JPH06279886A - Al3ti base intermetallc compound and production thereof - Google Patents

Al3ti base intermetallc compound and production thereof

Info

Publication number
JPH06279886A
JPH06279886A JP5065164A JP6516493A JPH06279886A JP H06279886 A JPH06279886 A JP H06279886A JP 5065164 A JP5065164 A JP 5065164A JP 6516493 A JP6516493 A JP 6516493A JP H06279886 A JPH06279886 A JP H06279886A
Authority
JP
Japan
Prior art keywords
powder
intermetallic compound
alloy powder
al3ti
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5065164A
Other languages
Japanese (ja)
Inventor
Nobuaki Suzuki
延明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP5065164A priority Critical patent/JPH06279886A/en
Publication of JPH06279886A publication Critical patent/JPH06279886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To remarkably improve the strength of an intermetallic compound without impairing its lightness by subjecting fine Al3Ti base alloy powder in which a part of Al is substituted by Mo to hot molding. CONSTITUTION:Al3Ti series powder is mixed with, by atom, 0.13 to 3.0 Mo powder, and after that, this mixed powder is uniformly dispersed and refined into alloy powder. This alloy powder is subjected to hot molding and is thereafter subjected to diffusion heat treatment of Mo, at need. By this method, the strength of the lightweight Al3Ti base intermetallic compound can remarkably be improved. Concerning the amt. of Mo to be added, in the case above the upper limit, the embrittlement of the stock is made severe, and in the case of the lower limit or below, the effect to be required can not be expected. Furthermore, uniform alloy powder produced by a rapid solidifying method, a mechanical alloying method or the like is preferably used as a raw material, and, in the case Mo is added by a mechanical alloying method, treatment can be executed without using lube oil owing to the excellent lubricating effect of Mo.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軽量で耐熱性に優れる
Al3 Ti系金属間化合物を、その軽量性を損なうこと
なく強度を飛躍的に向上させるAl3 Ti系金属間化合
物の製造方法と、該方法で製造したAl3 Ti系金属間
化合物に関する。
BACKGROUND OF THE INVENTION The present invention method for manufacturing a lightweight the Al 3 Ti intermetallic compound having excellent heat resistance, Al 3 Ti intermetallic compound to dramatically improve the strength without impairing the lightweight And an Al 3 Ti-based intermetallic compound produced by the method.

【0002】[0002]

【従来の技術】Ti−Al系金属間化合物の靱性改善方
法については、いくつかの方法が提供されている。しか
し、Ti−Al系金属間化合物の強度を改善する方法に
ついては、特に公知例がみられない。また、メカニカル
アロイング法が粉末処理に用いられているが、この方法
には、通常有機物系のステアリン酸亜鉛やステアリン酸
アルミ、又はワックス系の潤滑剤が用いられていた。
2. Description of the Related Art Several methods have been provided for improving the toughness of Ti-Al intermetallic compounds. However, there is no known example of the method for improving the strength of the Ti-Al intermetallic compound. Further, a mechanical alloying method is used for the powder treatment, but in this method, an organic zinc stearate or aluminum stearate or a wax type lubricant is usually used.

【0003】[0003]

【発明が解決しようとする課題】Ti−Al系金属間化
合物の強度向上については、Cr,Mn,Vなどを添加
することによって、強度を向上させることができる。し
かし、強度向上の効果が顕著に現われるのは、重量比で
8wt%以上の、これら元素の添加が必要である。その
ため、Ti−Al系金属間化合物としての比重3.4
が、たとえば3.8位まで増加し、切角の軽量というメ
リットが失われてしまうという問題点がある。また添加
元素にHfを使用した場合、軽く、強度向上の効果がえ
られるが、Hfの価格が非常に高く実用的ではない。よ
って比重を増加することなく、しかもHfを添加した場
合とほぼ同等な強度の改善効果が得られる、よりコスト
のかからない方法の開発が望まれていた。
In order to improve the strength of the Ti-Al intermetallic compound, the strength can be improved by adding Cr, Mn, V or the like. However, it is necessary to add 8 wt% or more of these elements in a weight ratio so that the effect of improving the strength remarkably appears. Therefore, the specific gravity of the Ti-Al-based intermetallic compound is 3.4.
However, there is a problem that, for example, the number of positions increases to 3.8, and the merit that the cutting angle is light is lost. Further, when Hf is used as an additional element, it is light and has the effect of improving strength, but the price of Hf is very high and not practical. Therefore, there has been a demand for the development of a less costly method capable of obtaining the effect of improving the strength substantially the same as when Hf is added, without increasing the specific gravity.

【0004】一方、前記メカニカルアロイング法におい
て、前記のように有機系の潤滑剤を用いると、潤滑効
果の持続期間が短いこと。これを昇華蒸発させるのに
加熱と脱気などの時間が必要であること。粉末の焼結
時に、残留している潤滑剤が反応し、炭化物を形成して
材料の延性改善を阻害すること。このような従来の潤
滑剤では処理した粉末がボールや容器に付着し、処理済
の粉末の排出に時間がかかること。使用するボールの
摩耗が多く、Fe分が処理した粉末に混入しやすいな
ど、不具合が多かった。本発明は前記事情に鑑みてなさ
れたもので、前記問題点を解消し、強度を改善したAl
3 Ti系金属間化合物の製造方法と、該方法によって製
造したAl3 Ti系金属間化合物を提供することを目的
とする。
On the other hand, in the mechanical alloying method, when the organic lubricant is used as described above, the duration of the lubricating effect is short. It takes time such as heating and degassing to evaporate this by sublimation. When the powder is sintered, the residual lubricant reacts to form carbides and hinder the improvement of the ductility of the material. With such conventional lubricants, the treated powder adheres to balls and containers, and it takes time to discharge the treated powder. There were many problems such as the wear of the balls used was large and the Fe content was easily mixed in the treated powder. The present invention has been made in view of the above circumstances, and Al which has solved the above problems and improved strength is provided.
An object of the present invention is to provide a method for producing a 3 Ti-based intermetallic compound and an Al 3 Ti-based intermetallic compound produced by the method.

【0005】[0005]

【課題を解決するための手段】前記目的に添い、本発明
は、原子比率で0.1〜3.0のMoを、Alの一部と
置換した微細なAl3 Ti系合金粉を作り、これを熱間
で加圧成形することによって、また本発明は、Al3
i系粉末に対し、原子比率で0.1〜3.0のMo粉末
を混合したあと、これを均一に分散微細化して合金粉を
作り、さらに、これを熱間で加圧成形したあと、Moの
拡散熱処理を施すことによって、さらに本発明は、この
製造方法によって製作したAl3 Ti系金属間化合物を
提供することによって、前記課題を解消した。本発明に
よって、Al3 Ti系金属間化合物の強度向上が、高価
なHfを使用せずに、かつ比重を殆ど増加させることな
く、また、メカニカルアロイング処理において潤滑剤を
使用することなく達成できた。
According to the present invention, in accordance with the above object, a fine Al 3 Ti-based alloy powder in which Mo in an atomic ratio of 0.1 to 3.0 is replaced with a part of Al is prepared, By hot-pressing this, the present invention also produces Al 3 T
After mixing an i powder with a Mo powder having an atomic ratio of 0.1 to 3.0, the powder was uniformly dispersed and refined to make an alloy powder, which was further hot pressed and then The present invention solves the above problems by providing a diffusion heat treatment of Mo, and further by providing an Al 3 Ti-based intermetallic compound manufactured by this manufacturing method. According to the present invention, the strength improvement of the Al 3 Ti based intermetallic compound can be achieved without using expensive Hf, with almost no increase in specific gravity, and without using a lubricant in the mechanical alloying treatment. It was

【0006】[0006]

【実施例】本発明は原子比率がAl:Ti=3:1の割
合で一つの結晶構造をもつAl3Ti系金属間化合物に
おいて、そのAlの存在位置(サイト)の一部をMoで
置換するものである。そのため、本発明では、Al,T
iの2元素を主成分とする原料粉末に、特定量のMo粉
末を添加して処理するものである。本発明の方法は図1
に示す要領によって実施する。以下、順次説明する。ま
ず、使用原料として次の仕様からなるTi粉,Al粉及
びMo粉を用いる。 Ti:O2 含有量0.5wt%以下、粒度200mes
hより小さな粒径のものを用いる。 Al:O2 含有量0.5wt%以下、粒度32〜250
meshのものを用いる。 Mo:100meshより小さな粒径のものを用いる。 なお、Moは融点が高いため、Al−Mo合金粉の作製
は難しく、したがってAl−Mo合金粉は利用せず、後
述のメカニカルアロイング法によることが好ましい。こ
れらAl,Mo,Tiの粉末原料は、原子比率(at
%)で となるように配合する。即ち、実質的には原子比率で、
Ti≦25%、0.1≦Mo≦3%とし、残部Alから
なる組成とする。Moを3%としたのは、Moの添加が
3%を越えると、素材の脆化が激しくなるからであり、
0.1以下では求める効果がえられないからである。
EXAMPLE In the present invention, in an Al 3 Ti-based intermetallic compound having one crystal structure with an atomic ratio of Al: Ti = 3: 1, a part of the existing position (site) of Al is replaced with Mo. To do. Therefore, in the present invention, Al, T
A specific amount of Mo powder is added to the raw material powder containing two elements of i as a main component for processing. The method of the present invention is shown in FIG.
Implement according to the procedure shown in. Hereinafter, they will be sequentially described. First, Ti powder, Al powder and Mo powder having the following specifications are used as raw materials. Ti: O 2 content 0.5 wt% or less, particle size 200 mes
A particle size smaller than h is used. Al: O 2 content 0.5 wt% or less, particle size 32 to 250
The thing of mesh is used. Mo: A particle having a particle size smaller than 100 mesh is used. Since Mo has a high melting point, it is difficult to produce an Al-Mo alloy powder. Therefore, it is preferable to use the mechanical alloying method described later without using the Al-Mo alloy powder. These Al, Mo, and Ti powder raw materials have an atomic ratio (at
%)so Blend so that That is, in terms of atomic ratio,
Ti ≦ 25%, 0.1 ≦ Mo ≦ 3%, and the composition is the balance Al. Mo is set to 3% because if the addition of Mo exceeds 3%, the material becomes brittle,
This is because the desired effect cannot be obtained with 0.1 or less.

【0007】次に、上記割合の原料粉末は、たとえば図
2に概念的に示した装置(アトライター)によるメカニ
カルアロイング法により処理し、均一に混合微細化した
合金粉末とする。同図において、10は密閉容器で、壁
内部に水冷ジャケットを備え、該ジャケットに冷却水を
送入する入水口14と排出用の出水口15を設け、密閉
容器10内の温度上昇を防止してある。12は攪拌アー
ムを多数設けた回転翼、13は、たとえばHe,Arな
どの不活性ガスの密閉容器10内への送入口、16は原
料粉末の投入口、17は処理済の粉末の排出口である。
11は密閉容器10内に収容された多数の鋼製のボール
で、前記原料粉末を、このボール11と一緒に不活性ガ
ス雰囲気の密閉容器10内に収容し、回転翼12を回転
して、原料粉末を多数のボール11によってミリングし
ながら処理し、微細かつ均一な混合粉末(合金粉)を調
製するものである。
Next, the raw material powders in the above proportions are processed by a mechanical alloying method using, for example, an apparatus (attritor) conceptually shown in FIG. 2 to obtain uniformly mixed and refined alloy powder. In the figure, 10 is a closed container, which is provided with a water cooling jacket inside the wall, and is provided with a water inlet 14 for feeding cooling water and a water outlet 15 for discharge to prevent the temperature inside the closed container 10 from rising. There is. Reference numeral 12 is a rotary blade provided with a large number of stirring arms, 13 is an inlet for introducing an inert gas such as He or Ar into the closed container 10, 16 is an inlet for raw material powder, and 17 is an outlet for treated powder. Is.
Reference numeral 11 denotes a large number of steel balls housed in the closed container 10. The raw material powder is housed together with the balls 11 in the closed container 10 in an inert gas atmosphere, and the rotary blades 12 are rotated, The raw material powder is processed while being milled by a large number of balls 11 to prepare a fine and uniform mixed powder (alloy powder).

【0008】すなわち、次の処理条件のもとに処理をお
こなう。まず、ボール11はたとえば直径3/8インチ
の鋼球などを用い、ボール重量に対する原料粉末重量の
割合は、 また、潤滑剤は用いない。さらに密閉容器10内の雰囲
気はArガス雰囲気とし、回転翼12の回転速度は、好
ましくは250rpmとする。そして処理時間は添加し
たMo粉末がAlのマトリックス中に均一にとり込まれ
た状態となるまでとし、実質的に2〜30時間とする。
この処理時間が長いと生産性が低下するばかりでなく、
ボールの摩耗による不純物が混入するおそれがあるので
最も好ましい時間に設定する。なお、前記処理に代っ
て、同じ成分を含む溶湯を作り、これを分散急冷する慣
用の急冷凝固法によって同一組成の合金粉を調製するこ
とができる(図1参照)。また、其他の方法によって、
前記合金粉を調製してもよい。
That is, processing is performed under the following processing conditions. First, for the ball 11, for example, a steel ball having a diameter of 3/8 inch is used, and the ratio of the raw material powder weight to the ball weight is No lubricant is used. Furthermore, the atmosphere in the closed container 10 is an Ar gas atmosphere, and the rotation speed of the rotary blades 12 is preferably 250 rpm. Then, the treatment time is set to a state in which the added Mo powder is uniformly taken into the Al matrix, and is substantially 2 to 30 hours.
If this processing time is long, not only will productivity decrease, but
Since impurities may be mixed due to wear of the balls, the most preferable time is set. Instead of the above treatment, an alloy powder having the same composition can be prepared by a conventional rapid solidification method in which a molten metal containing the same components is prepared and dispersed and rapidly cooled. Also, by other methods,
The alloy powder may be prepared.

【0009】次に、以上によって得られた原料粉末を、
次の処理によって固化成形する。軟鋼製のカプセル内に
前記原料粉末を充填し、350〜450℃の温度中で真
空引きによって減圧後、密封する。このようにしたカプ
セルを熱間等方静水圧(HIP)装置により、次の条件
で処理する。 処理温度 最高1300℃ 処理圧力 1000kg/cm2 以上 処理時間 1Hr 以上 これによって固化した素材が得られる。なお、前記メカ
ニカルアロイング法又は急冷凝固法によって得られた原
料粉末は、図1に示すように前記カプセルへの充填封入
をおこなわずに、これをピレット形状又は部品形状とす
るためプレス成形したあと、熱間押出し、あるいは熱間
プレス(HIP又はHPなど)をおこなって成形しても
よい。次に、この固化成形した素材に対し、真空中又は
不活性ガス雰囲気中で、拡散熱処理を施して品質を改善
する。熱処理温度は1300℃以下で、4時間以上が好
ましい。
Next, the raw material powder obtained as described above is
It is solidified by the following treatment. The raw material powder is filled in a capsule made of mild steel, depressurized by vacuuming at a temperature of 350 to 450 ° C., and then sealed. The thus-formed capsules are processed under the following conditions by a hot isostatic pressure (HIP) device. Processing temperature 1300 ° C. maximum Processing pressure 1000 kg / cm 2 or more Processing time 1 H r or more This gives a solidified material. The raw material powder obtained by the mechanical alloying method or the rapid solidification method is not press-filled into the capsule as shown in FIG. Alternatively, hot extrusion or hot pressing (HIP, HP, etc.) may be performed for molding. Next, the solidified material is subjected to diffusion heat treatment in a vacuum or in an inert gas atmosphere to improve the quality. The heat treatment temperature is preferably 1300 ° C. or lower and 4 hours or longer.

【0010】次に上記処理によって得られたものの、強
度が改善されているか否かの確認のため圧縮試験を実施
した。得られた素材から所定の試験片5(w)×5
(d)×10(h)mmを作り、十分研磨したのち、
0.5mm/分の速度(クロスヘッドの移動速度)での
圧縮試験により、クロスヘッドの変位量と破断強さとの
関係を調べることで添加したMoの有意性を調査した。
表1はMoを添加した試料No.1,No.2と、添加
しない試料No.3(Al3 Ti)とを圧縮試験によっ
て、圧縮強さ、破断歪を、また硬さ測定によって比較評
価したものである。
Next, a compression test was carried out to confirm whether or not the strength, which was obtained by the above treatment, was improved. Predetermined test piece 5 (w) x 5 from the obtained material
After making (d) × 10 (h) mm and polishing it sufficiently,
The significance of Mo added was investigated by examining the relationship between the displacement amount of the crosshead and the breaking strength by a compression test at a speed of 0.5 mm / min (movement speed of the crosshead).
Table 1 shows sample No. with Mo added. 1, No. 2 and sample No. 3 (Al 3 Ti) was compared and evaluated by a compression test for compression strength, breaking strain, and hardness measurement.

【0011】[0011]

【表1】 [Table 1]

【0012】表1に示す試料No.1から明らかなよう
にMoの1原子%の添加によって、試料No.3の無添
加のものと比較して圧縮強さσc は約30%、破断歪ε
も約10%、比強度は約32%も上昇しており、Moの
添加が有効であることがわかる。しかも比重は殆ど差が
ない。
Sample No. 1 shown in Table 1 As is clear from Sample No. 1, the addition of 1 atom% of Mo resulted in the sample No. The compressive strength σ c is about 30%, and the breaking strain ε is
Also increased by about 10% and the specific strength increased by about 32%, which shows that the addition of Mo is effective. Moreover, there is almost no difference in specific gravity.

【0013】図3はAl3 Ti系材料に各種元素を添加
した試料について、その圧縮強さと比重との関係を示し
たもので、Moを原子比率で1%添加した試料Mo1
低比重で高強度を示している。これは比強度で比較する
とHf1 の値(51.1)とほぼ同等であり、実用上、M
oの添加がかなりの優位をもっていることが判る。ここ
で示した試料記号において、Mo1 はTi:25%,M
o:1%,Al:74%、であり、Ti25Mo1 Al74
を示す。またHf1 はTi:25%,Hf:1%,残部
Alを示す。即ち、全試料ともTiは25%としたもの
に添加元素の種類と量を変えたものである。なお、試料
No.2のようにMoを3%以上添加すると脆化が激し
くなり、試料切断中でも亀裂が入るほど脆くなった。従
って実質的にMo添加量の上限値は3%である。
FIG. 3 shows the relationship between the compressive strength and the specific gravity of a sample obtained by adding various elements to an Al 3 Ti-based material. The sample Mo 1 containing 1% Mo by atomic ratio has a low specific gravity. It shows high strength. This is almost equivalent to the value of Hf 1 (51.1) when compared in terms of specific strength, and in practice, M
It can be seen that the addition of o has a considerable advantage. In the sample code shown here, Mo 1 is Ti: 25%, M
o: 1%, Al: 74%, and Ti 25 Mo 1 Al 74.
Indicates. Further, Hf 1 represents Ti: 25%, Hf: 1%, and the balance Al. That is, in all the samples, the content and the amount of the additive element were changed to 25% Ti. Sample No. When Mo is added in an amount of 3% or more as in No. 2, embrittlement became severe, and the sample became brittle enough to crack even during cutting. Therefore, the upper limit of the amount of added Mo is substantially 3%.

【0014】また、Mo添加の付随効果として、メカニ
カルアロイング法による処理をおこなった場合に、ボー
ルや容器内壁への合金粉の付着が少なく、処理済粉の排
出が短時間でおこなえ、工数も削減できた。よって、従
来、使用していたステアリン酸系などの潤滑剤を使用し
なくてもすむ。即ち、このような従来の潤滑剤は、有機
物であるため、粉末のメカニカルアロイング法による処
理中に内部に取り込まれ、焼結工程で炭化物を形成し易
い。そしてこの炭化物が形成されると硬度は向上するが
靭性は逆に低下してしまう。これに対し、Moではその
ような問題点がなく、しかも潤滑剤としての効果は、前
記有機物系の潤滑剤よりはるかに永い。このような理由
からMoを添加しておこなったメカニカルアロイング法
によって製造した原料粉末は、極めて細かくなり、かつ
均一であった。以上のようにMoの添加効果は、Al3
Ti系材料の強度の改善効果のみならず、メカニカルア
ロイング処理における潤滑剤として有効であることがわ
かった。特にAlやTi,Niといった延性の強い粉末
を用いる場合に、その効果は極めて大きい。また、ボー
ルの摩耗によるFe分の混入が極めて少ないため、靭性
改善用の元素との併用によって、さらに靭性を向上させ
る可能性がある。ここで本発明の方法により強度を向上
させたAl3 Ti系金属化合物を用い、これをマトリッ
クスとなるAlのなかに分散させて、強化したアルミ合
金とすることもできる。
As a side effect of the addition of Mo, when the treatment by the mechanical alloying method is performed, the adhesion of the alloy powder to the balls and the inner wall of the container is small, the treated powder can be discharged in a short time, and the man-hours are increased. I was able to reduce. Therefore, it is not necessary to use a stearic acid type lubricant which has been used conventionally. That is, since such a conventional lubricant is an organic substance, it is easily incorporated inside the powder during the mechanical alloying process and easily forms a carbide in the sintering step. When this carbide is formed, hardness is improved but toughness is decreased. On the other hand, Mo does not have such a problem, and its effect as a lubricant is far longer than that of the organic lubricant. For these reasons, the raw material powder produced by the mechanical alloying method with Mo added was extremely fine and uniform. As described above, the effect of adding Mo is that Al 3
It was found that not only the effect of improving the strength of the Ti-based material, but also effective as a lubricant in the mechanical alloying treatment. Especially when using a powder having a strong ductility such as Al, Ti or Ni, the effect is extremely large. Further, since Fe content is extremely small due to wear of the balls, it is possible to further improve the toughness by using it together with an element for improving the toughness. Here, it is also possible to use an Al 3 Ti-based metal compound whose strength has been improved by the method of the present invention and disperse this in Al serving as a matrix to obtain a reinforced aluminum alloy.

【0015】[0015]

【発明の効果】本発明によれば、次のような効果がえら
れる。 Moの添加によりAl3 Ti系金属間化合物の強度
が著しく改善される。 Moの添加量は、少量であるため素材比重も大きく
ならない。 比強度ではHf添加品と同水準にあり、Mo価格は
Hfの価格の1/10以下であるため、原料コストをHf
添加の場合より低くすることができる。 少量のMo粉をメカニカルアロイング法において添
加すると、Mo自体が優れた潤滑効果をもっているた
め、従来の潤滑剤の使用を廃止することができるととも
に、短時間で均一な原料粉末(合金粉)が得られる。ま
た処理後の装置からの粉末の排出も円滑におこなえ、、
工数低減ができる。
According to the present invention, the following effects can be obtained. The addition of Mo significantly improves the strength of the Al 3 Ti based intermetallic compound. Since the amount of Mo added is small, the material specific gravity does not increase. The specific strength is the same level as the Hf-added product, and the Mo price is less than 1/10 of the Hf price.
It can be lower than in the case of addition. When a small amount of Mo powder is added in the mechanical alloying method, since Mo itself has an excellent lubricating effect, it is possible to abolish the use of conventional lubricants and to obtain a uniform raw material powder (alloy powder) in a short time. can get. In addition, the powder can be discharged smoothly from the device after processing,
Man-hours can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法の処理工程を説明する図であ
る。
FIG. 1 is a diagram illustrating a treatment process of a manufacturing method of the present invention.

【図2】本発明の製造方法におけるメカニカルアロイン
グ法に用いる装置の概要を説明する図である。
FIG. 2 is a diagram illustrating an outline of an apparatus used for a mechanical alloying method in the manufacturing method of the present invention.

【図3】Al3 Ti系金属間化合物に対する第三元素の
添加による圧縮強さと比重との関係を示す図である。
FIG. 3 is a diagram showing a relationship between compressive strength and specific gravity due to addition of a third element to an Al 3 Ti-based intermetallic compound.

【符号の説明】[Explanation of symbols]

10 密封容器 11 ボール 12 回転翼 10 Sealed container 11 Ball 12 Rotor blade

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 原子比率で0.1〜3.0のMoを、A
lの一部と置換した微細なAl3 Ti系合金粉を作り、
これを熱間で加圧成形することを特徴とするAl3 Ti
系金属間化合物の製造方法。
1. An atomic ratio of Mo of 0.1 to 3.0
Make a fine Al 3 Ti-based alloy powder by replacing a part of
Al 3 Ti, characterized by being hot-pressed
A method for producing an intermetallic compound.
【請求項2】 Al3 Ti系粉末に対し、原子比率で
0.1〜3.0のMo粉末を混合したあと、これを均一
に分散微細化して合金粉を作り、さらに、これを熱間で
加圧成形したあと、Moの拡散熱処理を施すことを特徴
とするAl3 Ti系金属間化合物の製造方法。
2. An Al 3 Ti-based powder is mixed with a Mo powder having an atomic ratio of 0.1 to 3.0, and the powder is uniformly dispersed and refined to make an alloy powder. A method for producing an Al 3 Ti-based intermetallic compound, which comprises subjecting the material to pressure molding in step 1 above, and then performing a diffusion heat treatment of Mo.
【請求項3】 前記Al,Mo及びTiが、原子比率で となるように配合してあることを特徴とする請求項1又
は2に記載のAl3 Ti系金属間化合物の製造方法。
3. The atomic ratio of Al, Mo and Ti is The method for producing an Al 3 Ti-based intermetallic compound according to claim 1 or 2, characterized in that
【請求項4】 前記Al3 Ti系合金粉を、この成分か
らなる溶湯を用いておこなう急冷凝固法によって製造す
ることを特徴とする請求項1に記載のAl3Ti系金属
間化合物の製造方法。
4. The method for producing an Al 3 Ti-based intermetallic compound according to claim 1, wherein the Al 3 Ti-based alloy powder is produced by a rapid solidification method using a molten metal containing this component. .
【請求項5】 均一に分散微細化した前記合金粉を、メ
カニカルアロイング法によって製造することを特徴とす
る請求項2に記載のAl3 Ti系金属間化合物の製造方
法。
5. The method for producing an Al 3 Ti-based intermetallic compound according to claim 2, wherein the alloy powder uniformly dispersed and refined is produced by a mechanical alloying method.
【請求項6】 前記方法によって製造した請求項1又は
2に記載のAl3 Ti系金属間化合物。
6. The Al 3 Ti-based intermetallic compound according to claim 1, which is produced by the method.
JP5065164A 1993-03-24 1993-03-24 Al3ti base intermetallc compound and production thereof Pending JPH06279886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5065164A JPH06279886A (en) 1993-03-24 1993-03-24 Al3ti base intermetallc compound and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5065164A JPH06279886A (en) 1993-03-24 1993-03-24 Al3ti base intermetallc compound and production thereof

Publications (1)

Publication Number Publication Date
JPH06279886A true JPH06279886A (en) 1994-10-04

Family

ID=13278975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5065164A Pending JPH06279886A (en) 1993-03-24 1993-03-24 Al3ti base intermetallc compound and production thereof

Country Status (1)

Country Link
JP (1) JPH06279886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484786A (en) * 2019-09-23 2019-11-22 中南大学 A kind of high densification core-shell structure particles reinforced Al matrix composite and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110484786A (en) * 2019-09-23 2019-11-22 中南大学 A kind of high densification core-shell structure particles reinforced Al matrix composite and preparation method thereof
CN110484786B (en) * 2019-09-23 2021-08-10 中南大学 High-densification core-shell structure particle reinforced Al-based composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US4627959A (en) Production of mechanically alloyed powder
US5147603A (en) Rapidly solidified and worked high strength magnesium alloy containing strontium
US5098469A (en) Powder metal process for producing multiphase NI-AL-TI intermetallic alloys
EP2376248B1 (en) Method for the manufacture of a metal part
US3950166A (en) Process for producing a sintered article of a titanium alloy
EP0079755B1 (en) Copper base spinodal alloy strip and process for its preparation
JP6880203B2 (en) Aluminum alloy for additional manufacturing technology
JP2021507088A5 (en)
EP0229511A1 (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
AU607255B2 (en) Aluminum-base oxide dispersion strengthened powders and extruded products thereof free of texture
KR20190009785A (en) A method for producing a lead-free or low lead content brass billet and the resulting billet
US5000910A (en) Method of manufacturing intermetallic compound
JPS63169340A (en) Production of ceramic dispersion strengthened aluminum alloy
US4077108A (en) Process for producing dense machinable alloys from particulate scrap
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
GB2074609A (en) Metal binder in compaction of metal powders
JPS5937339B2 (en) Method for manufacturing high silicon aluminum alloy sintered body
US2973570A (en) High temperature structural material and method of producing same
JP4008597B2 (en) Aluminum-based composite material and manufacturing method thereof
JPH06279886A (en) Al3ti base intermetallc compound and production thereof
US11085109B2 (en) Method of manufacturing a crystalline aluminum-iron-silicon alloy
JPS62224602A (en) Production of sintered aluminum alloy forging
JP2003055747A (en) Sintered tool steel and production method therefor
JPH06279885A (en) Al3ti base intermetallic compound and production thereof