace. , 9 are provided.

【0011】尚、前記噴霧器9,9の取付け位置は、再
燃焼室2の出口部が最も良好であるが、必ずしもこの位
置に限定される必要がなく、再燃焼室2の中央部に設け
ても脱硝効果が得られる。しかし再燃焼室2の副バ−ナ
−7寄りに設けた場合、噴霧されたアンモニアが燃焼
し、NOxの低減を期待することができない。更に噴霧
器9,9の食い違い状態は前述の上下に限らず、前後に
食い違いに設定しても良い。
It should be noted that the sprayer 9, 9 is best mounted at the outlet of the recombustion chamber 2, but it is not necessarily limited to this position. Also has a denitration effect. However, when it is provided near the sub burner 7 of the re-combustion chamber 2, the sprayed ammonia burns, and reduction of NOx cannot be expected. Further, the staggered state of the sprayers 9, 9 is not limited to the above-mentioned top and bottom, but may be set to the staggered front and back.

【0012】次に図5と図6に示す例は、再燃焼室2の
側壁に1個の噴霧器9を設けたもので、その噴射方向を
再燃焼室2の中心部より上部または下部に偏位するよう
に取り付けたものである。しかし必ずしも偏位する必要
がなく、再燃焼室2の中心部に向かって噴射するように
設けても排ガスの攪拌する作用効果が得られる。
Next, in the examples shown in FIGS. 5 and 6, a single atomizer 9 is provided on the side wall of the recombustion chamber 2, and its injection direction is biased above or below the center of the recombustion chamber 2. It was installed so that it would be positioned. However, it is not always necessary to deviate, and the effect of stirring the exhaust gas can be obtained even if it is provided so as to inject toward the center of the re-combustion chamber 2.

【0013】また図7に示す例は、噴霧器9を再燃焼室
2の前壁、即ち副バ−ナ−7と対面する壁に再燃焼室2
内に向かって噴射するように設けたものである。更に図
8に示す例は、噴霧器9を再燃焼室2の排出口より室内
に向かって噴射可能に設けたもので、これらの例は排ガ
スの流動方向に対して対向するように噴射するものであ
る。
In the example shown in FIG. 7, the re-combustion chamber 2 is provided with the atomizer 9 on the front wall of the re-combustion chamber 2, that is, the wall facing the auxiliary burner 7.
It is provided so as to inject toward the inside. Further, in the example shown in FIG. 8, the atomizer 9 is provided so as to be capable of injecting from the exhaust port of the re-combustion chamber 2 toward the inside of the chamber. In these examples, injection is performed so as to oppose to the flow direction of the exhaust gas. is there.

【0014】図9は再燃焼室2へのアンモニア水溶液の
注入フロ−シ−トであって、図中の符号12はアンモニ
ア水溶液タンク、13はフロ−メ−タ−、14は電磁
弁、15は圧力計、16はエア−コンプレッサ−、17
は減圧弁、18はレギュレ−チングコックである。エア
−コンプレッサ−16によって噴射媒体を高圧(0.5
kg〜10kg)、または低圧(0.04kg〜0.2
kg)で噴射する。低圧の場合にはタ−ボブロア−また
はル−ツブロア−を使用する。高圧あるいは低圧の空気
圧によって噴射すると、簡単にアンモニア水溶液の水滴
が50μ〜70μと非常に細かくすることができるもの
で、実験の結果、平均粒形が100μ以下であれば目的
を達成することができることが判明された。
FIG. 9 shows a flow chart for injecting an aqueous ammonia solution into the reburn chamber 2. In the figure, reference numeral 12 is an aqueous ammonia solution tank, 13 is a flow meter, 14 is a solenoid valve, and 15 is a valve. Is a pressure gauge, 16 is an air-compressor, 17
Is a pressure reducing valve, and 18 is a regulating cock. A high pressure (0.5
kg to 10 kg) or low pressure (0.04 kg to 0.2)
(kg). In the case of low pressure, a turbo blower or a roots blower is used. By injecting with high pressure or low pressure air pressure, it is possible to easily make the water droplets of the aqueous ammonia solution as small as 50 μ to 70 μ, and as a result of the experiment, if the average particle shape is 100 μ or less, the purpose can be achieved Was found.

【0015】上記噴霧器9によりアンモニア水溶液を噴
霧することによって、再燃焼室2で燃焼されたガスがそ
の流動方向に対して直交する方向に渦巻き状に攪拌され
ると同時に、ガス中にアンモニア水溶液の細かな水滴が
混入され窒素酸化物を還元するものである。また、排ガ
スに対して対向するように噴射した場合には、噴射した
水滴がUタ−ンされて、排ガスとの混合時間を十分に保
たれるものである。
By spraying the aqueous ammonia solution with the sprayer 9, the gas burned in the re-combustion chamber 2 is spirally stirred in the direction orthogonal to the flow direction, and at the same time, the aqueous ammonia solution is mixed in the gas. Small water drops are mixed in to reduce nitrogen oxides. Further, in the case of jetting so as to face the exhaust gas, the jetted water droplets are U-turned and the mixing time with the exhaust gas is sufficiently maintained.

【0016】ところで、実験によって噴霧器の設定位置
を、副バ−ナ−寄りと、中央部と、出口部との3箇所に
分けてその脱硝率を測定した。但しNH3 の濃度1%、
NH3 の注入量10 l/Hの条件において比較する。 (1)副バ−ナ−寄り部 約28% (2)中央部 約36% (3)出口部 約40% その結果、再燃焼室の出口部に噴霧器を設置してアンモ
ニア水溶液を注入する場合が最も能率的であった。また
アンモニア水溶液の注入量が多くなるほど脱硝率が高く
なるが、その一方ではアンモニアがそのままリ−クする
量も増加する傾向がある。リ−クアンモニアが増加する
と臭気濃度も増加し、これまた公害の原因となる。従っ
てアンモニアの注入量はモル比でNH3 ;NO=0.3
75〜2;1の範囲が最も適当であることが知られた。
By the way, by experiment, the set position of the sprayer was divided into three parts, that is, near the auxiliary burner, the central part and the outlet part, and the denitrification rate was measured. However, the concentration of NH 3 is 1%,
Comparison will be made under the condition that the injection amount of NH 3 is 10 l / H. (1) Approximately 28% of the sub-burner side (2) Central part of approximately 36% (3) Outlet part of approximately 40% As a result, when the sprayer is installed at the outlet of the reburning chamber and the aqueous ammonia solution is injected Was the most efficient. Further, the denitrification rate increases as the injection amount of the aqueous ammonia solution increases, but on the other hand, the amount of ammonia that leaks as it is tends to increase. When the amount of leak ammonia increases, the odor concentration also increases, which also causes pollution. Therefore, the injection amount of ammonia is NH 3 in molar ratio; NO = 0.3
The range of 75-2; 1 was found to be most suitable.

【0017】そこで以上の各条件を従来の火葬炉に対し
て一対の噴霧器9,9を設定して実験した結果、図10
に示すチャ−ト表が得られた。図表中の実線Aはアンモ
ニア水溶液の注入前の位置(図1中のa点)での測定
値、点線Bは注入後(図1中のb点)の測定値、1点鎖
線CはO2 の量を示しており、当該表のY軸に着火から
の時間(MINUTS)の経過を示し、X軸にNOxの
量PPMと温度(TEMP)を示している。図10に示
す結果を見ると、測定位置aでの最大値は約230PP
Mを示しているが、注入後のb点での数値は約140P
PMを示し、約90PPMも減少することが知られる。
従ってその効果は、 140÷230×100=60% 即ち約40%の低減率が得られた。尚、図10の点線B
中のd点でアンモニア水溶液の注入を停止したもので、
これは注入中の脱硝効果を明確化するために行われたも
のであり、即ちアンモニア水溶液の注入停止と同時にN
Oxが一挙に増加する状態が見られる。以上の実験は一
対の噴霧器を食い違いに相対向して設けたものである
が、1個の噴霧器を停止し他の1個を稼動して実験した
ところ、図示してないが約4〜5割の能率低下が明確化
された。また図10の実線Aを見ると、NOxの排出パ
タ−ンが燃焼初期と燃焼中期にピ−クがあり、このパタ
−ンは燃焼の固有差はあるがほぼ一定した現象を呈する
ものである。従って火葬初期より終了まで連続してアン
モニアを注入する必要がなく、前述のピ−クを過ぎた以
後に注入を停止すれば良い。
Then, as a result of conducting an experiment under the above respective conditions by setting a pair of atomizers 9 and 9 in the conventional cremation furnace, FIG.
The chart table shown in FIG. In the figure, the solid line A is the measured value before the injection of the aqueous ammonia solution (point a in FIG. 1), the dotted line B is the measured value after the injection (point b in FIG. 1), and the chain line C is O 2 In the table, the Y axis of the table shows the passage of time (MINUTS) from ignition, and the X axis shows the NOx amount PPM and the temperature (TEMP). Looking at the results shown in FIG. 10, the maximum value at the measurement position a is about 230 PP.
Although M is shown, the value at point b after injection is about 140P.
It is known to exhibit PM and decrease by about 90 PPM.
Therefore, the effect was a reduction ratio of 140/230 × 100 = 60%, that is, about 40%. The dotted line B in FIG.
The injection of the aqueous ammonia solution was stopped at point d,
This was done in order to clarify the denitration effect during injection, that is, at the same time when the injection of the aqueous ammonia solution was stopped, N
It can be seen that Ox increases all at once. In the above experiment, a pair of atomizers are provided so as to face each other in a staggered manner, but when one atomizer is stopped and the other one is operated, it is about 40 to 50% though not shown. The decrease in efficiency was clarified. Further, as seen from the solid line A in FIG. 10, the NOx emission pattern has peaks in the early stage of combustion and the middle stage of combustion, and this pattern exhibits a substantially constant phenomenon although there is an inherent difference in combustion. . Therefore, it is not necessary to continuously inject ammonia from the beginning of cremation to the end, and the injection may be stopped after the peak has passed.

【0017】[0017]

【発明の効果】本発明による火葬炉は、再燃焼室の出口
部近傍に空気圧を噴射媒体とする噴霧器を設け、噴霧器
よりアンモニア水溶液を注入するが、単に注入するもの
ではなく、空気圧を噴射媒体とする噴霧器によって注入
するものであるから、噴射された水滴の粒形が極めて細
かく、排ガスとの接触率が極めて良好になり、排ガスに
含まれる多量の窒素酸化物の低減化を短時間で処理でき
るものである。しかも噴射された水滴の粒形が極めて細
かいことから、逸早く蒸気化されるので炉の壁に水滴が
付着することがなく、炉の耐久性を保持することができ
る。また噴霧器を排ガスの流動方向に対して直交または
対向する方向に向けて設けたものであれば、排ガスが噴
霧器による噴射力によって攪拌され、アンモニア水溶液
の噴霧化された非常に細かい水滴と排ガスとの混合率が
至極良好になる。それにより排ガスとの接触時間が長く
保たれ、短時間に多量の有機態窒素を法律的に規制され
た量よりも更に減少した値にまで脱硝するものである。
In the cremation furnace according to the present invention, a sprayer having an air pressure as an injection medium is provided in the vicinity of the outlet of the reburning chamber, and the aqueous ammonia solution is injected from the atomizer. However, it is not a simple injection, and the air pressure is the injection medium. Since it is injected by a sprayer, the shape of the injected water droplets is extremely fine, the contact rate with the exhaust gas is extremely good, and the reduction of a large amount of nitrogen oxides contained in the exhaust gas is treated in a short time. It is possible. Moreover, since the sprayed water droplets have an extremely fine particle shape, they are rapidly vaporized, so that the water droplets do not adhere to the wall of the furnace and the durability of the furnace can be maintained. Further, if the atomizer is provided in a direction orthogonal or opposite to the flow direction of the exhaust gas, the exhaust gas is agitated by the injection force of the atomizer, and the extremely fine water droplets and the exhaust gas of the aqueous ammonia solution are atomized. The mixing ratio is extremely good. As a result, the contact time with the exhaust gas is maintained for a long time, and a large amount of organic nitrogen is denitrated in a short time to a value that is further reduced than the legally regulated amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による火葬炉を側面より見た断面図であ
る。
FIG. 1 is a side sectional view of a cremation furnace according to the present invention.

【図2】同じく正面より見た断面図である。FIG. 2 is a sectional view of the same as seen from the front.

【図3】本発明による他の例による火葬炉を側面より見
た断面図である。
FIG. 3 is a side sectional view of a cremation furnace according to another example of the present invention.

【図4】同じく正面より見た断面図である。FIG. 4 is a sectional view similarly seen from the front.

【図5】再燃焼室に1個の噴霧器を設けた例を示す断面
図である。
FIG. 5 is a cross-sectional view showing an example in which one atomizer is provided in the reburning chamber.

【図6】再燃焼室に1個の噴霧器を設けた他の例を示す
断面図である。
FIG. 6 is a sectional view showing another example in which one atomizer is provided in the reburning chamber.

【図7】噴霧器を他の位置に設けた例を示す側面より見
た断面図である。
FIG. 7 is a side sectional view showing an example in which a sprayer is provided at another position.

【図8】噴霧器を更に他の位置に設けた例を示す側面よ
り見た断面図である。
FIG. 8 is a side sectional view showing an example in which a sprayer is provided at another position.

【図9】アンモニア水溶液の注入を示す配管図である。FIG. 9 is a piping diagram showing injection of an aqueous ammonia solution.

【図10】実験によって得られたNOxの発生状態を示
す図表である。
FIG. 10 is a chart showing the generation state of NOx obtained by an experiment.

【符号の説明】[Explanation of symbols]

1 主燃焼室 2 再燃焼室 5 主バ−ナ− 7 副バ−ナ− 9 噴霧器 10 空気圧注入口 11 アンモニア水溶液注入口 1 Main Combustion Chamber 2 Re-combustion Chamber 5 Main Burner 7 Sub Burner 9 Atomizer 10 Air Pressure Inlet 11 Ammonia Aqueous Solution Inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福島 徹二 神奈川県横浜市港南区丸山台4−8−30− 111 (72)発明者 野口 貢 神奈川県横浜市旭区三反田町255 (72)発明者 平野 祥三 神奈川県大和市林間2−6−16 南林間ハ イツ107 (72)発明者 会沢 功道 神奈川県横浜市金沢区並木1−22−6− 301 (72)発明者 鈴木 昂 神奈川県横浜市港南区上大岡東2−19−33 (72)発明者 団 有一 神奈川県横浜市港南区野庭町628 野庭団 地B12−503 (72)発明者 小浜 一好 神奈川県横浜市保土ケ谷区岩間町1−1− 5 (72)発明者 渡辺 一夫 神奈川県横浜市南区永田東1−19−17 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tetsuji Fukushima 4-8-30-111 Maruyamadai, Konan-ku, Yokohama-shi, Kanagawa (72) Inventor Mitsugu Noguchi 255 Santanda-cho, Asahi-ku, Yokohama-shi, Kanagawa (72) Inventor Hirano Shozo 2-6-16 Rinkan, Yamato City, Kanagawa Prefecture Minami Rinkan Heights 107 (72) Inventor Kaido Aizawa 1-2-22-6-301 Namiki, Kanazawa-ku, Yokohama-shi, Kanagawa (72) Inventor, Satoshi Suzuki Konan, Yokohama-shi, Kanagawa 2-19-33, Higashi-Kamiokaoka (72) Inventor group Yuichi Yuichi, 628 Noba-machi, Konan-ku, Yokohama-shi, Kanagawa Prefecture B12-503 (72) Kazuyoshi Obama 1-1, Iwama-cho, Hodogaya-ku, Yokohama-shi, Kanagawa 5 (72) Inventor Kazuo Watanabe 1-19-17 Nagatahigashi, Minami-ku, Yokohama-shi, Kanagawa

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主燃焼室(1)と再燃焼室(2)を備え
る火葬炉において、再燃焼室(2)の煙道へ通じる出口
部近傍に、再燃焼室の室内に向かってアンモニア水溶液
を空気圧による噴射媒体によって噴射する噴霧器(9)
を設けていることを特徴とする火葬炉。
1. A cremation furnace having a main combustion chamber (1) and a recombustion chamber (2), wherein an aqueous ammonia solution is directed toward the interior of the recombustion chamber in the vicinity of an outlet portion leading to a flue of the recombustion chamber (2). Atomizer (9) for injecting air with an air injection medium
A cremation furnace characterized by being equipped with.
【請求項2】 噴霧器(9)を排ガスの流動方向に対し
て直交する方向に噴射するように設けていることを特徴
とする請求項1に記載の火葬炉。
2. The cremation furnace according to claim 1, wherein the atomizer (9) is provided so as to inject in a direction orthogonal to the flow direction of the exhaust gas.
【請求項3】 噴霧器(9)を排ガスの流動方向に対し
て対向する方向に噴射するように設けていることを特徴
とする請求項1に記載の火葬炉。
3. The cremation furnace according to claim 1, wherein the atomizer (9) is provided so as to inject in a direction opposite to the flow direction of the exhaust gas.
JP18990792A 1992-06-23 1992-06-23 Crematory Pending JPH062823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18990792A JPH062823A (en) 1992-06-23 1992-06-23 Crematory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18990792A JPH062823A (en) 1992-06-23 1992-06-23 Crematory

Publications (1)

Publication Number Publication Date
JPH062823A true JPH062823A (en) 1994-01-11

Family

ID=16249203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18990792A Pending JPH062823A (en) 1992-06-23 1992-06-23 Crematory

Country Status (1)

Country Link
JP (1) JPH062823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170452A (en) * 1999-10-04 2001-06-26 Nippon Shokubai Co Ltd Treating device for waste gas
JP4606512B1 (en) * 2010-04-07 2011-01-05 太陽築炉工業株式会社 Nitrogen oxide reduction system for cremation furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170452A (en) * 1999-10-04 2001-06-26 Nippon Shokubai Co Ltd Treating device for waste gas
JP4606512B1 (en) * 2010-04-07 2011-01-05 太陽築炉工業株式会社 Nitrogen oxide reduction system for cremation furnace
JP2011220580A (en) * 2010-04-07 2011-11-04 Taiyo Chikuro Kogyo Kk System used in cinerator for reducing nitrogen oxide

Similar Documents

Publication Publication Date Title
CA2590921C (en) Method for supplying combustion gas in incineration systems
US7622091B2 (en) Methods and systems for reducing NOx emissions in industrial combustion systems
US5165903A (en) Integrated process and apparatus for control of pollutants in coal-fired boilers
KR102586253B1 (en) spray device comprising porous structure for providing precise controllable concentration of diluted urea-water solution inserted inside
JPH0557146A (en) Flue-gas denitration equipment
JPH08511615A (en) Exhaust gas purification method and device
KR20070102992A (en) Catalyst delivery system
CN204735100U (en) Absorption system who carries out wet process oxidation denitration to flue gas of coal -fired chain boiler
JPH062823A (en) Crematory
CN205897178U (en) Take biomass combustion device of denitrogenation function
JPH10504870A (en) Exhaust gas flow treatment method for removal of nitrogen oxides
CN208542022U (en) Incineration flue gas non-catalytic reduction denitrating system based on high concentration reducing agent
JP3199568U (en) Incineration system
JP3155064B2 (en) Non-catalytic denitration method in fluidized bed furnace
KR20010021151A (en) Process for the thermal treatment of solids
KR100418810B1 (en) Super Performance Cremator by Oxygen Enriched Gas
CN209196870U (en) A kind of combustion purification device
CN205627569U (en) Comprehensive denitration treatment system of flue gas
CN108671736A (en) Incineration flue gas non-catalytic reduction denitrating technique and system based on high concentration reducing agent
KR102561782B1 (en) Method for improving NOx reducing efficiency using selective non-catalytic reduction system through improvement of spray nozzle for reducing agent
KR20050020624A (en) Process for NOx-reduction in combustion chamber and device for carrying out said process
CN219453972U (en) Soil remediation waste gas treatment system
CN116734265B (en) In-furnace control method for acidic pollutants in household garbage co-combustion industrial organic solid waste process
CN105664688A (en) Flue gas comprehensive denitration treatment system and treatment technology
CN105032183A (en) Urea solution-based SCR smoke denitration treatment system and method