JPH06281286A - Waste heat recovering device for engine-driven heat pump - Google Patents

Waste heat recovering device for engine-driven heat pump

Info

Publication number
JPH06281286A
JPH06281286A JP5072151A JP7215193A JPH06281286A JP H06281286 A JPH06281286 A JP H06281286A JP 5072151 A JP5072151 A JP 5072151A JP 7215193 A JP7215193 A JP 7215193A JP H06281286 A JPH06281286 A JP H06281286A
Authority
JP
Japan
Prior art keywords
engine
hot water
refrigerant
heat
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5072151A
Other languages
Japanese (ja)
Other versions
JP3280113B2 (en
Inventor
Hideyuki Ohashi
秀幸 大橋
Makoto Misawa
誠 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP07215193A priority Critical patent/JP3280113B2/en
Publication of JPH06281286A publication Critical patent/JPH06281286A/en
Application granted granted Critical
Publication of JP3280113B2 publication Critical patent/JP3280113B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To provide a waste heat recovering device for an engine-driven heat pump in which engine waste heat recovering amount can be increased while maintaining excellent engine performance. CONSTITUTION:A water heat recovering device for an engine-driven heat pump comprises two systems of a first warm water circuit 20 for codling an engine body 1, and a second warm water circuit 21 for circulating to a waste gas heat exchanger 22 of the engine 1 and a refrigerant heat exchanger 35 provided in a refrigerant circuit 15. Individual circulating motor-driven pumps 23, 24 are respectively provided in the circuits 20 and 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジン排熱回収量を
増大すると共に、排熱による冷媒加熱を安定化するよう
にしたエンジン駆動式熱ポンプ装置の排熱回収装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery device for an engine driven heat pump device which increases the amount of exhaust heat recovery of the engine and stabilizes the heating of the refrigerant by the exhaust heat.

【0002】[0002]

【従来の技術】エンジン駆動式熱ポンプ装置では、エン
ジンの排熱を冷媒の加熱に利用することによって冷凍サ
イクルの能力向上を図ることができる。エンジンからの
排熱回収は、エンジン冷却水からの回収は勿論のこと、
消音器に排ガス熱交換器を設けることによって排ガスか
らも行うことができる。このようなエンジン本体や排ガ
ス熱交換器から回収する熱量は、これらに入る水温を低
くするほど多量に回収することができる。
2. Description of the Related Art In an engine driven heat pump device, the capacity of a refrigeration cycle can be improved by utilizing exhaust heat of an engine for heating a refrigerant. Exhaust heat recovery from the engine is not limited to recovery from engine cooling water,
It can also be performed from exhaust gas by providing an exhaust gas heat exchanger in the silencer. The amount of heat recovered from such an engine body or exhaust gas heat exchanger can be recovered in a larger amount as the water temperature entering these is lowered.

【0003】しかし、エンジン本体の冷却水の場合に
は、エンジン性能を最も良好に維持するため、入口水温
と出口水温との差は約10℃程度に設定する必要があ
る。そのため、温水回路としてエンジン本体のエンジン
冷却水回路と排ガス熱交換器とを直列に連結した場合に
は、入口水温をあまり下げることができず、そのため多
量のエンジン排熱を回収することには限界があった。
However, in the case of cooling water for the engine body, in order to maintain the best engine performance, it is necessary to set the difference between the inlet water temperature and the outlet water temperature to about 10 ° C. Therefore, when the engine cooling water circuit of the engine body and the exhaust gas heat exchanger are connected in series as a hot water circuit, the inlet water temperature cannot be lowered so much, and therefore there is a limit to recovering a large amount of engine exhaust heat. was there.

【0004】このような問題の対策として、エンジン排
熱の回収量を増大するためには、温水回路をエンジン冷
却水の回路と排ガス熱交換器を循環する回路との2系統
に別けるようにすることが望ましい。しかし、一般にエ
ンジン本体の冷却水回路に設けられている循環ポンプ
は、クランク軸から動力を得るようにしているため、エ
ンジン回転数の変化によって流量変化を生じ、外の系に
悪影響を与える結果になりやすい。
As a measure against such a problem, in order to increase the recovery amount of the engine exhaust heat, the hot water circuit is divided into two systems, an engine cooling water circuit and a circuit for circulating an exhaust gas heat exchanger. Is desirable. However, since the circulation pump provided in the cooling water circuit of the engine body generally obtains power from the crankshaft, the flow rate changes due to changes in the engine speed, which adversely affects the external system. Prone.

【0005】また、従来の排ガス熱交換器を利用する温
水回路では、冷媒を加熱する温水の流れを電磁弁とサー
モスタットで制御するようにしていたためオン/オフ制
御となっており、そのため冷媒が加熱されるときと加熱
されないときとに明確に分かれ、冷凍サイクルがハンチ
ングして安定しないという問題があった。
Further, in the conventional hot water circuit using the exhaust gas heat exchanger, the flow of hot water for heating the refrigerant is controlled by the solenoid valve and the thermostat, so that on / off control is performed, and therefore the refrigerant is heated. There was a problem that the refrigeration cycle was hunted and was not stable because it was clearly divided into the time when it was heated and the time when it was not heated.

【0006】[0006]

【発明が解決しようとする課題】本発明の第1の目的
は、エンジン性能を良好に維持しながらエンジン排熱の
回収量を増大可能にするエンジン駆動式熱ポンプ装置の
排熱回収装置を提供することにあり、第2の目的は、エ
ンジン排熱による冷媒加熱を安定に行えるようにするこ
とによって、冷凍サイクルの安定性と能力向上を図るよ
うにするエンジン駆動式熱ポンプ装置の排熱回収装置を
提供することにある。
SUMMARY OF THE INVENTION The first object of the present invention is to provide an exhaust heat recovery device for an engine driven heat pump device which can increase the recovery amount of engine exhaust heat while maintaining good engine performance. The second purpose is to recover the exhaust heat of the engine-driven heat pump device so as to improve the stability and capacity of the refrigeration cycle by enabling stable heating of the refrigerant by the exhaust heat of the engine. To provide a device.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明は、エンジンにより圧縮機を駆動し、該圧縮機により
冷媒を圧縮して冷媒回路に循環させるエンジン駆動式熱
ポンプ装置において、温水回路として前記エンジン本体
を冷却する第1温水回路と、前記エンジンの排ガス熱交
換器と前記冷媒回路に設けた冷媒熱交換器とを循環する
第2温水回路との2系統に別けて設け、前記第1温水回
路と第2温水回路とにそれぞれ個別の循環用電動ポンプ
を設けたことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention for achieving the above object provides an engine-driven heat pump device in which a compressor is driven by an engine, and a refrigerant is compressed by the compressor and circulated in a refrigerant circuit. As a separate system, a first hot water circuit for cooling the engine body and a second hot water circuit for circulating an exhaust gas heat exchanger of the engine and a refrigerant heat exchanger provided in the refrigerant circuit are separately provided. The first hot water circuit and the second hot water circuit are provided with separate circulating electric pumps, respectively.

【0008】さらに本発明は、上記構成の第2温水回路
において、前記排ガス熱交換器から延びる温水路を、そ
れぞれ弁開度が無段階変化するリニア弁を介して前記冷
媒熱交換器に向かう温水路と放熱用熱交換器に向かう温
水路とに分岐し、前記両リニア弁の弁開度をそれぞれ冷
凍サイクルの負荷に応じて無段階に制御する構成にした
ことを特徴とするものである。
Further, in the present invention, in the second hot water circuit having the above structure, the hot water flowing from the exhaust gas heat exchanger to the refrigerant heat exchanger via linear valves whose valve openings are changed steplessly. It is characterized in that it is branched into a path and a hot water path toward the heat radiating heat exchanger, and the valve openings of the two linear valves are controlled steplessly according to the load of the refrigeration cycle.

【0009】このように温水回路をエンジン本体冷却用
の第1温水回路と、排ガス熱交換器や冷媒熱交換器用の
第2温水回路との2系統に別けたことにより、第1温水
回路の水温を高くする一方で、第2温水回路の水温を低
く設定できるため、エンジン性能を良好に維持しなが
ら、冷媒加熱のためのエンジン排熱の回収量を増大する
ことができる。しかも、第1及び第2温水回路の循環ポ
ンプを独立の電動ポンプにしたため、温水流量がエンジ
ン回転数に影響されることがない。
By dividing the hot water circuit into two systems, the first hot water circuit for cooling the engine body and the second hot water circuit for the exhaust gas heat exchanger and the refrigerant heat exchanger, the water temperature of the first hot water circuit is increased. Since the water temperature of the second hot water circuit can be set low while increasing the engine temperature, it is possible to increase the recovery amount of the engine exhaust heat for heating the refrigerant while maintaining good engine performance. Moreover, since the circulation pumps of the first and second hot water circuits are independent electric pumps, the hot water flow rate is not influenced by the engine speed.

【0010】また、第2温水回路において、冷媒熱交換
器に対する温水流量と放熱用熱交換器に対する温水流量
とを制御する弁をそれぞれリニア弁にし、そのリニア弁
の弁開度を冷凍サイクルの負荷に応じて無段階に制御す
るため、エンジン排熱による冷媒加熱を安定化させ、冷
凍サイクルの安定性と能力向上を可能にする。以下、本
発明を図に示す実施例によって説明する。
In the second hot water circuit, the valves for controlling the hot water flow rate to the refrigerant heat exchanger and the hot water flow rate to the heat radiation heat exchanger are linear valves, and the valve opening of the linear valve is the load of the refrigeration cycle. Since the control is performed steplessly in accordance with the above, the heating of the refrigerant by the engine exhaust heat is stabilized, and the stability and capacity of the refrigeration cycle can be improved. The present invention will be described below with reference to the embodiments shown in the drawings.

【0011】図1において、1はエンジンであり、この
エンジン1によって2台の圧縮機2が駆動されるように
なっている。圧縮機2は冷媒を圧縮し、それを冷媒回路
15に循環させるようになっている。冷媒回路15は、
圧縮機2と四方弁5との間を形成する回路が、圧縮機2
から吐出した冷媒を四方弁5まで送りだす吐出回路3
と、四方弁5から還流する冷媒を圧縮機2へ戻す吸込回
路4とから構成されている。吐出回路3の途中には冷媒
中のオイルを分離するオイルセパレータ6が接続され、
また吸込回路4の途中には液相の冷媒を一時貯留するア
キュムレータ7,8が接続されている。
In FIG. 1, reference numeral 1 is an engine, and two compressors 2 are driven by the engine 1. The compressor 2 compresses the refrigerant and circulates it in the refrigerant circuit 15. The refrigerant circuit 15 is
The circuit forming between the compressor 2 and the four-way valve 5 is the compressor 2
Discharge circuit 3 that sends out the refrigerant discharged from the four-way valve 5
And a suction circuit 4 for returning the refrigerant flowing back from the four-way valve 5 to the compressor 2. An oil separator 6 for separating oil in the refrigerant is connected in the middle of the discharge circuit 3,
Further, in the middle of the suction circuit 4, accumulators 7 and 8 for temporarily storing the liquid-phase refrigerant are connected.

【0012】四方弁5から延びる冷媒循環回路は管路
9,10,11を介して環状に形成され、その途中に室
内熱交換器12と室外熱交換器13が接続されている。
この冷媒循環回路は、四方弁5の切り替えにより冷媒を
実線矢印Wの方向に循環させると暖房サイクルになり、
また破線矢印Cの方向に循環させると冷房サイクルにな
る。室内熱交換器12は1台だけに限らず、必要により
図中に鎖線で示すように複数台を連結したマルチ系にす
ることもできる。また、室外熱交換器13には室外ファ
ン14が対設されている。
The refrigerant circulation circuit extending from the four-way valve 5 is formed in an annular shape via the pipe lines 9, 10 and 11, and an indoor heat exchanger 12 and an outdoor heat exchanger 13 are connected in the middle thereof.
This refrigerant circulation circuit becomes a heating cycle when the refrigerant is circulated in the direction of the solid arrow W by switching the four-way valve 5.
Further, when the air is circulated in the direction of the broken arrow C, the cooling cycle is started. The number of indoor heat exchangers 12 is not limited to one, and if necessary, a plurality of indoor heat exchangers may be connected to form a multi-system as shown by a chain line in the figure. Further, an outdoor fan 14 is provided opposite to the outdoor heat exchanger 13.

【0013】20はエンジン1の冷却水回路を形成する
第1温水回路である。また、22はエンジン1の消音器
に設けた排ガス熱交換器であり、この排ガス熱交換器2
2を温水が循環する第2温水回路21が設けられてい
る。これら二つの温水回路の循環ポンプとしては、第1
温水回路20には電動ポンプ23が、また第2温水回路
21には電動ポンプ24がそれぞれ設けられている。
Reference numeral 20 is a first hot water circuit forming a cooling water circuit of the engine 1. Further, 22 is an exhaust gas heat exchanger provided in the silencer of the engine 1, and this exhaust gas heat exchanger 2
A second hot water circuit 21 in which hot water circulates 2 is provided. As the circulation pump of these two hot water circuits,
The hot water circuit 20 is provided with an electric pump 23, and the second hot water circuit 21 is provided with an electric pump 24.

【0014】第1温水回路20と第2温水回路21との
間は管路25,26と三方弁27とにより接続されてい
る。第1温水回路20のエンジン冷却水は三方弁27に
よって、常時は第1温水回路20だけを循環し、比較高
い水温に維持されるようになっている。しかし、エンジ
ン冷却水が所定の設定温度以上になると、三方弁27が
自動的に管路26側に切り替わり、エンジン冷却水の一
部が第2温水回路21へ流出すると共に、反対に管路2
5を介して第2温水回路21の低温の温水が流入するよ
うになっている。
The first hot water circuit 20 and the second hot water circuit 21 are connected by pipelines 25 and 26 and a three-way valve 27. The engine cooling water in the first hot water circuit 20 is always circulated only in the first hot water circuit 20 by the three-way valve 27, and is maintained at a comparatively high water temperature. However, when the engine cooling water reaches or exceeds the predetermined set temperature, the three-way valve 27 is automatically switched to the side of the pipe line 26, a part of the engine cooling water flows out to the second hot water circuit 21, and the pipe line 2 is turned on the contrary.
The low-temperature hot water in the second hot-water circuit 21 flows in through 5.

【0015】第2温水回路21において、排ガス熱交換
器22から温水を送り出す管路28は、リニア弁33と
34とを介してそれぞれ管路31と32とに分岐されて
いる。一方の管路31は、冷媒回路15内のアキュムレ
ータ7の液相冷媒中に設けた冷媒熱交換器35を経由し
て、再び排ガス熱交換器22に戻る管路29に還流する
ようになっている。また、他方の管路32は、室外に設
けた放熱用熱交換器36を経由して、同じく排ガス熱交
換器22への管路29に還流するようになっている。
In the second hot water circuit 21, a conduit 28 for sending hot water from the exhaust gas heat exchanger 22 is branched into conduits 31 and 32 via linear valves 33 and 34, respectively. One of the conduits 31 is returned to the conduit 29 that returns to the exhaust gas heat exchanger 22 again via the refrigerant heat exchanger 35 provided in the liquid phase refrigerant of the accumulator 7 in the refrigerant circuit 15. There is. The other conduit 32 is also designed to flow back to the conduit 29 to the exhaust gas heat exchanger 22 via the heat dissipation heat exchanger 36 provided outdoors.

【0016】リニア弁33,34は、弁開度が無段階に
変えられるように構成された流量制御弁である。これら
リニア弁33,34の弁開度は、マイクロコンピュータ
で構成された制御部40とデータ記憶部41により制御
されるようになっている。すなわち、制御部40には、
下記するような冷凍サイクルの負荷の代替値となる種々
の信号が入力され、それらの負荷条件に応じて冷凍サイ
クルの能力を最高にするように冷媒に与えられるべき熱
量が決定され、それに対応した温水流量がリニア弁3
3,34の弁開度Sa,Sbとして出力されるようにな
っているのである。
The linear valves 33 and 34 are flow rate control valves which are constructed so that the valve openings can be changed steplessly. The valve openings of these linear valves 33 and 34 are controlled by a control unit 40 and a data storage unit 41 which are configured by a microcomputer. That is, the control unit 40 has
Various signals that are substitute values for the load of the refrigeration cycle as described below are input, and the amount of heat to be given to the refrigerant to maximize the capacity of the refrigeration cycle is determined according to those load conditions, and corresponding to it. Hot water flow rate is linear valve 3
The valve opening degrees Sa and Sb of the valves 3 and 34 are output.

【0017】冷凍サイクルの負荷の代替値となる信号と
しては、センサ42からエンジン1のスロットル開度S
t、センサ43から圧縮機回転数Nc、排ガス熱交換器
22の出口側の温度センサ44(サーミスタ)から冷却
水温度Tw、冷媒回路の低圧飽和検知回路4’に設けた
温度センサ45(サーミスタ)から冷媒の低圧飽和温度
Ts、外気に設置した温度センサ46(サーミスタ)か
ら外気温度To、室外ファン14に設けたセンサ47か
ら室外ファン回転数Nf、またリニア弁33,34から
それぞれ弁開度Sw1,Sw2が入力されるようになっ
ている。
As a signal which is a substitute value of the load of the refrigeration cycle, the throttle opening S of the engine 1 from the sensor 42 is used.
t, the rotational speed Nc of the compressor from the sensor 43, the temperature Tw of the cooling water from the temperature sensor 44 (thermistor) on the outlet side of the exhaust gas heat exchanger 22, the temperature sensor 45 (thermistor) provided in the low pressure saturation detection circuit 4 ′ of the refrigerant circuit. From the low pressure saturation temperature Ts of the refrigerant, the temperature sensor 46 (thermistor) installed in the outside air to the outside air temperature To, the sensor 47 installed in the outdoor fan 14 to the outdoor fan rotation speed Nf, and the linear valves 33 and 34 from the valve opening degree Sw1. , Sw2 are input.

【0018】制御部40から出力するリニア弁33,3
4の弁開度Sa,Sbは、データ記憶部41に予め記憶
させたデータを使用して、例えば図2に示すようなフロ
ーチャートによって決定される。まず、St,Ncを見
て負荷のチェックを行い(101)、要求熱量Qrの計
算をする(102)。次いでTw,Ts,Sw1に基づ
き現在の冷媒に対する供給熱量Qgの計算(103)と
Tw,To,Nf,Sw2に基づき放熱熱量Qtの計算
(104)を行い、冷却水温Twの予測を行う(10
5)。これらの予測冷却水温Tw、要求熱量Qr、供給
熱量Qg、放熱熱量Qtとによりファジィ推論を行い
(106)、出力すべき上記弁開度Sa,Sbを決定す
るのである(107)。
Linear valves 33, 3 output from the control unit 40
The valve openings Sa and Sb of No. 4 are determined by using data stored in advance in the data storage unit 41, for example, according to a flowchart as shown in FIG. First, the load is checked by looking at St and Nc (101), and the required heat quantity Qr is calculated (102). Next, based on Tw, Ts and Sw1, calculation of the heat quantity Qg supplied to the current refrigerant (103) and calculation of the heat radiation quantity Qt (104) based on Tw, To, Nf and Sw2 are carried out to predict the cooling water temperature Tw (10).
5). Fuzzy inference is performed based on the predicted cooling water temperature Tw, the required heat quantity Qr, the supplied heat quantity Qg, and the heat radiation quantity Qt (106), and the valve opening degrees Sa and Sb to be output are determined (107).

【0019】このような信号によるリニア弁33,34
の弁開度制御により、負荷に応じた適正な温水流量が冷
媒熱交換器35に流れるため、冷凍サイクルの安定性を
向上すると共に、能力を向上することができる。
Linear valves 33, 34 based on such signals
Since the appropriate flow rate of hot water according to the load flows into the refrigerant heat exchanger 35 by controlling the valve opening degree, the stability of the refrigeration cycle and the capacity can be improved.

【0020】[0020]

【発明の効果】上述したように、本発明によれば、温水
回路をエンジン本体用の第1温水回路と、排ガス熱交換
器や冷媒熱交換器用の第2温水回路との2系統に別けた
ので、第1温水回路の水温を高くする一方で、第2温水
回路の水温を低く設定できるため、エンジン性能を良好
に維持しながら、エンジン排熱の回収量を増大すること
ができる。しかも、第1及び第2温水回路の循環ポンプ
を電動ポンプにしたため温水流量をエンジン回転数に影
響されずに安定にすることができる。
As described above, according to the present invention, the hot water circuit is divided into two systems, the first hot water circuit for the engine body and the second hot water circuit for the exhaust gas heat exchanger and the refrigerant heat exchanger. Therefore, while the water temperature of the first hot water circuit can be set high while the water temperature of the second hot water circuit can be set low, the recovery amount of the engine exhaust heat can be increased while maintaining good engine performance. Moreover, since the circulation pumps of the first and second hot water circuits are electric pumps, the hot water flow rate can be stabilized without being affected by the engine speed.

【0021】また、第2温水回路における冷媒熱交換器
と放熱用熱交換器とに対する温水流量をリニア弁により
制御し、かつその弁開度を冷凍サイクルの負荷に応じて
制御するようにしたので、エンジン排熱による冷媒加熱
を安定化させ、冷凍サイクルの安定性と能力を図ること
ができる。
Further, the flow rate of hot water to the refrigerant heat exchanger and the heat radiating heat exchanger in the second hot water circuit is controlled by the linear valve, and the valve opening thereof is controlled in accordance with the load of the refrigeration cycle. It is possible to stabilize the heating of the refrigerant by the exhaust heat of the engine and to improve the stability and performance of the refrigeration cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるエンジン駆動式熱ポンプ装置の排
熱回収装置の一例を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing an example of an exhaust heat recovery device of an engine-driven heat pump device according to the present invention.

【図2】リニア弁の弁開度制御の一例を示すフローチャ
ートである。
FIG. 2 is a flowchart showing an example of valve opening control of a linear valve.

【符号の説明】[Explanation of symbols]

1 エンジン 2 圧縮
機 7 アキュムレータ 15 冷
媒回路 20 第1温水回路 21 第
2温水回路 22 排ガス熱交換器 23,2
4 電動ポンプ 33,34 リニア弁 35 冷
媒熱交換器 36 放熱用熱交換器 40 制
御部 41 データ記憶部
1 Engine 2 Compressor 7 Accumulator 15 Refrigerant Circuit 20 First Hot Water Circuit 21 Second Hot Water Circuit 22 Exhaust Gas Heat Exchanger 23, 2
4 Electric Pump 33, 34 Linear Valve 35 Refrigerant Heat Exchanger 36 Heat Dissipation Heat Exchanger 40 Control Section 41 Data Storage Section

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 エンジンにより圧縮機を駆動し、該圧縮
機により冷媒を圧縮して冷媒回路に循環させるエンジン
駆動式熱ポンプ装置において、温水回路として前記エン
ジン本体を冷却する第1温水回路と、前記エンジンの排
ガス熱交換器と前記冷媒回路に設けた冷媒熱交換器とを
循環する第2温水回路との2系統に別けて設け、前記第
1温水回路と第2温水回路とにそれぞれ個別の循環用電
動ポンプを設けたエンジン駆動式熱ポンプ装置の排熱回
収装置。
1. A first hot water circuit that cools the engine body as a hot water circuit in an engine-driven heat pump device in which a compressor is driven by an engine and refrigerant is compressed by the compressor and circulated in a refrigerant circuit. The engine exhaust gas heat exchanger and the refrigerant heat exchanger provided in the refrigerant circuit are separately provided in two systems of a second hot water circuit that circulates, and the first hot water circuit and the second hot water circuit are individually provided. Exhaust heat recovery device for engine driven heat pump device equipped with electric circulation pump.
【請求項2】 前記第2温水回路において、前記排ガス
熱交換器から延びる温水路を、それぞれ弁開度が無段階
変化するリニア弁を介して前記冷媒熱交換器に向かう温
水路と放熱用熱交換器に向かう温水路とに分岐し、前記
両リニア弁の弁開度をそれぞれ冷凍サイクルの負荷に応
じて無段階に制御する構成にした請求項1記載のエンジ
ン駆動式熱ポンプ装置の排熱回収装置。
2. In the second hot water circuit, a hot water passage extending from the exhaust gas heat exchanger, a hot water passage extending toward the refrigerant heat exchanger through linear valves whose valve openings change steplessly, and a heat radiating heat. The exhaust heat of the engine-driven heat pump device according to claim 1, wherein the exhaust valve is divided into a hot water path toward the exchanger, and the valve openings of the linear valves are controlled steplessly according to the load of the refrigeration cycle. Recovery device.
JP07215193A 1993-03-30 1993-03-30 Exhaust heat recovery device for engine driven heat pump device Expired - Fee Related JP3280113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07215193A JP3280113B2 (en) 1993-03-30 1993-03-30 Exhaust heat recovery device for engine driven heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07215193A JP3280113B2 (en) 1993-03-30 1993-03-30 Exhaust heat recovery device for engine driven heat pump device

Publications (2)

Publication Number Publication Date
JPH06281286A true JPH06281286A (en) 1994-10-07
JP3280113B2 JP3280113B2 (en) 2002-04-30

Family

ID=13480976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07215193A Expired - Fee Related JP3280113B2 (en) 1993-03-30 1993-03-30 Exhaust heat recovery device for engine driven heat pump device

Country Status (1)

Country Link
JP (1) JP3280113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866681A (en) * 2014-03-18 2014-06-18 江苏奥新科技有限公司 LPG (liquefied petroleum gas) vaporizer heating device capable of heating by means of waste heat of engine and electricity and working process of LPG vaporizer heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866681A (en) * 2014-03-18 2014-06-18 江苏奥新科技有限公司 LPG (liquefied petroleum gas) vaporizer heating device capable of heating by means of waste heat of engine and electricity and working process of LPG vaporizer heating device

Also Published As

Publication number Publication date
JP3280113B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US20230092215A1 (en) Air conditioning system with capacity control and controlled hot water generation
JP2706802B2 (en) Cooling system
US6735969B2 (en) Gas heat pump type air conditioning device, engine-coolant-water heating device, and operating method for gas heat pump type air conditioning device
US5429179A (en) Gas engine driven heat pump system having integrated heat recovery and auxiliary components
US6871509B2 (en) Enhanced cooling system
US5894739A (en) Compound refrigeration system for water chilling and thermal storage
US4932221A (en) Air-cooled cooling apparatus
KR100852344B1 (en) Air conditioning apparatus
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
CN114909815A (en) Reversible heat pump
GB2102929A (en) Heat pump unit
JPH06281286A (en) Waste heat recovering device for engine-driven heat pump
SE464667B (en) HEAT PUMP INSTALLATION FOR HEATING OR COOLING THE SPACES AND HEATING OF THE TAPP HEAT WATER
JP2697376B2 (en) Defrost device for cooling system with binary refrigeration cycle
JP3370501B2 (en) Cooling system
JPH06280563A (en) Control method for cooling water temperature of engine and device thereof
CN115493320B (en) Air source heat pump system and control method thereof
JPH0942792A (en) Heat pump multi-system
JPH0157269B2 (en)
JPH06146987A (en) Control of engine-driven air conditioner
JP3467294B2 (en) Engine driven heat pump device
JP2719456B2 (en) Air conditioner
JPS6152910B2 (en)
JP3054976B2 (en) Engine driven heat pump air conditioner
JP3343623B2 (en) Engine driven heat pump air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees