JPH06282278A - Standing-wave corresponding type active noise eliminator - Google Patents

Standing-wave corresponding type active noise eliminator

Info

Publication number
JPH06282278A
JPH06282278A JP5070590A JP7059093A JPH06282278A JP H06282278 A JPH06282278 A JP H06282278A JP 5070590 A JP5070590 A JP 5070590A JP 7059093 A JP7059093 A JP 7059093A JP H06282278 A JPH06282278 A JP H06282278A
Authority
JP
Japan
Prior art keywords
noise
standing wave
standing
wave
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5070590A
Other languages
Japanese (ja)
Inventor
Tadashi Ohashi
正 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5070590A priority Critical patent/JPH06282278A/en
Publication of JPH06282278A publication Critical patent/JPH06282278A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an active noise eliminator by which a standing-wave noise can be eliminated effectively at low cost in the active noise eliminator to eliminate the standing-wave noise generated in a conduit. CONSTITUTION:In an active noise eliminator to eliminate a noise propagating through a conduit by generating a sound wave to offset it from a sounding means 6, plural sound receiving means 1 receive the noise, and a dummy means 5 samples a signal from either of the plural sound receiving means 1, and inputs it to a constitutive element having the prescribed number of stages, and dummies behavior of the noise, and outputs a signal such as offsetting the noise to the sounding means 6. A detecting means 2 inputs signals from the plural sound receiving means 1, and detects that a standing-wave noise is generated in the conduit 8, and a control means 3 controls so that the dummy means 5 carries out dummy operation by changing a sampling period according to a repetition period of a detected standing-wave and also by changing the number of stages of the constitutive element to be used among the constitutive element having the prescribed number of stages.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,定在波対応式能動騒音
消去装置に関する。特に,導管内に発生した定在波の騒
音を消去する定在波対応式能動騒音消去装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a standing wave type active noise canceller. In particular, it relates to a standing wave type active noise canceller that cancels the noise of standing waves generated in a conduit.

【0002】近来,環境問題が益々,社会的な問題を提
起している。騒音も生活環境や作業環境を害する,人体
に生理的に悪影響を及ぼすなど,各方面で社会的な問題
を惹起している。また,近年,騒音を防止する手段とし
て騒音を吸収することによって消去するのみならず,騒
音の波形と同振幅・正負逆方向の音波を発生し,騒音と
相殺することによって騒音を消去する,いわゆる,能動
騒音消去装置が注目されている。
[0002] Recently, environmental problems are increasingly raising social problems. Noise also causes social problems in various fields, such as damaging the living environment and working environment and physiologically adversely affecting the human body. Further, in recent years, as a means for preventing noise, not only is it erased by absorbing it, but it is also possible to eliminate noise by generating sound waves of the same amplitude as the noise waveform but in the positive and negative opposite directions, and canceling the noise. , Active noise cancellers are attracting attention.

【0003】図4は,計算機組織の冷却及び消音制御シ
ステムの説明図であって,特に,冷却空気を送風して冷
却する大型・高速計算機組織の消音制御系を示す。冷却
装置から冷却用空気がフリーアクセスの床下に送り込ま
れ,冷却制御系は,ファンによって冷却用空気をダクト
に吸入し,ダクトを通して排気する。こうして,計算機
を構成するプリント板等の熱源から発生され,ダクトに
導かれた熱はダクトを通って排熱されて,計算機は冷却
される。また,小型計算機などは,冷却空気の代わり
に,室温の空気をプリント板等の熱源を通すことによっ
て冷却する。いずれの場合も能動騒音消去装置(ANC
Cという)は,センサマイクによって受音されたファン
からの騒音(ファン音という)に基づいて,スピーカ等
の発音器を駆動してファン音と波形が同振幅・正負逆方
向の音波を発生し,ファン音とスピーカから発音される
音(スピーカ音という)とを合成して,相殺させること
によって能動的にファン音を消音するように構成されて
いる。
FIG. 4 is an explanatory view of a cooling and silencing control system for a computer system, and particularly shows a silencing control system for a large-sized and high-speed computer system for cooling by blowing cooling air. Cooling air is sent from the cooling device to the floor under free access, and the cooling control system draws the cooling air into the duct by the fan and exhausts it through the duct. In this way, the heat generated from a heat source such as a printed board constituting the computer and guided to the duct is exhausted through the duct, and the computer is cooled. In addition, in a small computer, instead of cooling air, room temperature air is cooled by passing it through a heat source such as a printed board. In either case, the active noise canceller (ANC
C) drives a sounding device such as a speaker based on noise from a fan (called a fan sound) received by a sensor microphone to generate a sound wave whose waveform is the same as that of the fan sound but opposite in direction. The fan sound and the sound generated from the speaker (called speaker sound) are combined and offset to actively cancel the fan sound.

【0004】このように,家庭電化製品,計算機システ
ムなど,騒音を発生する,あらゆる装置や設備に適用
し,それらから発生する騒音を効果的,かつ,安価に消
去することができる能動騒音消去装置が望まれている。
As described above, the active noise canceling apparatus can be applied to all devices and equipments that generate noises such as home electric appliances and computer systems, and can effectively and inexpensively cancel the noises generated from them. Is desired.

【0005】[0005]

【従来の技術】図5は,従来例を示す消音制御システム
のブロック図であって,図4のシステムに適用した例を
示す。
2. Description of the Related Art FIG. 5 is a block diagram of a conventional silencing control system, showing an example applied to the system of FIG.

【0006】プリント板等の冷却用のファン(騒音源)
の近傍に設置されたマイクロホン(以下,センサマイク
という)によって受音されたファンの騒音の信号はアナ
ログ/ディジタル変換器(A/D変換器という)によっ
てアナログの音信号からディジタル信号に変換され,ダ
クトによる音の物理的伝播経路をシミュレーションする
伝達関数を表わす適応型FIR(finite impulse respo
nse )フィルタに入力される。FIRフィルタの出力を
ディジタル/アナログ変換器(D/A変換器という)に
よってディジタル信号からアナログ信号に変換し,その
信号によってスピーカを駆動して,ファンが発生する騒
音と波形が同振幅・正負逆方向の音波を発生し,スピー
カ音をファン音に合成し,相殺することによってファン
音を消去する。
Fan for cooling printed boards (noise source)
A fan noise signal received by a microphone (hereinafter referred to as a sensor microphone) installed in the vicinity of is converted from an analog sound signal into a digital signal by an analog / digital converter (referred to as an A / D converter). An adaptive FIR (finite impulse respo) that represents the transfer function that simulates the physical propagation path of sound through a duct
nse) Input to the filter. The output of the FIR filter is converted from a digital signal to an analog signal by a digital / analog converter (referred to as a D / A converter), and a speaker is driven by the signal, and the noise and waveform generated by the fan have the same amplitude and positive / negative inversion. Directional sound waves are generated, the speaker sound is combined with the fan sound, and the sound is canceled to cancel the fan sound.

【0007】スピーカ音とファン音とを合成した結果,
完全に騒音を消去し得ないときに残る残留騒音,即ち,
FIRフィルタによるファン音のシミュレーション結果
の誤差(残留誤差という)に基づいて発生する音はエラ
ーマイクによって受音され,そのアナログの音信号はA
/D変換器によって,ディジタルの誤差信号に変換され
る。この誤差信号に基づいて,FIRフィルタのフィル
タ係数(又はタップ係数)を変更することによって残留
誤差,即ち,残留騒音をゼロに近づけ,ファンが発生す
る騒音を完全に消去するように制御する。
As a result of combining the speaker sound and the fan sound,
The residual noise that remains when the noise cannot be completely eliminated, that is,
The sound generated based on the error (called residual error) in the simulation result of the fan sound by the FIR filter is received by the error microphone, and its analog sound signal is A
It is converted into a digital error signal by the / D converter. Based on this error signal, the filter coefficient (or tap coefficient) of the FIR filter is changed so that the residual error, that is, the residual noise is brought close to zero, and the noise generated by the fan is controlled to be completely eliminated.

【0008】以上の処理を通常,センサマイクに接続さ
れたA/D変換器のサンプリング周期ts 内で実行し,
その処理を周期ts ごとに繰り返すことによってファン
音を消去する。
The above processing is normally executed within the sampling cycle t s of the A / D converter connected to the sensor microphone,
The fan sound is erased by repeating the processing for each cycle t s .

【0009】図6は,FIRフィルタの構成図である。
FIRフィルタは,N組(Nタップという)の掛算器及
び遅延素子から成る回路(構成要素又はタップという)
及び1つの加算器で構成され,時間軸上で離散的な入出
力の信号系列を,それぞれ,{xi }, {yi }とする
と,時限nにおける出力yn は図に示す畳み込み演算で
与えられる。hi はフィルタ係数であって,前記の誤差
信号に基づいてyn の誤差を極小にするように自動的に
更新される。
FIG. 6 is a block diagram of the FIR filter.
A FIR filter is a circuit (called a component or tap) consisting of N sets (called N taps) of multipliers and delay elements.
, And one adder, and the discrete input and output signal sequences on the time axis are {x i }, {y i }, respectively, the output y n at time n is calculated by the convolution operation shown in the figure. Given. h i is a filter coefficient, which is automatically updated based on the error signal so as to minimize the error in y n .

【0010】タップ数Nは,騒音の音波の周波数成分及
びダクトの長さL(m)に基づいて決定される。即ち,
FIRフィルタによる処理は,通常,騒音信号の最も周
波数が高い成分(以下,基本波という)を,その一周期
の間に所要回数(例えば,8回)サンプリング〔その頻
度をサンプリング周波数fs (回/秒),サンプリング
周期ts (秒)で表す〕して入力し,遅延素子によって
周期ts ごとに後段へシフトし,周期ts ごとに畳み込
み演算を行ってyn を出力することによって行われる。
従って,FIRフィルタは,
The number of taps N is determined based on the frequency component of the sound wave of noise and the length L (m) of the duct. That is,
The processing by the FIR filter is usually performed by sampling a component having the highest frequency of a noise signal (hereinafter referred to as a fundamental wave) a required number of times (for example, 8 times) during one cycle [the frequency is a sampling frequency f s (time). / sec), row by type and represented] at the sampling period t s (seconds), and shifts to a subsequent stage for each cycle t s by the delay elements, by performing a convolution operation for each period t s and outputs a y n Be seen.
Therefore, the FIR filter is

【0011】[0011]

【数1】ts ×N=L/音速(m/秒) を満たすタップ数Nを必要とする。## EQU1 ## A tap number N that satisfies t s × N = L / sound velocity (m / sec) is required.

【0012】然るに,騒音源からダクトの出口へ伝播す
る騒音と,その反対方向へ伝播するスピーカ音との2つ
の音波の重ね合わせによって生ずる,振幅分布が空間的
に定まった音波(定在波という)が発生することがあ
る。音波がダクト内を伝播する時間より長い周期を有す
るような定在波が発生したとき,その一周期分の信号を
FIRフィルタに収容するためには,そのタップ数が不
足することになる。
However, a sound wave whose amplitude distribution is spatially determined (a standing wave) is generated by superposition of two sound waves of noise propagating from the noise source to the outlet of the duct and speaker sound propagating in the opposite direction. ) May occur. When a standing wave having a period longer than the time for which a sound wave propagates in the duct is generated, the number of taps is insufficient to accommodate the signal for one period in the FIR filter.

【0013】従来の定在波の対処の方法は,その影響を
考慮しないか,または,ダクト長を延長して定在波の1
周期分の時間を賄い,不足分のタップ数を追加すること
によって必要なタップ数を備える方法を行っていた。
In the conventional method for coping with the standing wave, the influence of the standing wave is not taken into consideration, or the duct length is extended so that
A method of providing a necessary number of taps by covering the time for a cycle and adding the number of taps for the shortage was used.

【0014】[0014]

【発明が解決しようとする課題】上記のように従来方式
によると,定在波の影響を考慮しない,または,ダクト
を延長して定在波の1周期分の時間を賄い,不足分のタ
ップ数を追加することによって必要なタップ数を備えた
ので,前者の場合は定在波による騒音を十分に消去する
ことができないという問題点があった。また,後者の場
合はダクトの延長及びタップ数の増加に伴って,騒音消
去システムが大型化すると共に高価になるという問題点
があった。
As described above, according to the conventional method, the influence of the standing wave is not taken into consideration, or the duct is extended to cover the time corresponding to one cycle of the standing wave, and the shortage of taps is required. Since the required number of taps was provided by adding the number, the former case had a problem that the noise due to standing waves could not be sufficiently eliminated. Further, in the latter case, there is a problem that the noise canceling system becomes large and expensive as the duct is extended and the number of taps is increased.

【0015】本発明は,導管内に発生した定在波の騒音
を効果的,かつ,安価に消去することができる定在波対
応式能動騒音消去装置を提供することを目的とする。
An object of the present invention is to provide a standing wave type active noise canceller capable of canceling the noise of the standing wave generated in the conduit effectively and at low cost.

【0016】[0016]

【課題を解決するための手段】図1は,本発明の原理ブ
ロック図を示す。図中,7は,騒音源,8は,導管,6
は,騒音源7から発生し,導管8内を通って伝播する騒
音を相殺するような音を発生して騒音を消去する発音手
段,1は,騒音を受音する複数の受音手段,5は,複数
の受音手段1の何れかからの出力信号をサンプリングし
てその所定段数の構成要素へ入力し,前記騒音の振る舞
いを擬似して,騒音を相殺せしめるような信号を発音手
段6へ出力する擬似手段,2は,複数の受音手段1から
出力される信号を入力して,導管8内に定在波の騒音が
発生していることを検出する検出手段,3は,検出手段
2によって検出された定在波の繰り返し周期に応じて,
擬似手段5がサンプリング周期を変化させ,また,前記
所定段数の構成要素の中,使用する構成要素の段数を変
化させて擬似操作を行うように制御する制御手段であ
る。
FIG. 1 shows a block diagram of the principle of the present invention. In the figure, 7 is a noise source, 8 is a conduit, and 6
Is a sounding means for canceling the noise generated by the noise source 7 and propagating through the conduit 8 and canceling the noise. 1 is a plurality of sound receiving means for receiving the noise. Is to sample the output signal from any one of the plurality of sound receiving means 1 and input it to the components of a predetermined number of stages, simulate the behavior of the noise, and output to the sound generating means 6 a signal that cancels the noise. The pseudo means for outputting 2, the detection means for inputting the signals output from the plurality of sound receiving means 1 and detecting that the noise of the standing wave is generated in the conduit 8, and 3 are the detecting means. According to the repeating period of the standing wave detected by 2,
The simulating means 5 is a control means for changing the sampling cycle and changing the number of constituent elements to be used among the constituent elements of the predetermined number of steps so as to perform the pseudo operation.

【0017】[0017]

【作用】本発明によれば,騒音源7から発生し,導管8
内を通って伝播する騒音を,それを相殺するような音波
を発音手段6から発生することによって消去する能動騒
音消去装置において,複数の受音手段1は前記騒音を受
音し,擬似手段5は複数の受音手段1の何れかからの出
力信号をサンプリングしてその所定段数の構成要素へ入
力し,前記騒音の振る舞いを擬似して,騒音を相殺せし
めるような信号を発音手段6へ出力する。検出手段2は
複数の受音手段1から出力される信号を入力して,導管
8内に定在波の騒音が発生していることを検出し,制御
手段3は検出手段2によって検出された定在波の繰り返
し周期に応じて,擬似手段5がサンプリング周期を変化
させ,また,前記所定段数の構成要素の中,使用する構
成要素の段数を変化させて擬似操作を行うように制御す
る。従って,特に,繰り返し周期が長い定在波に対応す
ることが可能となる。
According to the present invention, the noise is generated from the noise source 7, and the conduit 8
In the active noise canceling device for canceling the noise propagating through the inside by generating a sound wave from the sounding means 6 to cancel it, a plurality of sound receiving means 1 receives the noise and the pseudo means 5 Is an output signal from any one of the plurality of sound receiving means 1 and inputs it to the components of a predetermined number of stages, and simulates the behavior of the noise and outputs a signal for canceling the noise to the sound producing means 6. To do. The detection means 2 inputs the signals output from the plurality of sound reception means 1 and detects that noise of a standing wave is generated in the conduit 8, and the control means 3 is detected by the detection means 2. The pseudo means 5 changes the sampling period in accordance with the repeating period of the standing wave, and controls the pseudo operation by changing the number of stages of the components to be used among the components of the predetermined number of stages. Therefore, it becomes possible to deal with a standing wave having a long repetition period.

【0018】[0018]

【実施例】図2は,本発明の実施例を示す消音制御のブ
ロック図である。全図を通して,同一符号は同一又は同
様な構成要素を示す。
FIG. 2 is a block diagram of muffling control showing an embodiment of the present invention. Throughout the drawings, the same reference numerals indicate the same or similar components.

【0019】本発明は,騒音がダクト8a内を伝播する時
間より長い繰り返し周期を有するような定在波が発生し
たとき,前記の数1において,定在波に合わせて(その
一周期に所要回数サンプリングを行うように)サンプリ
ング周期を大きくすることによって,必要とするタップ
数を,FIRフィルタ5aの所与のタップ数N以下に減少
させるように構成する。
According to the present invention, when a standing wave having a repetitive cycle longer than the time for which noise propagates in the duct 8a is generated, in accordance with the above-mentioned mathematical expression 1, the standing wave is matched with the standing wave (required for one cycle). The number of taps required is reduced below a given number N of taps of the FIR filter 5a by increasing the sampling period (so that sampling is performed a number of times).

【0020】センサマイク1a,1bは,ダクト8a内に隣接
して配置されたマイクロホンであって,それぞれの位置
において,ダクト内を通る騒音を受音する。定在波検出
部2aは,センサマイク1a,1bによって受音された騒音信
号を時系列にサンプリングすることにより,そのサンプ
ルデータから図3に示す方法で定在波の検出を行って,
その波形の繰り返し周期を推定する。また,センサマイ
ク1a,1bからの騒音信号の一つを選択的に切り換えて出
力する。図3において,センサマイク1a,1bが設置され
た点を,それぞれ,d1,d2とし,その間の距離をdとす
る。ダクトの長さにより最低固有共振周波数f0は一義的
に決まり,この周波数f0に基づいて点d1,d2における相
対音圧レベルL1,L2は予測できる。然るに,定在波が発
生したとき,点d2における音圧レベル LS は予測値L2
はならず,L2±ΔLとなる。従って,定在波検出部2a
は,この差分±ΔLによって定在波の周波数を検出し,
その周波数に基づいてサンプリング周期を変化させる。
The sensor microphones 1a and 1b are microphones arranged adjacent to each other in the duct 8a, and receive noise passing through the duct at their respective positions. The standing wave detection unit 2a samples the noise signals received by the sensor microphones 1a and 1b in time series to detect the standing wave from the sample data by the method shown in FIG.
Estimate the repetition period of the waveform. Also, one of the noise signals from the sensor microphones 1a and 1b is selectively switched and output. In FIG. 3, the points at which the sensor microphones 1a and 1b are installed are d 1 and d 2 , respectively, and the distance between them is d. The lowest natural resonance frequency f 0 is uniquely determined by the length of the duct, and the relative sound pressure levels L 1 and L 2 at points d 1 and d 2 can be predicted based on this frequency f 0 . However, when a standing wave is generated, the sound pressure level L S at point d 2 does not become the predicted value L 2 but becomes L 2 ± ΔL. Therefore, the standing wave detector 2a
Detects the frequency of the standing wave by this difference ± ΔL,
The sampling period is changed based on the frequency.

【0021】サンプリング制御部3aは,定在波検出部2a
によって検出された定在波の周期に基づいて,基本波
(ファン音の周波数成分の中,最も周波数が高い周波
数)の周期ts に対する定在波の周期の倍率rを求め
る。
The sampling controller 3a includes a standing wave detector 2a.
Based on the period of the standing wave detected by, the magnification r of the period of the standing wave with respect to the period t s of the fundamental wave (the highest frequency among the frequency components of the fan sound) is obtained.

【0022】アナログ/ディジタル変換器(ADCとい
う)c1は,定在波が発生したときは,定在波検出部2aを
経て選択された(センサマイク1a又は1bからの)騒音信
号を,サンプリング制御部3aからの倍率信号rに基づい
てts ×rの周期でサンプリングし,サンプル値をアナ
ログ信号からディジタルのサンプルデータに変換してF
IRフィルタ5aへ出力する。
When a standing wave is generated, an analog / digital converter (referred to as an ADC) c1 controls sampling of a noise signal (from the sensor microphone 1a or 1b) selected through the standing wave detection unit 2a. Based on the magnification signal r from the section 3a, sampling is performed at a cycle of t s × r, the sample value is converted from an analog signal into digital sample data, and F
Output to the IR filter 5a.

【0023】FIRフィルタ5aは,ファン音の周波数成
分(特に,基本波の周波数)及びダクト8aの長さLによ
って決まる所定段数Nのタップを有するディジタルフィ
ルタであって,ADCc1によるサンプリングの都度,サ
ンプルデータを入力し,各タップ中を後段へシフトする
ことによってダクト8a中を伝播する騒音の振る舞いをシ
ミュレーションする。定在波が発生したときは,定在波
音がダクト8a中を伝播して出口へ至るのとFIRフィル
タ5aによるそのシミュレーション結果の出力とが同期す
るように,前記の数1においてts をts ×rに置換し
たときに数1を満足するNを実効タップ数として,図6
に示す畳み込み演算を行ってyn を出力する。
The FIR filter 5a is a digital filter having a predetermined number of taps N determined by the frequency component of the fan sound (in particular, the frequency of the fundamental wave) and the length L of the duct 8a, and samples each time sampling is performed by the ADCc1. The behavior of noise propagating in the duct 8a is simulated by inputting data and shifting each tap to the rear stage. When a standing wave is generated, in order to synchronize the standing wave sound propagating in the duct 8a and reaching the outlet with the output of the simulation result by the FIR filter 5a, t s is changed to t Assuming that the number of effective taps is N, which satisfies Equation 1, when replaced by s × r,
The convolution operation shown in is performed and y n is output.

【0024】ディジタル/アナログ変換器(DACとい
う)c3は,FIRフィルタ5aからの畳み込み演算結果の
n をディジタル信号からアナログ信号に変換し,その
信号によってスピーカSPを駆動することによって,ダク
ト8a中に発生した定在波音と波形が同振幅・正負逆方向
の音波を発生し,スピーカ音をファン音に合成し,相殺
して定在波による騒音を消去する。
A digital / analog converter (referred to as DAC) c3 converts the digital signal y n of the convolution operation result from the FIR filter 5a from a digital signal to an analog signal, and drives the speaker SP by the signal, so that the inside of the duct 8a. The standing wave sound and the generated sound wave generate a sound wave with the same amplitude and opposite directions, and the speaker sound is combined with the fan sound to cancel the noise due to the standing wave.

【0025】スピーカ音と定在波音とを合成した結果,
完全に定在波による騒音を消去し得ないときに残る残留
騒音,即ち,適応型FIRフィルタ5aによる定在波音シ
ミュレーション誤差(残留誤差)に基づいて発生する残
留騒音はエラーマイクSMによって受音され,アナログ/
ディジタル変換器(ADCという)c2によってアナログ
からディジタルの誤差信号に変換される。
As a result of synthesizing the speaker sound and the standing wave sound,
The residual noise remaining when the noise due to the standing wave cannot be completely eliminated, that is, the residual noise generated based on the standing wave sound simulation error (residual error) by the adaptive FIR filter 5a is received by the error microphone SM. ,analog/
A digital converter (referred to as ADC) c2 converts from analog to digital error signal.

【0026】FIRフィルタ5aは,この誤差信号に基づ
いて,フィルタ係数(又はタップ係数)を変更すること
によって残留誤差,即ち,残留騒音をゼロに近づけ,ダ
クト8a中に発生した定在波による騒音を消去するように
制御する。
The FIR filter 5a changes the filter coefficient (or tap coefficient) based on this error signal to bring the residual error, that is, the residual noise close to zero, and the noise due to the standing wave generated in the duct 8a. Control to erase.

【0027】従って,繰り返し周期の長い定在波の騒音
がダクト8a内に発生したとき,基本波の周期に対する定
在波の周期の倍率rを求め,サンプリング周期をr倍の
周期とし,FIRフィルタ5aが備えるタップの数の,r
分の1の数のタップを使用することにより,タップ数の
不足を来さないように構成されている。
Therefore, when the noise of a standing wave having a long repetition period is generated in the duct 8a, the magnification r of the period of the standing wave with respect to the period of the fundamental wave is obtained, and the sampling period is set to r times, and the FIR filter is used. The number of taps included in 5a, r
It is configured so that the number of taps does not become insufficient by using the number of taps that is one-third.

【0028】[0028]

【発明の効果】以上説明したように本発明によると,デ
ィジタルフィルタによってダクト内を伝播する騒音の振
る舞いを擬似し,その擬似信号に基づいて騒音を消去す
る能動騒音消去装置において,複数のマイクロホンから
騒音を受音することによってダクト内に定在波の騒音が
発生していることを検出し,その繰り返し周期に応じ
て,マイクロホンからの騒音をサンプリングする周期を
変化させ,また,使用するフィルタのタップ数を変化さ
せる。このように構成することにより,繰り返し周期が
長い定在波に対しては,サンプリング周期を長くし,使
用するタップを減らすことにより,容易に対応すること
ができ,従来方式のようにダクトを延長し,タップ数を
増加する必要はない。従って,本発明によれば,ダクト
内に発生した定在波の騒音を効果的,かつ,経済的に消
去することができるという効果がある。
As described above, according to the present invention, the behavior of noise propagating in the duct is simulated by the digital filter, and the active noise canceller cancels the noise based on the simulated signal. It is detected that noise of standing wave is generated in the duct by receiving the noise, and the cycle of sampling the noise from the microphone is changed according to the repetition cycle of the noise. Change the number of taps. With this configuration, a standing wave with a long repetition period can be easily dealt with by lengthening the sampling period and reducing the number of taps used, and extending the duct as in the conventional method. However, there is no need to increase the number of taps. Therefore, according to the present invention, there is an effect that the noise of the standing wave generated in the duct can be effectively and economically eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理ブロック図FIG. 1 is a block diagram of the principle of the present invention.

【図2】 本発明の実施例を示す消音制御のブロック図FIG. 2 is a block diagram of muffling control showing an embodiment of the present invention.

【図3】 定在波の検出方法の説明図FIG. 3 is an explanatory diagram of a standing wave detection method.

【図4】 計算機組織の冷却及び消音制御システムの説
明図
FIG. 4 is an explanatory diagram of a computer organization cooling and silencing control system.

【図5】 従来例を示す消音制御システムのブロック図FIG. 5 is a block diagram of a silence control system showing a conventional example.

【図6】 FIRフィルタの構成図FIG. 6 is a block diagram of a FIR filter

【符号の説明】[Explanation of symbols]

1 複数の受音手段 2 検出手段 3 制御手段 5 擬似手段 6 発音手段 7 騒音源 8 導管 1a,1b センサマイク 2a 定在波検出部 3a サンプリング制御部 5a FIRフィルタ 8a ダクト 9a 熱源 c1,c2 アナログ/ディジタル変換器(ADC) c3 ディジタル/アナログ変換器(DAC) SP スピーカ 1 plural sound receiving means 2 detection means 3 control means 5 pseudo means 6 sounding means 7 noise source 8 conduits 1a, 1b sensor microphone 2a standing wave detection section 3a sampling control section 5a FIR filter 8a duct 9a heat source c1, c2 analog / Digital converter (ADC) c3 Digital / analog converter (DAC) SP speaker

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 騒音源(7) から発生し,導管(8) 内を通
って伝播する騒音を,それを相殺するような音波を発音
手段(6) から発生することによって消去する能動騒音消
去装置であって,前記騒音を受音する複数の受音手段
(1) と,該複数の受音手段(1) の何れかからの出力信号
をサンプリングしてその所定段数の構成要素へ入力し,
前記騒音の振る舞いを擬似して,騒音を相殺せしめるよ
うな信号を前記発音手段(6) へ出力する擬似手段(5)
と,該複数の受音手段(1) から出力される信号を入力し
て,導管(8) 内に定在波の騒音が発生していることを検
出する検出手段(2) と,該検出手段(2) によって検出さ
れた定在波の繰り返し周期に応じて,該擬似手段(5) が
サンプリング周期を変化させ,また,前記所定段数の構
成要素の中,使用する構成要素の段数を変化させて擬似
操作を行うように制御する制御手段(3)とを設けること
を特徴とする定在波対応式能動騒音消去装置。
1. Active noise cancellation for canceling noise generated from a noise source (7) and propagating through a conduit (8) by generating sound waves from the sounding means (6) to cancel it. A plurality of sound receiving means for receiving the noise
(1) and the output signal from any of the plurality of sound receiving means (1) is sampled and input to the constituent elements of a predetermined number of stages,
Pseudo means (5) for simulating the behavior of the noise and outputting a signal for canceling the noise to the sounding means (6)
And a detection means (2) for inputting signals output from the plurality of sound receiving means (1) to detect the occurrence of standing wave noise in the conduit (8), and the detection means (2) The pseudo means (5) changes the sampling period according to the repetition period of the standing wave detected by the means (2), and changes the number of stages of the constituent elements used among the predetermined number of constituent elements. A standing wave type active noise canceller, which is provided with a control means (3) for controlling so as to perform a pseudo operation.
【請求項2】 前記擬似手段(5) は,所定の周期ts
サンプリング操作を行うアナログ/ディジタル変換器
と,該アナログ/ディジタル変換器からのサンプルデー
タを所定の段数Nの構成要素へ入力して動作するディジ
タルフィルタとを含み,前記制御手段(3) は,前記騒音
源(7) から発生する騒音の基本波の周期に対する定在波
の周期の倍率rを求め,該アナログ/ディジタル変換器
が周期ts に倍率rを乗算した周期でサンプリング操作
を行い,また,該ディジタルフィルタが段数Nを倍率r
で除算した段数の前記構成要素を使用して擬似操作を行
うように制御することを特徴とする請求項1に記載の定
在波対応式能動騒音消去装置。
2. The pseudo means (5) inputs an analog / digital converter that performs a sampling operation at a predetermined cycle t s and sample data from the analog / digital converter to a component having a predetermined number N of stages. The control means (3) obtains a magnification r of the period of the standing wave with respect to the period of the fundamental wave of the noise generated from the noise source (7), and performs the analog / digital conversion. The sampling unit performs sampling operation at a cycle in which the cycle t s is multiplied by the scaling factor r, and the digital filter changes the number of stages N by the scaling factor r.
2. The standing-wave-corresponding active noise canceller according to claim 1, wherein control is performed so as to perform a pseudo operation using the number of stages of the components divided by.
JP5070590A 1993-03-30 1993-03-30 Standing-wave corresponding type active noise eliminator Withdrawn JPH06282278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5070590A JPH06282278A (en) 1993-03-30 1993-03-30 Standing-wave corresponding type active noise eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5070590A JPH06282278A (en) 1993-03-30 1993-03-30 Standing-wave corresponding type active noise eliminator

Publications (1)

Publication Number Publication Date
JPH06282278A true JPH06282278A (en) 1994-10-07

Family

ID=13435930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5070590A Withdrawn JPH06282278A (en) 1993-03-30 1993-03-30 Standing-wave corresponding type active noise eliminator

Country Status (1)

Country Link
JP (1) JPH06282278A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327980A (en) * 2005-05-11 2007-12-20 Toa Corp Digital filter, periodic noise reduction device and noise reduction device
US7942234B2 (en) 2006-08-29 2011-05-17 Nec Display Solutions, Ltd. Noise suppressor, electronic apparatus, and noise suppression characteristic control method
CN111899749A (en) * 2020-07-14 2020-11-06 上海建工集团股份有限公司 Noise reduction method for monitoring operation sound of concrete pumping pipeline
WO2023119616A1 (en) * 2021-12-24 2023-06-29 日本電信電話株式会社 Cancellation device, method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327980A (en) * 2005-05-11 2007-12-20 Toa Corp Digital filter, periodic noise reduction device and noise reduction device
JP4690243B2 (en) * 2005-05-11 2011-06-01 ティーオーエー株式会社 Digital filter, periodic noise reduction device, and noise reduction device
US7942234B2 (en) 2006-08-29 2011-05-17 Nec Display Solutions, Ltd. Noise suppressor, electronic apparatus, and noise suppression characteristic control method
US8127886B2 (en) 2006-08-29 2012-03-06 Nec Display Solutions, Ltd. Noise suppressor, electronic apparatus, and noise suppression characteristic control method
CN111899749A (en) * 2020-07-14 2020-11-06 上海建工集团股份有限公司 Noise reduction method for monitoring operation sound of concrete pumping pipeline
CN111899749B (en) * 2020-07-14 2023-08-29 上海建工集团股份有限公司 Noise reduction method for monitoring operation sound of concrete pumping pipeline
WO2023119616A1 (en) * 2021-12-24 2023-06-29 日本電信電話株式会社 Cancellation device, method, and program

Similar Documents

Publication Publication Date Title
Eriksson et al. Use of random noise for on‐line transducer modeling in an adaptive active attenuation system
US5367612A (en) Neurocontrolled adaptive process control system
EP0615224A2 (en) A method of determining the sound transfer characteristic of an active noise control system
JPH08509823A (en) Single and multi-channel block adaptation method and apparatus for active acoustic and vibration control
JPH06242787A (en) Sneaking sound control type active noise elimiation device
Das et al. Nonlinear active noise control for headrest using virtual microphone control
Akhtar Narrowband feedback active noise control systems with secondary path modeling using gain-controlled additive random noise
Das et al. Adjoint nonlinear active noise control algorithm for virtual microphone
JP6865393B2 (en) Signal processing equipment, silencer systems, signal processing methods, and programs
JPH06282278A (en) Standing-wave corresponding type active noise eliminator
JPH0511771A (en) Noise control device
JP3654980B2 (en) Active noise control device and waveform conversion device
Kajikawa et al. Frequency domain active noise control system without a secondary path model via perturbation method
Kuo et al. Active noise control systems with optimized secondary path
Jalali et al. Design and implementation of a fast active noise control system on FPGA
JPH06268480A (en) Device for deciding effective tap number of digital filter
JPH07160508A (en) Filter coefficient deciding method for adaptive filter
JPH0758223B2 (en) Method of measuring sound deadening / damping effect, measuring device, and signal source search device
EP0655151B1 (en) Multiple interacting dve algorithm
Miguez-Olivares et al. Development of an active noise controller in the DSP starter kit
Mostafavi et al. Construction Noise Cancellation with Feedback Active Control Using Machine Learning
JPH07168584A (en) Suppressing device for spurious signal
Salmasi et al. Evaluation of neural networks performance in active cancellation of acoustic noise
JPH0635483A (en) Noise cancellation system
Omoto Active noise control: Adaptive signal processing and algorithms

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530