JPH06281560A - Dip testing method for actual pipe - Google Patents

Dip testing method for actual pipe

Info

Publication number
JPH06281560A
JPH06281560A JP7026893A JP7026893A JPH06281560A JP H06281560 A JPH06281560 A JP H06281560A JP 7026893 A JP7026893 A JP 7026893A JP 7026893 A JP7026893 A JP 7026893A JP H06281560 A JPH06281560 A JP H06281560A
Authority
JP
Japan
Prior art keywords
stress
turnbuckle
points
steel pipe
tensile stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7026893A
Other languages
Japanese (ja)
Inventor
Takuya Hara
卓也 原
Akihiko Takahashi
明彦 高橋
Hiroyuki Ogawa
洋之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7026893A priority Critical patent/JPH06281560A/en
Publication of JPH06281560A publication Critical patent/JPH06281560A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enlarge and evaluate a stress area of a line pipe by adding a predetermined tensile stress to the inner surface of the steel pipe with the use of a turnbuckle supporting at four points. CONSTITUTION:A tensile stress is added via an interval of approximately 90 deg. to the inner surface of a steel pipe 1 with the use of a turnbuckle 2 supporting at four points. At this time, the steel pipe 1 is expanded by turning a male screw of the turnbuckle 2, and therefore there are four points where a predetermined tensile stress is attained. In order to confirm whether the predetermined tensile stress is attained, a strain gauge is attached to a measuring point and the amount of strain is converted to the stress thereby to set the predetermined stress. In this manner, when the tensile stress is impressed to the inner surface of the steel pipe 1 by the turnbuckle 2 supporting at four points, a predetermined tensile stress is obtained at four points, increased from two points in the conventional method. Therefore, a to-be-evaluated area is enlarged and the stress distribution can be detected in the state more close to the actual circumstances.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はサワー環境中のラインパ
イプを評価するための実管試験方法に関する。
FIELD OF THE INVENTION The present invention relates to an actual pipe test method for evaluating a line pipe in a sour environment.

【0002】[0002]

【従来の技術】近年、石油、天然ガスを輸送するライン
パイプにおいて腐食による材料の劣化が問題になってい
る。ラインパイプを流れる原油、天然ガスには湿潤な硫
化水素(H2 S)を含む場合が多く、これらのH2 Sは
腐食作用により発生した原子状の水素(H2 )が鋼中に
侵入して起こる割れが問題となっている。この破壊には
水素誘起割れ(HIC)と硫化物応力腐食割れ(SS
C)の2種類がある。
2. Description of the Related Art In recent years, deterioration of materials due to corrosion has become a problem in line pipes for transporting oil and natural gas. Crude oil and natural gas flowing through the line pipe often contain moist hydrogen sulfide (H 2 S). These H 2 S are the atomic hydrogen (H 2 ) generated by the corrosive action that penetrates into the steel. The crack that occurs is a problem. Hydrogen-induced cracking (HIC) and sulfide stress corrosion cracking (SS)
There are two types of C).

【0003】HICは硫化水素環境下で起こる鋼材表面
の鉄の腐食によって生じた原子状の水素が鋼中に侵入
し、鋼材中のMnSや酸化物系のクラスターのような、
層状の広がりをもつ介在物のまわりに集積して起こるも
のである。しかも、このような層状の介在物はしばしば
偏析帯の中に存在するために、介在物を起点に発生した
HICが、偏析帯によって助長されることが知られてい
る。
In HIC, atomic hydrogen generated by corrosion of iron on the surface of a steel material in a hydrogen sulfide environment penetrates into the steel, causing MnS in the steel material and oxide-based clusters.
It occurs by accumulating around inclusions having a layered spread. Moreover, since such layered inclusions are often present in the segregation zone, it is known that the HIC generated from the inclusions is promoted by the segregation zone.

【0004】一方SSCは特に高強度側で起こる現象で
あり、更に、ラインパイプ等の製造、敷設に対して溶接
施工が必須となるから、これらの用途に供される鋼の溶
接部の硬度は高くなり、鋼中に侵入した原子状の水素に
よりSSCが発生することが知られている。
On the other hand, SSC is a phenomenon that occurs particularly on the high-strength side, and since welding work is indispensable for the production and laying of line pipes, the hardness of the welded portion of the steel used for these applications It is known that SSC is generated due to atomic hydrogen that becomes high and penetrates into steel.

【0005】こうしたサワー環境中のラインパイプを評
価するための試験法が提案されている。この試験法には
主にHICを評価するNACETM0284試験法と主
にSSCを評価するNACETM0177試験法があ
る。
Test methods have been proposed to evaluate linepipes in such sour environments. This test method includes the NACETM0284 test method which mainly evaluates HIC and the NACETM0177 test method which mainly evaluates SSC.

【0006】HICを評価するためのTM0284試験
法はラインパイプから機械加工したクーポン試験片を応
力を負荷しない状態で標準溶液(H2 S飽和人工海水)
中に96時間浸漬し、HICの割れが生ずるか否かを評
価するものである。
[0006] The TM0284 test method for evaluating HIC is a standard solution (H 2 S saturated artificial seawater) in which a coupon test piece machined from a line pipe is subjected to no stress.
It is soaked in the glass for 96 hours to evaluate whether or not HIC cracks occur.

【0007】もう1つのSSCを評価するTM0177
試験法には同じくラインパイプから機械加工した丸棒引
張り試験片を標準溶液(H2 S飽和5%食塩(NaC
l)+0.5%酢酸(CH3 COOH))中に浸漬させ
所定の応力を与えることによって720時間まで破断す
るかしないかを評価する試験法である。
TM0177 to evaluate another SSC
Similarly, a round bar tensile test piece machined from a line pipe was used as a standard solution (H 2 S saturated 5% sodium chloride (NaC).
l) + 0.5% acetic acid (CH 3 COOH)) It is a test method for evaluating whether or not it breaks by 720 hours by applying a predetermined stress.

【0008】しかし、上の2つの試験法では実際のライ
ンパイプの環境と相違する点が幾つかある。TM028
4試験法では試験片に応力を負荷しないのに対して実際
の環境ではラインパイプ中に内圧が負荷されている。ま
たTM0284試験法では試験片のすべての面から水素
が侵入してくるのに対して実際のラインパイプは鋼管内
面からしか水素が侵入しない。また、ラインパイプから
試験片を加工するために残留応力が除去され、実際のラ
インパイプに存在する残留応力を評価していない。
However, the above two test methods have some differences from the actual line pipe environment. TM028
In the 4 test method, no stress is applied to the test piece, whereas in the actual environment, the internal pressure is applied to the line pipe. Further, in the TM0284 test method, hydrogen enters from all surfaces of the test piece, whereas in the actual line pipe, hydrogen enters only from the inner surface of the steel pipe. Further, the residual stress existing in the actual line pipe is not evaluated because the residual stress is removed because the test piece is processed from the line pipe.

【0009】TM0177試験法と実サワー環境での相
違点は実環境ではガース溶接(ラインパイプどうしを結
合させるために溶接するもの)を行っているためにガー
ス溶接付近の応力をシミュレイトして評価することは非
常に困難である。また、TM0284試験法と同様、機
械加工を行っているために残留応力を考慮することがで
きないといった問題点がある。
The difference between the TM0177 test method and the actual sour environment is that the girth welding (which is welded to connect line pipes to each other) is performed in the actual environment. Therefore, stress near girth welding is simulated and evaluated. Things are very difficult. Further, similar to the TM0284 test method, there is a problem that the residual stress cannot be taken into consideration because machining is performed.

【0010】以上の問題点を解消するために実際のサワ
ー環境下でのラインパイプの評価法として実管浸漬試験
法(CAPCIS試験法)が提案された。この実管浸漬
試験方法はまず、直径の半分以上の高さを持つラインパ
イプどうしをガース溶接する。次にパイプ内面にグリッ
ドブラストを行う。その後、鋼管内面にアセトン脱脂を
行う。次に図3に示すように、鋼管1内面に油圧シリン
ダーとともに2点支持のターンバックル2を用いて所定
の引張り応力(72%最小降伏応力(SMYS))を直
径方向に与える。その後、5%食塩+0.5%酢酸溶液
を鋼管内に注入し、酸素を除去するための窒素脱気を行
う。溶液内酸素量が150ppm 以下であることを確認し
た後、H2 Sを封入する。H2 S飽和(3000ppm)
後、720時間の浸漬試験を行い、試験終了後超音波探
傷によって割れが生ずるか否かを評価する試験法であ
る。図において、3は鋼管溶接部、4はターンバックル
2の雄ねじ先端に設けた応力ビームである。
In order to solve the above problems, an actual pipe immersion test method (CAPCIS test method) has been proposed as an evaluation method of a line pipe in an actual sour environment. In this real pipe immersion test method, first, line pipes having a height of at least half the diameter are girth welded. Next, grid blasting is performed on the inner surface of the pipe. Then, the inner surface of the steel pipe is degreased with acetone. Next, as shown in FIG. 3, a predetermined tensile stress (72% minimum yield stress (SMYS)) is applied to the inner surface of the steel pipe 1 in the diametrical direction by using a turnbuckle 2 supporting two points together with a hydraulic cylinder. Then, a 5% sodium chloride + 0.5% acetic acid solution is injected into the steel pipe, and nitrogen deaeration for removing oxygen is performed. After confirming that the amount of oxygen in the solution is 150 ppm or less, H 2 S is sealed. H 2 S saturation (3000ppm)
After that, a 720-hour immersion test is performed, and after the test is completed, it is a test method for evaluating whether or not cracks will occur due to ultrasonic flaw detection. In the figure, 3 is a welded portion of the steel pipe, and 4 is a stress beam provided at the tip of the male screw of the turnbuckle 2.

【0011】[0011]

【発明が解決しようとする課題】しかし、従来の実管浸
漬試験(CAPCIS試験)にあってはターンバックル
が2点支持のために鋼管内面に所定の引張り応力を付与
できる領域5は、図4に示すようにターンバックル2と
垂直方向の2領域しかないという問題点があった。本発
明は実環境でのラインパイプの内圧負荷型の応力分布を
シミュレイトするために、2点支持のターンバックルを
用いて行う実管浸漬試験よりも所定の引張り応力が存在
する領域を拡大することを目的としている。
However, in the conventional actual pipe immersion test (CAPCIS test), the region 5 where the turnbuckle can give a predetermined tensile stress to the inner surface of the steel pipe due to the two-point support is shown in FIG. As shown in, there is a problem that there are only two regions in the direction perpendicular to the turnbuckle 2. In order to simulate the internal pressure load type stress distribution of a line pipe in an actual environment, the present invention is to expand the region where a predetermined tensile stress exists as compared with an actual pipe immersion test performed using a two-point supported turnbuckle. It is an object.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明では、4点支持のターンバックルを用いて鋼管
を所定の引張り応力になるまで拡管し、実管浸漬試験を
行うものである。4点支持のターンバックルは、2点支
持のターンバックルの垂直方向にさらに2点支持のター
ンバックルを結合して構成するものである。
In order to achieve the above object, in the present invention, a steel pipe is expanded to a predetermined tensile stress by using a turnbuckle with four-point support, and an actual pipe immersion test is performed. . The four-point supported turnbuckle is configured by further connecting a two-point supported turnbuckle in the vertical direction of the two-point supported turnbuckle.

【0013】[0013]

【作用】上記のように4点支持のターンバックルを用い
て実管浸漬試験を行うと、所定の引張り応力を付与でき
る領域が4箇所に増え、評価対象領域が拡大され、より
実環境に近い状態の応力分布が得られる。
When the actual pipe immersion test is performed using the turnbuckle with four-point support as described above, the areas where a predetermined tensile stress can be applied are increased to four areas, and the evaluation target area is expanded, which is closer to the actual environment. The stress distribution of the state is obtained.

【0014】[0014]

【実施例】実施例について図面を参照して説明すると、
図1のように4点支持のターンバックル2を用いて鋼管
1内面に、ほぼ90度間隔で引張り応力を負荷する。こ
の時、ターンバックル2の雄ねじを回すことによって鋼
管1は拡管する。この時、図2のような応力分布にな
り、所定の引張り応力になる領域5は4箇所になる。所
定の応力になる確認は測定位置に歪ゲージを添付し、歪
量を応力に換算することによって、所定の応力に設定す
る。このように4点支持のターンバックル2を用いて鋼
管内面に引張り応力を負荷すると、従来の2箇所から所
定の引張り応力になる領域は4箇所に増える。
EXAMPLES Examples will be described with reference to the drawings.
As shown in FIG. 1, tensile stress is applied to the inner surface of the steel pipe 1 at intervals of approximately 90 degrees by using a turnbuckle 2 supporting four points. At this time, the steel pipe 1 is expanded by turning the male screw of the turnbuckle 2. At this time, the stress distribution is as shown in FIG. 2, and there are four regions 5 where the predetermined tensile stress is obtained. To confirm that the stress reaches a predetermined value, a strain gauge is attached to the measurement position, and the strain amount is converted into the stress to set the predetermined stress. When tensile stress is applied to the inner surface of the steel pipe by using the turnbuckle 2 with four-point support in this way, the number of regions where the predetermined tensile stress is increased from the conventional two positions to four positions.

【0015】[0015]

【発明の効果】本発明は以上説明したように構成されて
いるので以下のような効果を奏する。4点支持のターン
バックルを鋼管に負荷することにより実環境のラインパ
イプの応力分布により近くなると共に、所定の引張り応
力になる領域が従来の試験による領域の2倍になり、評
価対象領域が拡大され、試験法としての価値が高まる。
Since the present invention is constructed as described above, it has the following effects. By loading a four-point supported turnbuckle on the steel pipe, the stress distribution of the line pipe in the actual environment becomes closer, and the area where the predetermined tensile stress is obtained is double that of the conventional test area, expanding the evaluation area. And the value as a test method increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】4点支持のターンバックルを用いて鋼管を拡管
する鋼管断面図。
FIG. 1 is a sectional view of a steel pipe for expanding a steel pipe by using a turnbuckle supporting four points.

【図2】4点支持のターンバックルを用いて鋼管を拡管
した時の応力分布図。
FIG. 2 is a stress distribution diagram when a steel pipe is expanded using a turnbuckle supporting four points.

【図3】2点支持のターンバックルを用いて鋼管を拡管
する鋼管断面図。
FIG. 3 is a sectional view of a steel pipe for expanding the steel pipe by using a two-point supported turnbuckle.

【図4】2点支持のターンバックルを用いて鋼管を拡管
した時の応力分布図。
FIG. 4 is a stress distribution diagram when a steel pipe is expanded using a two-point supported turnbuckle.

【符号の説明】[Explanation of symbols]

1 鋼管 2 ターンバックル 3 溶接部 4 応力ビーム 5 所定の引張り応力領域 1 Steel pipe 2 Turnbuckle 3 Weld 4 Stress beam 5 Predetermined tensile stress area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 CAPCIS試験にてラインパイプのサ
ワー環境下の評価を行うに際し、4点支持のターンバッ
クルを用いて鋼管内面に所定の引張り応力を付与するこ
とを特徴とする実管浸漬試験方法。
1. A method for immersing a real pipe in which a predetermined tensile stress is applied to an inner surface of a steel pipe by using a turnbuckle supporting four points when a line pipe is evaluated in a sour environment by a CAPCIS test. .
JP7026893A 1993-03-29 1993-03-29 Dip testing method for actual pipe Withdrawn JPH06281560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7026893A JPH06281560A (en) 1993-03-29 1993-03-29 Dip testing method for actual pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7026893A JPH06281560A (en) 1993-03-29 1993-03-29 Dip testing method for actual pipe

Publications (1)

Publication Number Publication Date
JPH06281560A true JPH06281560A (en) 1994-10-07

Family

ID=13426613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7026893A Withdrawn JPH06281560A (en) 1993-03-29 1993-03-29 Dip testing method for actual pipe

Country Status (1)

Country Link
JP (1) JPH06281560A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030031224A (en) * 2001-10-12 2003-04-21 현대자동차주식회사 Automatic tension-controlled apparatus
JP2008292331A (en) * 2007-05-25 2008-12-04 Toshiba Corp Stress corrosion cracking test method
JP2018096890A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Sulphide stress corrosion crack testing method of steel material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030031224A (en) * 2001-10-12 2003-04-21 현대자동차주식회사 Automatic tension-controlled apparatus
JP2008292331A (en) * 2007-05-25 2008-12-04 Toshiba Corp Stress corrosion cracking test method
JP2018096890A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Sulphide stress corrosion crack testing method of steel material

Similar Documents

Publication Publication Date Title
Benjamin et al. Burst tests on pipeline with long external corrosion
Singh et al. Numerical and experimental analysis of loctite adhesive composite wrapping on EN 10028 steel pipe
Farzadi Gas pipeline failure caused by in-service welding
JPH06281560A (en) Dip testing method for actual pipe
Kim et al. The evaluation of failure pressure for corrosion defects within girth or seam weld in transmission pipelines
de Souza et al. Burst tests on pipeline containing long real corrosion defects
Kirkwood et al. Can the pre-service hydrotest be eliminated?
Dent et al. New axially loaded full ring test method for assessment of susceptibility of girth welds and parent pipe to sour service cracking
Fazzini et al. Fatigue assessment of a double submerged arc welded gas pipeline
Yamashita et al. Effects of residual stress on fatigue strength of small-diameter welded pipe joint
Conle Crack Initiation and Propagation Fatigue Life Prediction for an A36 Steel Welded Plate Specimen
Ladeuille et al. Corrosion fatigue of X80 weld in mild sour environment
JPH06273313A (en) Actual pipe immersion test method
Anelli et al. Effect of reel-laying simulation on mechanical performance of flowlines
Wang et al. Considerations of linepipe and girth weld tensile properties for strain-based design of pipelines
JPH09281021A (en) C-ring immersion test method
Scott Validation of the New Gamma Exponent Model for Axial Crack Assessment in Oil and Gas Pipelines
Sharifi et al. Investigating the effect of crack geometries and weld mismatching In order to optimize ECA analysis of girth welded offshore pipelines
Navidnezhad et al. A review on the effects of combined stress cracking defects in steels
Limón Fatigue Crack Growth Rates of Two API 5L Pipeline Steels in 3.5% NaCl Environment
Ohba et al. The Development of Casting Leg Nodes for a Jackup Rig
Ambriz et al. Proceedings of the 17th International Conference on New Trends in Fatigue and Fracture
Darcis et al. Fatigue Qualification of Heavy Wall Line Pipe and Girth Weld for High Pressure Applications
Sharifi et al. Engineering Critical Assessment of Offshore Pipelines under Operational Loading Phase According to BS 7910 Guideline
Thebault et al. Improved Girth Welding on Seamless Linepipe for High H2S Partial Pressure Condition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530