JPH06280081A - Production of rare-earth metal by electrolytic reduction - Google Patents

Production of rare-earth metal by electrolytic reduction

Info

Publication number
JPH06280081A
JPH06280081A JP6891193A JP6891193A JPH06280081A JP H06280081 A JPH06280081 A JP H06280081A JP 6891193 A JP6891193 A JP 6891193A JP 6891193 A JP6891193 A JP 6891193A JP H06280081 A JPH06280081 A JP H06280081A
Authority
JP
Japan
Prior art keywords
raw material
rare
rare earth
electrolytic reduction
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6891193A
Other languages
Japanese (ja)
Other versions
JP2749756B2 (en
Inventor
Junzo Tsuruki
潤三 鶴来
Haruo Takamura
治男 高村
Takayuki Hasegawa
孝幸 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6891193A priority Critical patent/JP2749756B2/en
Publication of JPH06280081A publication Critical patent/JPH06280081A/en
Application granted granted Critical
Publication of JP2749756B2 publication Critical patent/JP2749756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To obtain a producing method for a rare-earth metal by electrolytic reduction capable of stable operation over a long period by using a rare-earth oxide specified in average particle diameter as a raw material in producing a rare-earth metal material by electrolytic reduction method. CONSTITUTION:In producing the rare-earth metal or a rare-earth alloy by electrolytic reduction, the rare-earth oxide <=8mu (preferably 2-6mu) in particle diameter is used as the raw material. La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu including Y are used as the rare-earth element. As a result, the producing method for the rare-earth element or alloy by electrolytic reduction high in productivity and capable of stable operation over a long period is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】電解還元法により希土類金属を製
造するに際しての原料希土類酸化物の粒度調整に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to adjustment of the particle size of a rare earth oxide as a raw material when a rare earth metal is produced by an electrolytic reduction method.

【0002】[0002]

【従来の技術】従来、希土類金属の電解還元製造法は、
希土類酸化物を原料として該希土類弗化物溶融塩中で電
解還元するのが一般的であった。
2. Description of the Related Art Conventionally, the method for electrolytic reduction of rare earth metals is
It was general to carry out electrolytic reduction in the rare earth fluoride molten salt using a rare earth oxide as a raw material.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、原料で
ある希土類酸化物の供給速度と適正な電流量とのバラン
スをとるのが難しく、その決定的な解決策がなかった。
本発明はかかる課題を解決した方法で長期安定操業を可
能とした生産性の高い改良された希土類金属の電解還元
製造法を提供しようとするものである。
However, it is difficult to balance the supply rate of the rare earth oxide as a raw material with an appropriate amount of current, and there has been no definitive solution.
The present invention intends to provide an improved method for electrolytic reduction production of rare earth metals with high productivity, which enables stable operation for a long period of time by a method which solves the above problems.

【0004】[0004]

【課題を解決するための手段】本発明者等はかかる課題
を解決するために原料となる希土類酸化物の粒度に着目
し、特定の粒度範囲が有効であることを見出し、本発明
を完成したもので、その要旨は、原料として平均粒度8
μm以下の希土類酸化物を使用することを特徴とする希
土類金属または希土類合金の電解還元製造法にある。
In order to solve the above problems, the present inventors have focused on the particle size of a rare earth oxide as a raw material, found that a specific particle size range is effective, and completed the present invention. The main point is that the average particle size is 8 as a raw material.
A method for electrolytic reduction production of rare earth metals or rare earth alloys is characterized by using a rare earth oxide having a size of not more than μm.

【0005】以下、本発明を詳細に説明する。希土類酸
化物を原料とする希土類金属または合金の電解還元製造
法は、該希土類弗化物と該希土類金属または合金に対し
て安定なLi、Ba等の弗化物との混合溶融塩を電解浴と
し、Mo等を陰極、黒鉛等を陽極として電気分解し、比重
差により炉底に生成蓄積した希土類金属または合金(以
下メタルという)はサイホンにより系外に取り出されて
インゴットにされて製造されている。この反応は原料酸
化物の供給速度がある限界以上の時は、長期間操業を継
続すると炉底に希土類酸弗化物を主体とするスラグが蓄
積し、炉底が上昇して操業継続が不可能となり、原料供
給速度と対応してメタル生成速度が減少する。逆にある
限界以下では陽極効果現象が発生し、安定な通電が困難
となる。即ち電圧電流の振れが始まり、次いで電流が急
激に減少する。そこで安定な操業を維持するには、適正
な電流量と原料供給速度の維持によりスラグの蓄積がな
くかつ通電の安定化が必要とされる。
The present invention will be described in detail below. A method for electrolytic reduction production of a rare earth metal or alloy using a rare earth oxide as a raw material is a mixed molten salt of the rare earth fluoride and stable Li, Ba or the like fluoride with respect to the rare earth metal or alloy as an electrolytic bath, Rare earth metals or alloys (hereinafter referred to as metals) that have been electrolyzed using Mo as a cathode and graphite as an anode and have been accumulated on the furnace bottom due to the difference in specific gravity are taken out of the system by a siphon and made into ingots. In this reaction, when the feed rate of the raw material oxide is higher than a certain limit, if the operation is continued for a long time, slag mainly composed of rare earth acid fluoride accumulates on the bottom of the furnace and the bottom of the furnace rises to make it impossible to continue the operation. Therefore, the metal production rate decreases corresponding to the raw material supply rate. On the other hand, below a certain limit, the anode effect phenomenon occurs, and stable energization becomes difficult. That is, the fluctuation of the voltage and current starts, and then the current sharply decreases. Therefore, in order to maintain a stable operation, it is necessary to prevent the accumulation of slag and stabilize the energization by maintaining an appropriate amount of current and a raw material supply rate.

【0006】本発明の最大の特徴は前記の原料酸化物の
供給速度の限界に対して原料希土類酸化物の粒度の影響
度が最も著しいことを見出したことにあり、平均粒度で
8μm以下、好ましくは2〜6μmが良い。8μm以下
の原料を使用し、安定操業を継続している状態から8μ
m以上の原料にに切り替えると、数時間内に操業が不安
定になり、スラグが炉底に蓄積して操業不能になる。一
方粒度が細かくなるに従って操業は安定し、7日以上継
続可能なことが判明した。また同時に生産性も増大し
た。しかし1μm以下では原料供給口から電解浴表面に
落下する時にその一部は電解生成ガスにあおられてガス
と共に炉外に排出するようになり、その回収、リサイク
ルを伴うこととなり経済性は低下する。
The greatest feature of the present invention is that the influence of the particle size of the raw material rare earth oxide on the limit of the feed rate of the raw material oxide is found to be the most remarkable, and the average particle size is 8 μm or less, preferably Is preferably 2 to 6 μm. 8μ from the state of using the raw material of 8μm or less and continuing stable operation
When switching to a raw material of m or more, the operation becomes unstable within a few hours, and the slag accumulates on the bottom of the furnace, making it impossible to operate. On the other hand, it became clear that the operation became stable as the particle size became finer and could be continued for 7 days or more. At the same time, productivity increased. However, if it is less than 1 μm, when it falls from the raw material supply port to the surface of the electrolytic bath, a part of it falls on the electrolytically generated gas and is discharged to the outside of the furnace together with the gas, which is accompanied by recovery and recycling, which reduces the economic efficiency. .

【0007】本発明の希土類金属酸化物を原料とする溶
融塩電解還元法は従来公知の方法によれば良く、その概
要は次のようである。例えば電解槽は 1,000mmφ×1,20
0mmHの鉄製円筒状で、陽極として黒鉛棒を6本、陰極と
してMo棒1本からなり、電解浴は原料希土類酸化物に対
応する希土類弗化物に弗化リチウム、弗化バリウムを配
合したもので、通電して浴温度は約1,000 ℃に保つ。こ
の溶融塩浴に原料希土類酸化物を少しづつ供給して電解
すれば、希土類金属は炉底に溜るので、タッピング管を
差し込んで眞空をかけ吸引して鋳型に流し込み冷却して
希土類金属インゴットとすれば良い。
The molten salt electrolytic reduction method using the rare earth metal oxide of the present invention as a raw material may be a conventionally known method, and the outline thereof is as follows. For example, the electrolytic cell is 1,000 mmφ x 1,20
It is an iron cylinder of 0 mmH, consisting of 6 graphite rods as an anode and 1 Mo rod as a cathode. The electrolytic bath is a mixture of rare earth fluoride corresponding to the raw material rare earth oxide with lithium fluoride and barium fluoride. , Keep the bath temperature at about 1,000 ℃ by energizing. If the raw material rare earth oxides are supplied little by little to this molten salt bath for electrolysis, the rare earth metal will accumulate at the bottom of the furnace.Therefore, insert a tapping tube, apply a vacuum, and suck it into the mold to cool it to form a rare earth metal ingot. Good.

【0008】本発明の適応範囲は希土類元素としてYを
含む La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Ybおよ
びLuから選択される1種の希土類金属及び2種以上の希
土類合金である。
The applicable range of the present invention is one selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu containing Y as a rare earth element. Rare earth metals and two or more kinds of rare earth alloys.

【0009】[0009]

【実施例】以下、本発明の実施態様を実施例を挙げて具
体的に説明するが、本発明はこれらに限定されるもので
はない。 (実施例1) 電解条件: 電解槽: 1,000mmφ×1,200mmH、鉄製。 陽極: 150mmφ×6本、黒鉛製、浸積長:約600mm 。 陰極: 100mmφ×1本、Mo製、浸積長:約500mm 。 タッピング管:50mmφ、鉄製。 電解浴:組成;NdF3-LiF-BaF2 (70,20,10各重量%),
浴融点;約 900℃。 電解温度;1,075 ±10℃、電流量;8.0KA 定電流、 原料希土類酸化物;酸化ネオジム、原料供給速度;10Kg
/Hr 、原料平均粒度; 15μm、 8μm、 6μm、 4μm、
1μmの5種類を調整。
EXAMPLES The embodiments of the present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. (Example 1) Electrolysis conditions: Electrolytic cell: 1,000 mmφ x 1,200 mmH, made of iron. Anode: 150mmφ × 6 pieces, made of graphite, immersion length: about 600mm. Cathode: 100 mmφ x 1, made of Mo, immersion length: about 500 mm. Tapping tube: 50mmφ, made of iron. Electrolysis bath: Composition; NdF 3 -LiF-BaF 2 (70, 20, 10% by weight each),
Bath melting point; about 900 ° C. Electrolysis temperature: 1,075 ± 10 ° C, current amount: 8.0KA constant current, raw material rare earth oxide; neodymium oxide, raw material supply rate: 10Kg
/ Hr, raw material average particle size; 15 μm, 8 μm, 6 μm, 4 μm,
Adjust 5 types of 1μm.

【0010】平均粒度6μmの酸化ネオジムを原料と
して上記電解条件で安定操業を4時間以上継続した後、
他の粒度粉末に切り替えた。 15μmの場合は、切り替え後2時間で陽極効果が起こ
り、電圧が振れ不安定になった。この時点で電圧値を変
えて対応する電流量を測定したところ、7KA、11Vが限界
であった。電流量8.0KA を維持し得るまで原料供給量を
増加させ12Kg/Hr が可能となり、メタル収量は8.7Kg/Hr
で推移したが72時間後に炉底の上昇が大きくなり、操業
を停止した。他の原料4種については、切り替え後4時
間に電圧を変えて安定な電流量を確定し、定電流8.0KA
、原料供給速度10.0Kg/Hr で長期操業に移行した。 8μmでは不安定でスポット的に1〜2Kgの原料を追
加供給すると正常に回復するが7日後に炉底の上昇が大
きくなり、操業を停止した。 6μmおよび4μmは7日以上でも異常なく、安定
した操業が可能で、メタルの収量は 8.3〜8.6Kg/Hrであ
った。以上をまとめると表1のようになる。
After a stable operation of neodymium oxide having an average particle size of 6 μm as a raw material under the above electrolysis conditions for 4 hours or more,
Switched to another particle size powder. In the case of 15 μm, the anode effect occurred 2 hours after switching, and the voltage fluctuated and became unstable. At this point, when the voltage value was changed and the corresponding amount of current was measured, 7 KA and 11 V were the limits. The raw material supply was increased to 12Kg / Hr until the current of 8.0KA could be maintained, and the metal yield was 8.7Kg / Hr.
However, after 72 hours, the rise of the bottom of the furnace became large and the operation was stopped. For the other four raw materials, the voltage was changed 4 hours after switching to determine a stable current amount, and a constant current of 8.0KA
, The raw material supply rate was 10.0 Kg / Hr, and it shifted to long-term operation. When it was 8 μm, it was unstable, and it recovered normally when spot-added 1 to 2 kg of raw material was added, but after 7 days, the rise of the furnace bottom became large and the operation was stopped. 6 μm and 4 μm had no abnormality even after 7 days or more, stable operation was possible, and the metal yield was 8.3 to 8.6 Kg / Hr. The above is summarized in Table 1.

【0011】[0011]

【表1】 ────────────────────────────── 粒度 定電流 原料供給速度 安定操業時間 メタル収量 (μm) (KA) (Kg/Hr) (日) (Kg/Hr) ────────────────────────────── 15 8 12 3日で停止 8.7 8 8 10 7日で停止 8.3 〜8.6 6 8 10 7日以上継続 8.3 〜8.6 4 8 10 7日以上継続 8.3 〜8.6 1 8 10 7日以上継続 8.3 〜8.6 ──────────────────────────────[Table 1] ────────────────────────────── Particle size Constant current Raw material supply rate Stable operation time Metal yield (μm) (KA ) (Kg / Hr) (Sun) (Kg / Hr) ────────────────────────────── 15 8 12 3 in 3 days Stop 8.7 8 8 10 Stop in 7 days 8.3 to 8.6 6 8 10 7 days or more Continue 8.3 to 8.6 4 8 10 7 days or more 8.3 to 8.6 1 8 10 7 days or more 8.3 to 8.6 ───────── ──────────────────────

【0012】(実施例2) 電解条件:電解槽、電解浴は実施例1に同じ。 電解温度;1,075 ±10℃、電流量;(8.0 +i)KA、 原料希土類酸化物;酸化ネオジム、 原料供給速度;(10.0+w)Kg/Hr 、但しw= 1.25(=1
0/8)×iとして(原料供給速度/電流量)比は一定(1.
25)とする。 原料 6μm、 4μm、 1μmについて実施
例1の7日以上の安定操業に引き続き順次i、wを増加
させた条件で4時間以上操業し、電流の振れの認められ
ない最大電流量を求め、この電流量に対応する原料供給
速度にて7日以上の操業を異常なく継続した。後半7日
間の各原料についての電流量、原料供給速度、メタル収
量は表2の通りであった。表2からも明らかなように4
μmは生産性が向上し最も成績が良かった。
Example 2 Electrolysis conditions: The electrolytic bath and electrolytic bath are the same as in Example 1. Electrolysis temperature: 1,075 ± 10 ° C, current amount: (8.0 + i) KA, raw material rare earth oxide; neodymium oxide, raw material supply rate: (10.0 + w) Kg / Hr, where w = 1.25 (= 1
0/8) × i (raw material supply speed / current amount) ratio is constant (1.
25). For the raw materials 6 μm, 4 μm, and 1 μm, the stable operation of Example 1 for 7 days or longer was continued, and then the operation was continued for 4 hours or longer under the condition that i and w were sequentially increased, and the maximum current amount in which the current fluctuation was not found was obtained. The operation was continued for 7 days or more without any abnormality at the raw material supply rate corresponding to the amount. Table 2 shows the current amount, the raw material supply rate, and the metal yield for each raw material in the latter seven days. As is clear from Table 2, 4
The productivity of μm was improved and the result was the best.

【0013】[0013]

【表2】 ────────────────────────────── 粒度 電流量 原料供給速度 安定操業時間 メタル収量 (μm) (KA) (Kg/Hr) (日) (Kg/Hr) ────────────────────────────── 6 8 10.0 7日以上継続 8.4 4 9 11.3 7日以上継続 9.5 1 9 12.0 7日以上継続 9.8 ──────────────────────────────[Table 2] ────────────────────────────── Particle size Current amount Raw material supply rate Stable operation time Metal yield (μm) (KA ) (Kg / Hr) (Sun) (Kg / Hr) ────────────────────────────── 6 8 10.0 7. Continued for more than a day 8.4 4 9 11.3 Continued for more than 7 days 9.5 1 9 12.0 Continued for more than 7 days 9.8 ────────────────────── ──────────

【0014】[0014]

【実施例3】原料酸化物を酸化ネオジウムから酸化ディ
スプロシウム10重量%、 酸化ネオジウム90重量%とし、
電解浴組成をNdF3-DyF3-LiF-BaF2(58,12,20,10 各重量
%)と変更した他は実施例1と同様の条件で操業した。
得られたメタルの組成はDy10、 Nd90各重量%であった。
Example 3 The raw material oxides were neodymium oxide to dysprosium oxide 10% by weight and neodymium oxide 90% by weight,
Operation was carried out under the same conditions as in Example 1 except that the composition of the electrolytic bath was changed to NdF 3 -DyF 3 -LiF-BaF 2 (58, 12, 20, 10 wt% each).
The composition of the obtained metal was Dy10 and Nd90, respectively.

【0015】[0015]

【発明の効果】本発明によれば、原料希土類酸化物の粒
度を特定することにより、生産性が高く長期間安定操業
が可能な希土類金属または合金の電解還元製造法を提供
することができる。
According to the present invention, it is possible to provide a method for electrolytic reduction production of a rare earth metal or alloy which has high productivity and can be stably operated for a long period of time by specifying the particle size of the raw material rare earth oxide.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解還元法により希土類金属または希土類
合金を製造するに際し、原料として平均粒度8μm以下
の希土類酸化物を使用することを特徴とする希土類金属
の電解還元製造法。
1. A method for electrolytically reducing rare earth metal, which comprises using a rare earth oxide having an average particle size of 8 μm or less as a raw material when producing a rare earth metal or a rare earth alloy by an electrolytic reduction method.
JP6891193A 1993-03-26 1993-03-26 Rare earth metal electrolytic reduction production method Expired - Lifetime JP2749756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6891193A JP2749756B2 (en) 1993-03-26 1993-03-26 Rare earth metal electrolytic reduction production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6891193A JP2749756B2 (en) 1993-03-26 1993-03-26 Rare earth metal electrolytic reduction production method

Publications (2)

Publication Number Publication Date
JPH06280081A true JPH06280081A (en) 1994-10-04
JP2749756B2 JP2749756B2 (en) 1998-05-13

Family

ID=13387315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6891193A Expired - Lifetime JP2749756B2 (en) 1993-03-26 1993-03-26 Rare earth metal electrolytic reduction production method

Country Status (1)

Country Link
JP (1) JP2749756B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108529A (en) * 2011-01-13 2011-06-29 哈尔滨工程大学 Method for preparing aluminum-gadolinium-samarium alloy by fused salt electrolysis
WO2013005349A1 (en) * 2011-07-06 2013-01-10 Jx日鉱日石金属株式会社 High-purity yttrium, process for producing high-purity yttrium, high-purity yttrium sputtering target, metal gate film deposited with high-purity yttrium sputtering target, and semiconductor element and device equipped with said metal gate film
CN103924266A (en) * 2014-04-28 2014-07-16 包头稀土研究院 Method for preparing rare earth-gadolinium alloy by adopting co-deposition method
CN111041541A (en) * 2019-12-30 2020-04-21 临沂鑫海新型材料有限公司 High-performance nickel-based wear-resistant alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108529A (en) * 2011-01-13 2011-06-29 哈尔滨工程大学 Method for preparing aluminum-gadolinium-samarium alloy by fused salt electrolysis
WO2013005349A1 (en) * 2011-07-06 2013-01-10 Jx日鉱日石金属株式会社 High-purity yttrium, process for producing high-purity yttrium, high-purity yttrium sputtering target, metal gate film deposited with high-purity yttrium sputtering target, and semiconductor element and device equipped with said metal gate film
US10041155B2 (en) 2011-07-06 2018-08-07 Jx Nippon Mining & Metals Corporation High-purity yttrium, process of producing high-purity yttrium, high-purity yttrium sputtering target, metal gate film deposited with high-purity yttrium sputtering target, and semiconductor element and device equipped with the metal gate film
CN103924266A (en) * 2014-04-28 2014-07-16 包头稀土研究院 Method for preparing rare earth-gadolinium alloy by adopting co-deposition method
CN111041541A (en) * 2019-12-30 2020-04-21 临沂鑫海新型材料有限公司 High-performance nickel-based wear-resistant alloy

Also Published As

Publication number Publication date
JP2749756B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
JP2863058B2 (en) Heat-resistant metal alloy that can be processed into a homogeneous and pure ingot and a method for producing the alloy
US3855087A (en) Method for producing rare earth metal-containing alloys
US20180087136A1 (en) Method of producing high-purity erbium
JP4296372B2 (en) Recycling method of Nd-based rare earth magnet scrap
CN103343238A (en) Zone melting and directional solidifying method used for volatile element alloy
CN110846687A (en) Mg-Zn-Zr intermediate alloy and preparation method thereof
JP2749756B2 (en) Rare earth metal electrolytic reduction production method
US5000829A (en) Process for preparing praseodymium metal or praseodymium-containing alloy
JPH0790411A (en) Production of high-purity rare earth metal
JP7361011B2 (en) Method for recycling heavy rare earth elements and method for recycling rare earth magnets
JPH0713314B2 (en) Method for producing rare earth metal and rare earth alloy
JPH0559199B2 (en)
JP2761002B2 (en) Method for producing Nd-Fe alloy or Nd metal
CN1087136A (en) Make the electrolytic process of the alloy of rare earth metal and other metal
CN103060852B (en) Method for preparing Mg-Mn-La ternary alloy through molten salt electrolysis
JPS6312947B2 (en)
US5258103A (en) Process for producing terbium alloy or terbium metal
JP3169471B2 (en) Rare earth metal electrolytic reduction production method
JP2898185B2 (en) Method for producing neodymium-dysprosium alloy for magnet
JPH0790410A (en) Production of low-oxygen rare earth metal
JP2964649B2 (en) Method for producing terbium alloy
JPH05140785A (en) Production of samarium alloy
JPH05295582A (en) Manufacture of samarium metal or samarium alloy
JP2908873B2 (en) Method for producing Nd metal
JPH06128785A (en) Production of samarium metal or samarium alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090220

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 16