JPH06281707A - Device for measuring voltage distribution - Google Patents

Device for measuring voltage distribution

Info

Publication number
JPH06281707A
JPH06281707A JP5121859A JP12185993A JPH06281707A JP H06281707 A JPH06281707 A JP H06281707A JP 5121859 A JP5121859 A JP 5121859A JP 12185993 A JP12185993 A JP 12185993A JP H06281707 A JPH06281707 A JP H06281707A
Authority
JP
Japan
Prior art keywords
light
voltage distribution
image
electro
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5121859A
Other languages
Japanese (ja)
Inventor
Noboru Hasegawa
昇 長谷川
Kenji Ueda
健司 植田
Takahiro Matsumoto
貴裕 松本
Teruyuki Tamaki
輝幸 玉木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5121859A priority Critical patent/JPH06281707A/en
Publication of JPH06281707A publication Critical patent/JPH06281707A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a device by which the voltage distribution inside an LSI can be measured two-dimensionally with high space resolution, with regard to the evaluation method for an electronic circuit by using the electrooptic effect. CONSTITUTION:A light beam emitted from a specially incoherent light source 6 is passed through a polarized light beam slitter 7 and further are directed to an electrooptic material 8 as a light beam having a uniform polarization direction. The material 8 is placed adjacent to an electronic circuit 5 in which the electronic elements such as transistors, diodes, etc., are integrated and the birefringence change is generated therein due to the voltage distribution inside the circuit 5. The space distribution is extracted by the splitter 7 and its image is formed on the light receiving surface of a photoelectric detector 9 through an image formation optical system 14. After the image obtained by the detector 9 is subjected to processing such as integration, etc., in an image processor 10, it is outputted as the measurement result of voltage distribution in the circuit 5 to an image display 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子計測技術分野に関
わり、電子回路内部の電圧分布を非接触かつ2次元的に
測定する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the technical field of electronic measurement, and relates to an apparatus for two-dimensionally measuring the voltage distribution inside an electronic circuit in a non-contact manner.

【0002】[0002]

【従来の技術】近年、高密度、高集積電子デバイスの開
発が進むにつれ、回路内部の電子素子数と外部端子数の
比が著しく増大してきている。この様なデバイスを外部
から評価することは困難であるため、電子回路内部の個
々の電子素子を直接測定することが必要となっている。
そのための手法として、電子ビームを用いる方法と、電
気光学効果を利用した電気光学サンプリングによる方法
(例えばJ.A.Valdmanis and G.Mourou,"Subpicosecond e
lectrooptic sampling:Principles and applications",
IEEE J.Quantum Electron.,vol.QE-22,no.1,pp.69-78,J
an.1986.参照)が用いられている。
2. Description of the Related Art In recent years, with the development of high-density and highly integrated electronic devices, the ratio of the number of electronic elements in a circuit to the number of external terminals has increased remarkably. Since it is difficult to evaluate such a device from the outside, it is necessary to directly measure each electronic element inside the electronic circuit.
As a method therefor, a method using an electron beam and a method using electro-optic sampling utilizing the electro-optic effect
(For example, Javaldmanis and G. Mourou, "Subpicosecond e
lectrooptic sampling: Principles and applications ",
IEEE J. Quantum Electron., Vol.QE-22, no.1, pp.69-78, J
an. 1986.) is used.

【0003】前者は、電子ビームを電子回路内部の電極
に照射し、そこから放出された2次電子のエネルギーか
ら電極の電圧を測定する手法である。この手法では、電
子ビームを走査させることにより回路内部の電圧分布を
測定することができる。しかし、被測定対象を真空中に
設置する必要があり、原理的に絶対電位の測定ができな
い等の問題点がある。
The former is a method of irradiating an electrode inside an electronic circuit with an electron beam and measuring the voltage of the electrode from the energy of secondary electrons emitted from the electrode. In this method, the voltage distribution inside the circuit can be measured by scanning the electron beam. However, there is a problem in that the object to be measured needs to be placed in a vacuum, and in principle the absolute potential cannot be measured.

【0004】後者は、電気信号から外部に発生する電界
中に電気光学材料を挿入し、電界により電気光学材料
(LiNbO3,ZnSe,ZnTe等)内の複屈折を変化させ(ポッケ
ルス効果)、その複屈折変化量を電気信号に同期したパ
ルスレーザー光により検出する方法である。この方法
は、原理的に非接触であるので測定対象に擾乱を与え
ず、しかも大気中で測定を行うことができる。しかし、
電気光学材料の複屈折の変化量は微少であるので、デバ
イス内部の1点での電気信号を検出するだけでも数秒と
いう積算時間が必要であり、ビーム走査技術等を駆使し
て特定領域の電圧分布を測定するには数十分オーダーの
時間が必要となることが予測される。
In the latter, an electro-optic material is inserted into an electric field generated from an electric signal to the outside, and the birefringence in the electro-optic material (LiNbO3, ZnSe, ZnTe, etc.) is changed by the electric field (Pockels effect), and the birefringence thereof is changed. This is a method of detecting the amount of change in refraction with pulsed laser light synchronized with an electric signal. Since this method is in principle non-contact, it does not disturb the measurement object and can perform measurement in the atmosphere. But,
Since the amount of change in birefringence of the electro-optic material is very small, it takes a few seconds to detect the electric signal at a single point inside the device, and it is necessary to use beam scanning technology to measure the voltage of a specific area. It is expected that it will take several tens of minutes to measure the distribution.

【0005】電気光学サンプリング技術を用いて電子回
路内部の電気信号を平面的に検出する手法が特開昭64
−18073号に開示されている。この方法では、用い
る光源の種類については言及していないが、従来のよう
な空間的にコヒーレントな光ビームの内部から空間情報
を取り出すことは不可能である。また前述したように、
従来用いられている電気光学材料の光に及ぼす変調量は
微少であるため、電気光学効果を用いた2次元的な検出
によって時間分割した画像を取ることは非常に困難であ
ると考えられる。
A method for planarly detecting an electric signal inside an electronic circuit by using an electro-optical sampling technique is disclosed in Japanese Patent Laid-Open No. 64/1988.
-18073. This method does not mention the type of light source used, but it is impossible to extract spatial information from the inside of a spatially coherent light beam as in the conventional case. Also, as mentioned above,
It is considered that it is very difficult to take a time-divided image by two-dimensional detection using the electro-optic effect, because the amount of modulation of the electro-optic material used conventionally on light is very small.

【0006】[0006]

【発明が解決しようとする課題】前項のような現状を踏
まえ、本発明は、電子回路内部の電気信号の波形測定に
おいて、主として次の課題を解決しようとするものであ
る。
Based on the current situation as described in the preceding paragraph, the present invention is mainly intended to solve the following problems in measuring the waveform of an electric signal inside an electronic circuit.

【0007】電気光学効果を用いた電圧測定において、
インコヒーレントな連続光と液晶のような電気光学効果
の大きい材料を用いることにより電子デバイス内部の定
常的な電圧分布を短時間で2次元的に測定すること。
In voltage measurement using the electro-optic effect,
Two-dimensional measurement of a steady voltage distribution inside an electronic device in a short time by using incoherent continuous light and a material having a large electro-optic effect such as liquid crystal.

【0008】本発明は、上記課題を解決することによっ
て、電子回路内部の個々の電子素子の動作特性を非接触
で測定する装置を提供するものである。
The present invention solves the above problems by providing an apparatus for contactlessly measuring the operating characteristics of individual electronic elements in an electronic circuit.

【0009】[0009]

【課題を解決するための手段】本発明の関わる電子回路
内部の電気信号の測定装置は、電気光学材料(あるいは
液晶)を被測定物を覆うように設置し、その材料にイン
コヒーレントな連続光を照射し照射光内部の空間情報を
検出することにより、回路内部の電圧分布を並列的に測
定できることを特徴としている。また、本装置では非常
に簡単な光学系で測定ができるという利点もある。
A measuring device for an electric signal inside an electronic circuit according to the present invention comprises an electro-optical material (or liquid crystal) installed so as to cover an object to be measured, and continuous light incoherent to the material. It is characterized in that the voltage distribution inside the circuit can be measured in parallel by irradiating with and detecting the spatial information inside the irradiation light. In addition, this device has an advantage that measurement can be performed with a very simple optical system.

【0010】[0010]

【作用】レーザー光のように空間的にコヒーレントな光
が波面変化を受けたとき、その変化直後ではビームスポ
ット内部の空間情報は保持されている。しかし、ビーム
が伝播されるにつれスポット内部で干渉が起こり空間情
報は均一化される。一方、空間的にインコヒーレントな
光を使用した場合には、伝播した後でも光スポット内か
ら2次元的な空間情報を取り出すことができる。本発明
者らは、空間的にインコヒーレントな連続光を用いて、
電子デバイス内部の電圧分布を測定する方法を考案し
た。本発明の実現は以下の要領で行われる。トランジス
タやダイオード等が集積化された動作中の電子回路の近
傍に電気光学材料を設置すると、電子回路から発生した
電界により材料内の複屈折が変化する。このとき材料に
一様な偏光成分を持つインコヒーレント光を入射する
と、電子回路の電圧分布を反映した複屈折の変化により
入射光の偏光状態が変化する。この偏光変化を光強度に
変換し、2次元的に配列された検出器(CCDカメラ
等)で受光して空間分布画像を出力する。この様にして
被測定対象である電子デバイス内部の電圧分布を2次元
的に測定することができる。特に、白色光源を用いた場
合には波長選択フィルター等を用いて適当に波長を選ぶ
ことができる。このとき使用する電気光学材料が相互作
用する範囲内でできるだけ短い波長を選択すると、その
波長に応じた空間分解能で測定することができる。例え
ば、波長400nmを選択すると、サブミクロンオーダ
ーの空間分解能を得ることができ、従来以上の高い空間
分解能で電圧分布を測定することが可能である。さら
に、電気光学材料の代わりに液晶を用いると高いコント
ラストの2次元画像が得られ、短時間で電圧分布の測定
が可能になる。液晶は、分子軸の配列によってさまざま
な種類に分けられるが、いずれも電圧を印加すると液晶
分子の配向が変化するという特徴がある。中でもツウィ
ステッド・ネマティック(TN)液晶は、電圧をかけな
いときには入射光に対して位相変化を与え、電圧をかけ
るにつれて変化量が小さくなるように設計されている。
その一例として、印加電圧と入射光の位相変化との関係
を図1に示す。これから、印加電圧が1.5〜3Vの間
で2π程度の大きな位相変化を生じていることがわか
る。そこで図2の様に液晶の上面に透明な基準電極1、
下面に入射光に対する反射膜3を設けた構造のプローブ
ヘッドを作製する。この構造は、2枚の薄い透明基板
(〜100μmのガラス等にあらかじめ透明電極を施し
ているもの)で液晶を挟み込む方法や、透明電極を有す
る基板にフィルム状の液晶を張り合わせる方法等によっ
て実現できる。このような液晶を材料としたプローブヘ
ッドを用いることにより、電子デバイスの電圧分布を反
映したコントラスト像を得ることができ、さらに基準電
極に印加する電圧を変化させることによって絶対電位の
測定も可能となる。このように、レーザー光を走査して
電圧分布を測定する方法等に比べて、非常に簡単な光学
系で高いコントラスト像を得ることができる。
When spatially coherent light such as laser light undergoes a wavefront change, the spatial information inside the beam spot is retained immediately after the change. However, as the beam propagates, interference occurs inside the spot and the spatial information becomes uniform. On the other hand, when spatially incoherent light is used, two-dimensional spatial information can be extracted from within the light spot even after propagating. The inventors have used spatially incoherent continuous light to
We devised a method to measure the voltage distribution inside an electronic device. The present invention is implemented as follows. When an electro-optical material is installed in the vicinity of an operating electronic circuit in which transistors, diodes, etc. are integrated, the birefringence in the material changes due to the electric field generated from the electronic circuit. At this time, when incoherent light having a uniform polarization component is incident on the material, the polarization state of the incident light changes due to the change of birefringence reflecting the voltage distribution of the electronic circuit. This change in polarization is converted into light intensity, which is received by a two-dimensionally arranged detector (CCD camera or the like) and a spatial distribution image is output. In this way, the voltage distribution inside the electronic device to be measured can be measured two-dimensionally. In particular, when a white light source is used, the wavelength can be appropriately selected by using a wavelength selection filter or the like. If a wavelength as short as possible is selected within a range where the electro-optic material used at this time interacts, measurement can be performed with a spatial resolution corresponding to the wavelength. For example, if a wavelength of 400 nm is selected, it is possible to obtain a spatial resolution on the order of submicrons, and it is possible to measure the voltage distribution with a spatial resolution higher than conventional. Furthermore, when liquid crystal is used instead of the electro-optical material, a two-dimensional image with high contrast can be obtained, and the voltage distribution can be measured in a short time. Liquid crystals are classified into various types according to the arrangement of the molecular axes, and each has a characteristic that the orientation of liquid crystal molecules changes when a voltage is applied. Above all, the twisted nematic (TN) liquid crystal is designed so as to change the phase of incident light when no voltage is applied, and to decrease the amount of change as the voltage is applied.
As an example, FIG. 1 shows the relationship between the applied voltage and the phase change of incident light. From this, it can be seen that a large phase change of about 2π occurs between the applied voltages of 1.5 to 3V. Therefore, as shown in FIG. 2, a transparent reference electrode 1 on the upper surface of the liquid crystal,
A probe head having a structure in which a reflection film 3 for incident light is provided on the lower surface is manufactured. This structure is realized by sandwiching the liquid crystal between two thin transparent substrates (~ 100μm glass etc. with transparent electrodes in advance) or by laminating a film-like liquid crystal on a substrate with transparent electrodes. it can. By using such a probe head made of liquid crystal, it is possible to obtain a contrast image that reflects the voltage distribution of the electronic device, and it is also possible to measure the absolute potential by changing the voltage applied to the reference electrode. Become. As described above, it is possible to obtain a high contrast image with a very simple optical system as compared with the method of scanning the laser light and measuring the voltage distribution.

【0011】[0011]

【実施例】以下、本発明の実施例について図を参照しな
がら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図3は本発明における空間的にインコヒー
レントな光源を用いた電圧測定装置の一実施例を示す構
造図である。
FIG. 3 is a structural diagram showing an embodiment of a voltage measuring device using a spatially incoherent light source according to the present invention.

【0013】水銀ランプの様な空間的にインコヒーレン
トな光源6から出射された単色光は、偏光ビームスプリ
ッタ7を通り偏光方向の一様な光になる。この光は測定
対象である電子回路5の近傍に設置されたZnSeの様
な電気光学材料8に入射される。この電気光学材料8の
下面には光源6の波長に対する反射膜が施されており、
この面で入射光は反射される。ところで電気光学材料8
は電圧が印加されたとき、その部分の複屈折が変化し材
料中を伝播する光に位相変調を与える。従って電気光学
材料8に入射された光は電子回路5の電圧分布を反映し
た偏光方向の変化を伴って出射することになる。この光
は、再び偏光ビームスプリッタ7を通るが、そのとき偏
光が変化した部分のみ反射される。この反射光内部の2
次元像は結像光学系14を通り、光電検出器9の受光面
に結像される。光電検出器9にはCCDカメラや2次元
に配列されたフォトダイオード等が用いられ、2次元像
として検出できるようになっている。このようにして検
出された分布像は画像処理装置10で積算等の処理が行
われ、画像表示装置7に出力される。このように空間的
にインコヒーレントな光源6を用いて、電子回路内部5
の電圧分布を2次元的に測定することができた。
Monochromatic light emitted from a spatially incoherent light source 6 such as a mercury lamp passes through a polarization beam splitter 7 and becomes a uniform light in the polarization direction. This light is incident on an electro-optical material 8 such as ZnSe, which is installed near the electronic circuit 5 to be measured. A reflection film for the wavelength of the light source 6 is provided on the lower surface of the electro-optical material 8,
Incident light is reflected on this surface. By the way, electro-optical material 8
When a voltage is applied, the birefringence of that portion changes and gives phase modulation to the light propagating in the material. Therefore, the light incident on the electro-optical material 8 is emitted with a change in the polarization direction that reflects the voltage distribution of the electronic circuit 5. This light passes through the polarization beam splitter 7 again, but only the portion where the polarization has changed at that time is reflected. 2 inside this reflected light
The three-dimensional image passes through the image forming optical system 14 and is formed on the light receiving surface of the photoelectric detector 9. A CCD camera, a two-dimensionally arrayed photodiode, or the like is used as the photoelectric detector 9 so that it can be detected as a two-dimensional image. The distribution image thus detected is subjected to processing such as integration in the image processing device 10 and output to the image display device 7. In this way, the spatially incoherent light source 6 is used to
Was able to be measured two-dimensionally.

【0014】次に電子デバイスの微少領域を観測するた
めの実施例について説明する。このときの測定光学系を
図4に示す。本測定系ではインコヒーレントな光源6と
してタングステンランプ等の白色光を用いている。光源
6から出射された光は波長選択フィルター12を通り、
単一な波長(波長0.5μm程度)の光のみが透過され
る。この単一光は偏光ビームスプリッタ7を通った後、
レンズ13で絞られ液晶を用いたプローブヘッド4に入
射される。このプローブヘッド4は図2に示した構造で
ある。一般に液晶の応答速度はマイクロ秒程度であり電
子デバイス内部の電気信号の時間変化に比べると遅い
が、伝播光に与える偏光の変化量が大きいため高いコン
トラストの画像が得られる。以下前述と同様にして入射
光はプローブヘッド4の下面で反射された後、偏光ビー
ムスプリッタ7で変調部分のみ反射され、結像光学系1
4を通って光電検出器9で検出された後、表示装置11
に出力される。このようにインコヒーレント光源6とし
て白色光を用い、電子回路5の定常的な電圧分布をサブ
ミクロンの空間分解能で測定することができた。また、
波長選択フィルター12を取り除くと電子デバイス内部
の実像が観測されるので、これを出し入れ可能にするこ
とで測定する領域を自由に選ぶことができるという利点
がある。
Next, an embodiment for observing a minute area of an electronic device will be described. The measuring optical system at this time is shown in FIG. In this measurement system, white light such as a tungsten lamp is used as the incoherent light source 6. The light emitted from the light source 6 passes through the wavelength selection filter 12,
Only light of a single wavelength (wavelength of about 0.5 μm) is transmitted. After this single light passes through the polarization beam splitter 7,
The light is focused by the lens 13 and is incident on the probe head 4 using liquid crystal. This probe head 4 has the structure shown in FIG. In general, the response speed of liquid crystal is about microseconds, which is slower than the time change of the electric signal inside the electronic device, but the amount of change in polarization given to the propagating light is large, so that a high-contrast image can be obtained. After that, the incident light is reflected by the lower surface of the probe head 4 and then only the modulated portion is reflected by the polarization beam splitter 7 in the same manner as described above.
After being detected by the photoelectric detector 9 through the display device 4, the display device 11
Is output to. Thus, white light was used as the incoherent light source 6, and the steady voltage distribution of the electronic circuit 5 could be measured with a submicron spatial resolution. Also,
Since the real image inside the electronic device is observed when the wavelength selection filter 12 is removed, there is an advantage that the region to be measured can be freely selected by making it possible to take it in and out.

【0015】この方法では、従来の電気光学サンプリン
グのようにレーザ光を絞り込む必要がないので非常に高
い空間分解能で測定ができる。また、非常に簡単な光学
系で電子回路内部の電圧分布を2次元的に測定できると
いう特徴がある。
With this method, it is not necessary to narrow down the laser beam as in the conventional electro-optical sampling, so that measurement can be performed with extremely high spatial resolution. In addition, there is a feature that the voltage distribution inside the electronic circuit can be measured two-dimensionally with a very simple optical system.

【0016】[0016]

【発明の効果】本発明は上記の通り電子デバイス近傍に
設置された電気光学材料にビーム光を入射してデバイス
内部の電圧変化を反映したビームの変調を検出する電圧
測定装置において、空間的にインコヒーレントな光源及
び平面的に配列された光電検出器を用いることにより、
電子デバイス内部の電圧分布を2次元的に測定すること
が可能となる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a voltage measuring apparatus for injecting a beam of light into an electro-optical material installed in the vicinity of an electronic device to detect the modulation of the beam reflecting a voltage change inside the device is spatially analyzed. By using an incoherent light source and a planar array of photodetectors,
It is possible to measure the voltage distribution inside the electronic device two-dimensionally.

【図面の簡単な説明】[Brief description of drawings]

【図1】TN液晶の印加電圧と入射光に対する位相変化
との関係の一例を示すグラフである。
FIG. 1 is a graph showing an example of a relationship between an applied voltage of a TN liquid crystal and a phase change with respect to incident light.

【図2】本発明に関わる電子デバイスの電圧分布を測定
するのに必要な液晶構造の一例を示す構造図である。
FIG. 2 is a structural diagram showing an example of a liquid crystal structure necessary for measuring a voltage distribution of an electronic device according to the present invention.

【図3】本発明に関わる空間的にインコヒーレントな光
源を用いた電圧測定装置の一実施例を示す構造図であ
る。
FIG. 3 is a structural diagram showing an embodiment of a voltage measuring device using a spatially incoherent light source according to the present invention.

【図4】本発明に関わる液晶を用いて2次元的に電圧分
布を測定する装置の一実施例を示す構造図である。
FIG. 4 is a structural diagram showing an embodiment of an apparatus for two-dimensionally measuring a voltage distribution using the liquid crystal according to the present invention.

【符号の説明】[Explanation of symbols]

1 基準電極(透明電極) 2 液晶 3 入射光に対する反射膜 4 液晶を用いたプローブヘッド 5 測定対象である電子回路 6 空間的にインコヒーレントな光源 7 偏光ビームスプリッタ 8 電気光学材料 9 光電検出器 10 画像処理装置 11 画像表示装置 12 波長選択フィルター 13 レンズ 14 結像光学系 1 Reference electrode (transparent electrode) 2 Liquid crystal 3 Reflective film for incident light 4 Probe head using liquid crystal 5 Electronic circuit to be measured 6 Spatial incoherent light source 7 Polarizing beam splitter 8 Electro-optical material 9 Photoelectric detector 10 Image processing device 11 Image display device 12 Wavelength selection filter 13 Lens 14 Imaging optical system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉木 輝幸 相模原市淵野辺5−10−1 新日本製鐵株 式会社エレクトロニクス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruyuki Tamaki 5-10-1, Fuchinobe, Sagamihara-shi Nippon Steel Corp. Electronics Company Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電圧によって屈折率が変化する電気光学
材料を用いた型式の電圧検出装置において、空間的にイ
ンコヒーレントな光を発生する連続光源と、光の偏光変
化を強度変化に変換する光学系と、被測定対象に照射し
た光の反射光を2次元的に検出する光電検出器とを備え
たことを特徴とする電圧分布測定装置。
1. A voltage detection device of a type using an electro-optic material whose refractive index changes with voltage, and a continuous light source for generating spatially incoherent light, and an optical device for converting polarization change of light into intensity change. A voltage distribution measuring device comprising: a system; and a photoelectric detector that two-dimensionally detects reflected light of light irradiated on an object to be measured.
【請求項2】 前記電気光学材料は液晶からなり、該液
晶は薄膜状あるいは薄い基板で挟み込んだ形状をしてお
り上部に電極を有することを特徴とする請求項1記載の
電圧分布測定装置。
2. The voltage distribution measuring device according to claim 1, wherein the electro-optical material is liquid crystal, and the liquid crystal has a shape of a thin film or is sandwiched between thin substrates and has an electrode on an upper portion thereof.
JP5121859A 1993-03-29 1993-03-29 Device for measuring voltage distribution Withdrawn JPH06281707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5121859A JPH06281707A (en) 1993-03-29 1993-03-29 Device for measuring voltage distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5121859A JPH06281707A (en) 1993-03-29 1993-03-29 Device for measuring voltage distribution

Publications (1)

Publication Number Publication Date
JPH06281707A true JPH06281707A (en) 1994-10-07

Family

ID=14821705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5121859A Withdrawn JPH06281707A (en) 1993-03-29 1993-03-29 Device for measuring voltage distribution

Country Status (1)

Country Link
JP (1) JPH06281707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436776B1 (en) * 2002-01-16 2004-06-23 한국전자통신연구원 Voltage distribution sensor
CN107228828A (en) * 2017-07-14 2017-10-03 济南快谱光电技术有限公司 The method of testing and its detection means of crystal optics uniformity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436776B1 (en) * 2002-01-16 2004-06-23 한국전자통신연구원 Voltage distribution sensor
CN107228828A (en) * 2017-07-14 2017-10-03 济南快谱光电技术有限公司 The method of testing and its detection means of crystal optics uniformity

Similar Documents

Publication Publication Date Title
JP3223319B2 (en) Observation device for voltage at multiple positions on the panel surface
US5124635A (en) Voltage imaging system using electro-optics
US5170127A (en) Capacitance imaging system using electro-optics
US5952818A (en) Electro-optical sensing apparatus and method for characterizing free-space electromagnetic radiation
US6803777B2 (en) Voltage testing and measurement
US7733499B2 (en) Method for optically testing semiconductor devices
KR100504135B1 (en) Method and apparatus using an infrared laser probe for measuring voltages directly in an integrated circuit
WO1997045747A1 (en) Electro-optical and magneto-optical sensing apparatus and method for characterizing free-space electromagnetic radiation
KR0168440B1 (en) Voltage imaging system using electro-optics
US20030067312A1 (en) Voltage testing and measurement
JP3278460B2 (en) Electro-optical measuring device for measuring electric signals in electronic components
US11561170B2 (en) Method and system for performing terahertz near-field measurements
JPH02134584A (en) Measurement of electrooptic signal
JPH0580083A (en) Method and apparatus for testing integrated circuit
JPH06281707A (en) Device for measuring voltage distribution
KR20030009349A (en) Circuit pattern detecting device and circuit pattern detecting method
JP2004177214A (en) Measuring method and measuring instrument for three-dimensional electric field distribution
US20030094938A1 (en) Circuit pattern detecting apparatus and circuit pattern inspecting method
Zhang et al. External electro-optic measurement utilizing poled polymer-based asymmetric Fabry–Perot reflection film
Zhu et al. Two-dimensional optical measurement techniques based on optical birefringence effects
JP2003185696A (en) Circuit pattern detector, circuit pattern detecting method and circuit pattern inspecting method
JP3018982B2 (en) PCB signal waveform measurement device
JPH0212852A (en) Integrated circuit diagnosing apparatus
JPH0989940A (en) Electric field detecting device
KR920000565B1 (en) Electro-optic measurements of voltage waveforms on electrical conductors

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530