JPH0627971A - In-cabin indistinct sound reducing device - Google Patents

In-cabin indistinct sound reducing device

Info

Publication number
JPH0627971A
JPH0627971A JP4082326A JP8232692A JPH0627971A JP H0627971 A JPH0627971 A JP H0627971A JP 4082326 A JP4082326 A JP 4082326A JP 8232692 A JP8232692 A JP 8232692A JP H0627971 A JPH0627971 A JP H0627971A
Authority
JP
Japan
Prior art keywords
speaker
occupant
noise
circuit
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4082326A
Other languages
Japanese (ja)
Other versions
JP3384493B2 (en
Inventor
Hiroshi Iitaka
宏 飯高
Manpei Tamamura
万平 玉村
Kazuyuki Kondo
和幸 近藤
Keitaro Yokota
恵太郎 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp, Fuji Heavy Industries Ltd filed Critical Pioneer Electronic Corp
Priority to JP08232692A priority Critical patent/JP3384493B2/en
Priority to GB9305314A priority patent/GB2265277B/en
Priority to US08/032,057 priority patent/US5485523A/en
Priority to DE4308398A priority patent/DE4308398C2/en
Publication of JPH0627971A publication Critical patent/JPH0627971A/en
Application granted granted Critical
Publication of JP3384493B2 publication Critical patent/JP3384493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Exhaust Silencers (AREA)

Abstract

PURPOSE:To provide the in-cabin indistinct sound reducing device which effectively perform stable and delicate noise reduction by finding speaker/microphone transmission characteristics without requiring troublesome operation and giving an unpleasant feeling. CONSTITUTION:A primary source PSE which is highly correlative with an engine vibration sound is inputted to adaptive filters 11 and 12 and unmanned state transmission characteristic setting circuits 17a, 18a, 19a, and 20a and outputted as canceling sounds from speakers 13 and 14 and the noise reduced state at a listening point is detected as error signals by error microphones 15 and 16 and inputted to LMS(Least Mean Square) arithmetic circuits 21 and 22. The signals which are corrected by the unmanned state transmission characteristic setting circuits 17a, 18a, 19a, and 20a, on the other hand, are corrected by on-car person influence characteristic circuits 17b, 18b, 19b, and 20b previously stored with the influence of a person on the car and inputted to the LMS arithmetic circuit 21 and 22 to update the filter coefficients of the adaptive filters 11 and 12 so that the error signals become minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンジンの振動騒音を
主要因として発生する車室内のこもり音を相殺音と干渉
させて低減させる車室内こもり音低減装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle interior muffler noise reducing apparatus for reducing the muffler noise generated in the vehicle compartment due to the vibration noise of an engine by interfering with the canceling noise.

【0002】[0002]

【従来の技術】エンジンの振動騒音を主要因として発生
する車室内騒音に対し、この騒音と同一振幅で逆位相と
なる音(相殺音)を付加音源から発生させ、車室内騒音
を低減させる種々の技術が提案されている。
2. Description of the Related Art In addition to vehicle interior noise that is mainly caused by engine vibration noise, a sound (cancellation sound) having the same amplitude and opposite phase to this noise is produced from an additional sound source to reduce vehicle interior noise. The technology of is proposed.

【0003】このような技術として、例えば、特開平3
−5255号公報において、エンジン回転の2次成分に
同期して逆位相となる基本正弦波の数値データを予め記
憶させておき、クランク角センサより求められるエンジ
ン回転数と、圧力センサより求められるエンジン負荷と
で上記基本正弦波の位相と振幅を修正することによっ
て、エンジン振動等を直接検出する振動センサー等を必
要とせず、相殺音を作ることのできる車室内こもり音低
減装置が示されている。
As such a technique, for example, Japanese Patent Laid-Open No. Hei 3
No. 5255, numerical data of a basic sine wave having an opposite phase in synchronism with a secondary component of engine rotation is stored in advance, and the engine rotation speed obtained from a crank angle sensor and the engine obtained from a pressure sensor are stored. By modifying the phase and amplitude of the basic sine wave with the load, there is shown a vehicle interior muffler noise reduction device that can create a canceling sound without the need for a vibration sensor or the like that directly detects engine vibration and the like. .

【0004】また、最近ではLMS(Least Mean S
quare )アルゴリズム(最適フィルター係数を求める計
算式を簡略化するため、フィルターの修正式が再帰式で
あることを利用し、平均自乗誤差を瞬間自乗誤差で近似
して求める理論)、あるいは、このLMSアルゴリズム
を多チャンネルに拡大したMEFX−LMS(Multipl
e Error Filtered X−LMS)アルゴリズムを利用
した車室内こもり音低減装置が実用化され始めている。
このLMSアルゴリズムを利用した車室内こもり音低減
装置では、エンジン振動を主要因として発生する車室内
騒音を消音する場合、エンジン振動と相関の高い信号を
騒音振動源信号(プライマリソース)として検出し、こ
のプライマリソースから最適フィルターによって騒音に
対する相殺音信号(キャンセル信号)を合成してスピー
カから相殺音を発生する。そして、受聴点における騒音
低減状態を誤差信号としてエラーマイクによって検出
し、この誤差信号とスピーカ/マイク間伝達特性Cmn(m
はマイク、n はスピーカの数値)によって補正したプラ
イマリソースとからLMSアルゴリズムにより、上記最
適フィルターのフィルター係数を更新し受聴点における
騒音低減を最適な値とするようになっている。このLM
Sアルゴリズムを利用した車室内こもり音低減装置によ
れば、前述した車室内こもり音低減装置に比べ、より安
定した細かい騒音低減を実現することができる。
Recently, LMS (Least Mean S)
quare) algorithm (the theory that the mean squared error is approximated by the instantaneous squared error by utilizing the recursive formula of the filter to simplify the formula for finding the optimum filter coefficient), or this LMS MEFX-LMS (Multipl) with the algorithm expanded to multiple channels
A vehicle interior muffler noise reduction apparatus using an e-Error Filtered X-LMS algorithm has begun to be put into practical use.
In the vehicle interior muffler noise reduction device using this LMS algorithm, when the vehicle interior noise generated mainly due to engine vibration is silenced, a signal highly correlated with the engine vibration is detected as a noise vibration source signal (primary source), A canceling sound is generated from the speaker by synthesizing a canceling sound signal (cancellation signal) for noise from the primary source by an optimum filter. Then, the noise reduction state at the listening point is detected as an error signal by the error microphone, and the error signal and the speaker / microphone transfer characteristic Cmn (m
Is a microphone and n is a primary source corrected by a numerical value of a speaker) and the LMS algorithm is used to update the filter coefficient of the optimum filter to optimize the noise reduction at the listening point. This LM
According to the vehicle interior muffler noise reducing apparatus that uses the S algorithm, more stable and finer noise reduction can be realized as compared with the vehicle interior muffler noise reducing apparatus described above.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記LMS
アルゴリズムを利用した車室内こもり音低減装置によ
り、効果的な騒音低減を実現するには、乗員の着座状
態、車内温度、車内湿度および経時変化等の影響により
変化する前記スピーカ/マイク間伝達特性Cmnを正確に
設定する必要がある。このため、従来では、乗員が着座
した後、車室内こもり音低減装置が作動する前に予め乗
員がシステム同定により設定しなければならなかった。
すなわち、図7の概念図に示すように、乗員が着座した
状態のエラーマイクとスピーカとの間を未知システム1
とし、所定の周波数成分を含むランダムノイズRN を、
上記未知システム1と更新可能な伝達特性Cmnを有する
伝達特性設定回路(Cmn設定回路)2とに入力する。上
記未知システム1に入力されたランダムノイズRN はス
ピーカから音として発生させられ、実際のスピーカ/マ
イク間伝達特性の影響を受けてエラーマイクに達し検出
される。そして、このエラーマイクで検出された信号と
上記Cmn設定回路2から出力された信号とを重ね合わせ
誤差信号としてLMS回路3に入力し、このLMS回路
3で、この誤差信号が最小となるように上記Cmn設定回
路2の伝達特性Cmnを更新することにより、上記実際の
スピーカ/マイク間伝達特性を推定するものである。
尚、複数のスピーカを有する場合は、各スピーカ毎に独
立に上述の作業を行なう。
By the way, the above LMS
In order to realize effective noise reduction by the vehicle interior muffler noise reduction device using an algorithm, the speaker / microphone transfer characteristic Cmn that changes depending on the seating condition of the occupant, the temperature inside the vehicle, the humidity inside the vehicle, and the change over time. Must be set correctly. For this reason, conventionally, after the occupant has been seated, the occupant has to set in advance by system identification before the operation of the muffler noise reduction device in the passenger compartment.
That is, as shown in the conceptual diagram of FIG. 7, the unknown system 1 is provided between the error microphone and the speaker when the occupant is seated.
And a random noise RN containing a predetermined frequency component,
It is input to the unknown system 1 and a transfer characteristic setting circuit (Cmn setting circuit) 2 having an updatable transfer characteristic Cmn. The random noise RN input to the unknown system 1 is generated as a sound from a speaker, reaches the error microphone under the influence of the actual speaker / microphone transfer characteristic, and is detected. Then, the signal detected by the error microphone and the signal output from the Cmn setting circuit 2 are input to the LMS circuit 3 as an overlay error signal so that the LMS circuit 3 minimizes the error signal. By updating the transfer characteristic Cmn of the Cmn setting circuit 2, the actual speaker / microphone transfer characteristic is estimated.
In the case of having a plurality of speakers, the above work is performed independently for each speaker.

【0006】しかしながら、このような作業は非常に煩
わしく、また、ランダムノイズを発生させシステム同定
を行なうため乗員に不快感を与えるといった問題があ
る。
However, such a work is very troublesome, and random noise is generated to identify the system, which causes an unpleasant occupant.

【0007】さらに、このような煩雑な作業や乗員への
不快感を無くすため、実験等の結果からスピーカ/マイ
ク間伝達特性を一定の固定値に定めることも考えられる
が、この場合、特に経時変化や、車内へのクッション、
アクセサリ、チャイルドシート等の備品の配置によって
はスピーカ/マイク間伝達特性が、実際の伝達特性値と
ずれてしまうといった問題あり、このような問題を回避
しようとしてスピーカ/マイク間伝達特性を設定する
と、他の条件では実際のスピーカ/マイク間伝達特性と
のずれが大きくなりLMSアルゴリズムを利用した車室
内こもり音低減装置の有する本来の能力を十分に発揮さ
せることができなくなる可能性がある。
Further, in order to eliminate such troublesome work and discomfort to the occupant, it is conceivable to set the transmission characteristic between the speaker and the microphone to a fixed value based on the results of experiments and the like. Changes and cushions inside the car,
There is a problem that the speaker / microphone transfer characteristic may deviate from the actual transfer characteristic value depending on the arrangement of accessories such as accessories and child seats. If the speaker / microphone transfer characteristic is set to avoid such a problem, other Under the above condition, there is a large deviation from the actual transmission characteristics between the speaker and the microphone, and there is a possibility that the original capability of the vehicle interior muffler noise reduction device that uses the LMS algorithm may not be fully exerted.

【0008】本発明は上記事情に鑑みてなされたもの
で、乗員に煩雑な作業や不快感を与えることなく、乗員
の着座状態、車内温度、車内湿度、経時変化および備品
の配置等の車内環境により変化するスピーカ/マイク間
伝達特性を正確に得ることができ、効果的に安定して細
かい騒音低減が可能な車室内こもり音低減装置を提供す
ることを目的としている。
The present invention has been made in view of the above circumstances, and the inside environment of the passenger such as the seated state of the passenger, the temperature inside the vehicle, the humidity inside the vehicle, the change over time, and the arrangement of fixtures, etc., without giving the passenger any troublesome work or discomfort. It is an object of the present invention to provide a vehicle interior muffled sound reduction device capable of accurately obtaining a speaker / microphone transfer characteristic that changes due to, and effectively and stably reducing fine noise.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明による車室内こもり音低減装置は、エンジン振動
と相関の高い騒音振動源信号を適応フィルターによりキ
ャンセル信号として合成するキャンセル信号合成手段
と、上記キャンセル信号を騒音に対する相殺音として音
源から発生する相殺音発生手段と、受聴点における騒音
低減状態を誤差信号として検出する誤差信号検出手段
と、予め乗員のいない状態で随時上記相殺音発生手段と
上記誤差信号検出手段との間の伝達特性を無人状態伝達
特性として設定する無人状態伝達特性設定手段と、乗員
の着座状態が上記無人状態伝達特性に与える影響を予め
記憶し乗員影響特性として設定する乗員影響特性記憶設
定手段と、上記騒音振動源信号を上記無人状態伝達特性
と上記乗員影響特性とで補正し、この補正した騒音振動
源信号と上記誤差信号とに基づき上記適応フィルターの
フィルター係数を更新するキャンセル信号更新手段とを
備えたものである。
In order to achieve the above object, a vehicle interior muffled noise reducing apparatus according to the present invention comprises a cancel signal synthesizing means for synthesizing a noise vibration source signal having a high correlation with engine vibration as a cancel signal by an adaptive filter. , A canceling sound generating means for generating the canceling signal from the sound source as a canceling sound for noise, an error signal detecting means for detecting a noise reduction state at the listening point as an error signal, and the canceling sound generating means at any time in the absence of an occupant in advance. And an unmanned state transfer characteristic setting means for setting a transfer characteristic between the error signal detection means and the unmanned state transfer characteristic, and an effect of a seating state of an occupant on the unmanned state transfer characteristic is stored in advance and set as an occupant influence characteristic. Occupant influence characteristic memory setting means, and the noise vibration source signal to the unmanned state transfer characteristic and the occupant influence characteristic. Correcting, in which a cancellation signal updating means for updating the filter coefficients of the adaptive filter on the basis of this correction the noise vibration source signal and the error signal.

【0010】[0010]

【作 用】上記構成において、まず、無人状態伝達特性
設定手段で、予め乗員のいない状態で相殺音発生手段と
誤差信号検出手段との間の伝達特性を無人状態伝達特性
として随時設定する。そして、乗員の着座した後、この
乗員の着座状態から、乗員影響特性記憶設定手段で、予
め記憶されている乗員の着座状態が上記無人状態伝達特
性に与える影響を乗員影響特性として設定する。次に、
エンジン振動騒音が生じた際には、キャンセル信号合成
手段で、エンジン振動と相関の高い騒音振動源信号を適
応フィルターによりキャンセル信号として合成し、上記
相殺音発生手段から上記キャンセル信号を騒音に対する
相殺音として音源から発生する。そして、誤差信号検出
手段で、受聴点における騒音低減状態を誤差信号として
検出し、この誤差信号をキャンセル信号更新手段に入力
する。一方、上記騒音振動源信号は上記無人状態伝達特
性と上記乗員影響特性とで補正されて上記キャンセル信
号更新手段に入力され、このキャンセル信号更新手段
で、上記補正した騒音振動源信号と上記誤差信号とに基
づき上記適応フィルターのフィルター係数を更新する。
[Operation] In the above configuration, first, the unmanned state transfer characteristic setting means sets the transfer characteristic between the canceling sound generating means and the error signal detecting means as an unmanned state transfer characteristic in advance in the absence of an occupant. After the occupant is seated, the occupant influence characteristic storage setting means sets the influence of the occupant's seating state stored in advance on the unmanned state transfer characteristic as the occupant influence characteristic from the seated state of the occupant. next,
When engine vibration noise occurs, the cancel signal synthesizing means synthesizes a noise vibration source signal having a high correlation with the engine vibration as a cancel signal by an adaptive filter, and the canceling sound generating means cancels the canceling signal against the noise. Generated from the sound source. Then, the error signal detecting means detects the noise reduction state at the listening point as an error signal, and inputs this error signal to the cancel signal updating means. On the other hand, the noise vibration source signal is corrected by the unmanned state transfer characteristic and the occupant influence characteristic and input to the cancel signal updating means, and the cancel signal updating means corrects the noise vibration source signal and the error signal. Based on and, the filter coefficient of the adaptive filter is updated.

【0011】[0011]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。図1〜図6は本発明の一実施例を示し、図1は車
室内こもり音低減装置のシステム概略図、図2は車室内
こもり音低減装置のシステムを車内に搭載した場合の概
略説明図、図3は無人状態スピーカ/マイク間伝達特性
の初期設定の概念図、図4は乗員影響特性の初期設定の
概念図、図5は無人状態スピーカ/マイク間伝達特性の
使用前設定の概念図、図6は無人状態スピーカ/マイク
間伝達特性と乗員影響特性の概念説明図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 6 show an embodiment of the present invention, FIG. 1 is a schematic system diagram of a vehicle interior muffler noise reduction device, and FIG. 2 is a schematic explanatory diagram when the vehicle interior muffler noise reduction system is installed in a vehicle. FIG. 3 is a conceptual diagram of initial setting of unmanned speaker / microphone transfer characteristics, FIG. 4 is a conceptual diagram of initial setting of occupant influence characteristics, and FIG. 5 is a conceptual view of unattended speaker / microphone transfer characteristics before use. FIG. 6 is a conceptual explanatory diagram of an unmanned speaker / microphone transmission characteristic and an occupant influence characteristic.

【0012】図中、符号10は車室内こもり音低減装置
を示し、この車室内こもり音低減装置10は、エンジン
(図示せず)により発生するエンジン関連の室内振動騒
音と相関の高い騒音振動源信号(プライマリソース)P
SEが入力される2つのキャンセル信号合成手段としての
適応フィルター11、12と、これら適応フィルター1
1、12にD/A変換器、アンプ(いずれも図示せず)
を介して接続された相殺音発生手段としてのスピーカ1
3、14と、受聴点における騒音低減状態を誤差信号と
して検出する誤差信号検出手段としての2つのエラーマ
イク15、16と、上記プライマリソースPSEが入力さ
れる4つのスピーカ/マイク間伝達特性推定回路17、
18、19、20と、このスピーカ/マイク間伝達特性
推定回路17、18からの信号と上記エラーマイク1
5、16からの誤差信号とが入力され、これらの信号に
基づき上記適応フィルター11のフィルター係数を更新
可能なキャンセル信号更新手段としてのLMS(Least
Mean Square )演算回路21と、同様に上記スピー
カ/マイク間伝達特性推定回路19、20からの信号と
上記エラーマイク15、16からの誤差信号が入力さ
れ、これらの信号に基づき上記適応フィルター12のフ
ィルター係数を更新可能なキャンセル信号更新手段とし
てのLMS演算回路22とから構成されている。
In the figure, reference numeral 10 denotes a vehicle interior muffled noise reducing apparatus. The vehicle interior muffled noise reducing apparatus 10 is a noise vibration source having a high correlation with engine-related indoor vibration noise generated by an engine (not shown). Signal (primary source) P
Adaptive filters 11 and 12 as two cancellation signal synthesizing means to which SE is input, and these adaptive filters 1
D / A converters and amplifiers 1 and 12 (neither shown)
1 as a canceling sound generation means connected via
3 and 14, two error microphones 15 and 16 as error signal detecting means for detecting the noise reduction state at the listening point as an error signal, and four speaker / microphone transfer characteristic estimation circuits to which the primary source PSE is input. 17,
18, 19, 20 and signals from the speaker / microphone transfer characteristic estimating circuits 17, 18 and the error microphone 1
The error signals from 5 and 16 are input, and LMS (Least) as a cancel signal updating means capable of updating the filter coefficient of the adaptive filter 11 based on these signals.
Mean Square) arithmetic circuit 21, the signals from the speaker / microphone transfer characteristic estimation circuits 19 and 20 and the error signals from the error microphones 15 and 16 are input, and the adaptive filter 12 of the adaptive filter 12 is based on these signals. It is composed of an LMS operation circuit 22 as a cancel signal updating means capable of updating the filter coefficient.

【0013】上記適応フィルター11、12と上記スピ
ーカ/マイク間伝達特性推定回路17、18、19、2
0とに入力される前記プライマリソースPSEは、例え
ば、点火パルス、燃料噴射パルスあるいはクランク角セ
ンサ(図示せず)等からの信号を所定に成形・加工した
信号や、これらの信号にエンジンの負荷情報を反映させ
た信号で、エンジン振動騒音と相関の高い信号となって
いる。
The adaptive filters 11, 12 and the speaker / microphone transfer characteristic estimation circuits 17, 18, 19, 2
The primary source PSE input to 0 and 0 is, for example, a signal obtained by shaping and processing a signal from an ignition pulse, a fuel injection pulse, a crank angle sensor (not shown), or the like in a predetermined manner, or an engine load based on these signals. It is a signal that reflects information and has a high correlation with engine vibration noise.

【0014】また、前記適応フィルター11は、前記L
MS演算回路21によりフィルター係数が更新されるF
IR(Finite Impulse Response )フィルターで所
定のタップ数を有し、この適応フィルター11に入力さ
れた上記プライマリソースPSEは、上記フィルター係数
と畳み込み積和されキャンセル信号として、D/A変換
器に出力され増幅器(いずれも図示せず)を介して付加
音源であるスピーカ13から相殺音として発生されるよ
うになっている。同様に、前記適応フィルター12も、
前記LMS演算回路22によりフィルター係数が更新さ
れるFIRフィルターで所定のタップ数を有し、この適
応フィルター12に入力された上記プライマリソースP
SEは、上記フィルター係数と畳み込み積和されキャンセ
ル信号として、D/A変換器に出力され増幅器(いずれ
も図示せず)を介して付加音源であるスピーカ14から
相殺音として発生されるようになっている。
Further, the adaptive filter 11 has the L
F in which the filter coefficient is updated by the MS operation circuit 21
An IR (Finite Impulse Response) filter has a predetermined number of taps, and the primary source PSE input to the adaptive filter 11 is convolution product summed with the filter coefficient and output as a cancel signal to the D / A converter. A canceling sound is generated from the speaker 13, which is an additional sound source, through an amplifier (neither is shown). Similarly, the adaptive filter 12 also
The FIR filter whose filter coefficient is updated by the LMS operation circuit 22 has a predetermined number of taps and is input to the adaptive filter 12 by the primary source P.
SE is generated as a canceling sound from the speaker 14 which is an additional sound source through the D / A converter as a cancellation signal which is convolution product summed with the above filter coefficient and is output to the D / A converter (neither is shown). ing.

【0015】上記スピーカ13、14は、例えば、図示
しないフロントドア等に配設されており、この車室内の
受聴点(例えば、助手席26の乗員の耳に近接する位置
と運転席27のドライバーの耳に近接する位置)には上
記エラーマイク15、16が配設されている。これらエ
ラーマイク15、16により、振動騒音と相殺音との干
渉の結果が検出され、上記LMS演算回路21、22に
誤差信号として入力されるようになっている。
The speakers 13 and 14 are arranged, for example, at a front door (not shown) or the like, and the listening point (for example, the position near the ears of the passenger in the passenger seat 26 and the driver in the driver's seat 27) in the passenger compartment. The error microphones 15 and 16 are provided at positions (close to the ears). The error microphones 15 and 16 detect the result of the interference between the vibration noise and the canceling sound, and input the result to the LMS operation circuits 21 and 22 as an error signal.

【0016】また、上記LMS演算回路21は、上記各
エラーマイク15、16からの誤差信号と、上記各スピ
ーカ/マイク間伝達特性推定回路17、18からの信号
とから瞬間自乗誤差を求め、上記各エラーマイク15、
16からの誤差信号が最小となるように、前記適応フィ
ルター11のフィルター係数を更新するようになってお
り、上記LMS演算回路22も同様に、上記各エラーマ
イク15、16からの誤差信号と、上記各スピーカ/マ
イク間伝達特性推定回路19、20からの信号とからフ
ィルター修正量を求め、上記各エラーマイク15、16
からの誤差信号が最小となるように、前記適応フィルタ
ー12のフィルター係数を更新するようになっている。
Further, the LMS arithmetic circuit 21 obtains an instantaneous square error from the error signals from the error microphones 15 and 16 and the signals from the speaker / microphone transfer characteristic estimating circuits 17 and 18, and Each error microphone 15,
The filter coefficient of the adaptive filter 11 is updated so that the error signal from 16 is minimized, and the LMS arithmetic circuit 22 similarly receives the error signals from the error microphones 15 and 16, The filter correction amount is obtained from the signals from the speaker / microphone transfer characteristic estimation circuits 19 and 20 to obtain the error microphones 15 and 16 described above.
The filter coefficient of the adaptive filter 12 is updated so as to minimize the error signal from.

【0017】また、上記各スピーカ/マイク間伝達特性
推定回路17、18、19、20は、無人状態伝達特性
設定手段としての無人状態伝達特性設定回路(C'0mn回
路)17a、18a、19a、20aと、乗員影響特性
回路(CXmn 回路)17b、18b、19b、20bと
から構成されており、これらCXmn 回路17b、18
b、19b、20bには乗員影響特性記憶設定回路23
が接続されている。尚、上記C'0mn回路と上記CXmn 回
路のmは上記各エラーマイク15、16のマイク番号
(エラーマイク15をNo.1、エラーマイク16をNo.2と
する)を示し、nは上記各スピーカ13、14のスピー
カ番号(スピーカ13をNo.1、スピーカ14をNo.2とす
る)を示す。すなわち、上記スピーカ13と上記エラー
マイク15との間のスピーカ/マイク間伝達特性はC1
1、上記スピーカ13と上記エラーマイク16との間の
スピーカ/マイク間伝達特性はC21、上記スピーカ14
と上記エラーマイク15との間のスピーカ/マイク間伝
達特性はC12、上記スピーカ14と上記エラーマイク1
6との間のスピーカ/マイク間伝達特性はC22となり、
上記各C'0mn回路は、それぞれC'011回路17a、C'0
21回路18a、C'012回路19a、C'022回路20aで
示され、さらに、上記各CXmn 回路は、それぞれCX11
回路17b、CX21 回路18b、CX12 回路19b、C
X22 回路20bで示される。
The speaker / microphone transfer characteristic estimation circuits 17, 18, 19, 20 are unmanned state transfer characteristic setting circuits (C'0mn circuits) 17a, 18a, 19a as unmanned state transfer characteristic setting means. 20a and occupant influence characteristic circuits (CXmn circuits) 17b, 18b, 19b, 20b. These CXmn circuits 17b, 18
b, 19b, and 20b, the occupant influence characteristic memory setting circuit 23
Are connected. In addition, m of the C'0mn circuit and the CXmn circuit indicates the microphone number of each of the error microphones 15 and 16 (error microphone 15 is No. 1 and error microphone 16 is No. 2), and n is each of the above. The speaker numbers of the speakers 13 and 14 (the speaker 13 is No. 1 and the speaker 14 is No. 2) are shown. That is, the speaker / microphone transfer characteristic between the speaker 13 and the error microphone 15 is C1.
1. The speaker / microphone transfer characteristic between the speaker 13 and the error microphone 16 is C21, and the speaker 14 is
The speaker / microphone transfer characteristic between the error microphone 15 and the error microphone 15 is C12, and the speaker 14 and the error microphone 1 are
The transmission characteristic between the speaker and the microphone between 6 and 6 is C22,
The above-mentioned C'0mn circuits are C'011 circuits 17a and C'0, respectively.
21 circuit 18a, C'012 circuit 19a, C'022 circuit 20a. Further, each of the above CXmn circuits is CX11.
Circuit 17b, CX21 circuit 18b, CX12 circuit 19b, C
It is shown by the X22 circuit 20b.

【0018】さらに、上記乗員影響特性記憶設定回路2
3は、乗員の着座を検出する着座センサA24と着座セ
ンサB25とが接続された乗員着座判定回路23aと、
様々な乗員着座状態の組み合わせ条件の乗員影響特性C
Xmn が予め記憶され上記乗員着座判定回路23aからの
信号により前記CXmn 回路17b、18b、19b、2
0bに乗員影響特性CXmn を設定可能な乗員影響特性記
憶設定回路(CX 記憶設定回路)23bとからなり、こ
の乗員影響特性記憶設定回路23と上記CXmn回路17
b、18b、19b、20bとで乗員影響特性記憶設定
手段を形成している。
Further, the occupant influence characteristic memory setting circuit 2 described above.
3 is an occupant seating determination circuit 23a to which a seating sensor A24 for detecting seating of an occupant and a seating sensor B25 are connected,
Occupant influence characteristics C under various combination conditions of seated occupants
Xmn is stored in advance, and the CXmn circuits 17b, 18b, 19b, 2 are generated by the signal from the passenger seating determination circuit 23a.
0b, the occupant influence characteristic memory setting circuit (CX memory setting circuit) 23b capable of setting the occupant influence characteristic CXmn, and the occupant influence characteristic memory setting circuit 23 and the CXmn circuit 17 described above.
b, 18b, 19b, and 20b form an occupant influence characteristic memory setting means.

【0019】上記着座センサA24は助手席26のシー
ト内部に、上記着座センサB25は運転席27のシート
内部に配設されており、一定重量の加重によりON−OFF
して乗員の着座状態を検出するものである。尚、上記着
座センサA、Bは、例えば赤外線センサ等の光学式セン
サ、ロードセルによる重量センサ等を用いても良い。ま
た、ロードセル等の重量を検出可能なセンサを使用した
場合、この重量により着座した乗員が、子供かあるいは
大人か等の判別も可能となり、より細かく乗員の着座状
態を検出可能となる。さらに、赤外線センサ等の光学式
センサ、ロードセルによる重量センサ等を組み合わせて
使用することにより、さらに確実に細かく乗員の着座状
態を検出可能となる。また、運転席の着座センサは、イ
グニッションスイッチのONを運転手が着座した状態とし
て検出するようにすれば、運転席シートに設ける必要は
ない。
The seating sensor A24 is installed inside the seat of the passenger seat 26, and the seating sensor B25 is installed inside the seat of the driver seat 27.
Then, the seated state of the occupant is detected. As the seating sensors A and B, for example, an optical sensor such as an infrared sensor or a weight sensor using a load cell may be used. Further, when a sensor such as a load cell that can detect the weight is used, it is possible to determine whether the occupant seated by the weight is a child or an adult, and thus the seated state of the occupant can be detected more finely. Furthermore, by using an optical sensor such as an infrared sensor and a weight sensor such as a load cell in combination, the seated state of the occupant can be detected more reliably and finely. Further, the seating sensor in the driver's seat need not be provided in the driver's seat as long as the ON state of the ignition switch is detected as a state in which the driver is seated.

【0020】ここで、上記各C'0mn回路17a、18
a、19a、20aと上記各CXmn 回路17b、18
b、19b、20bの特性値の設定について、図3〜図
5の概念図に沿って説明する。
Here, each of the C'0mn circuits 17a and 18 described above.
a, 19a, 20a and the above CXmn circuits 17b, 18
Setting of characteristic values b, 19b, and 20b will be described with reference to the conceptual diagrams of FIGS.

【0021】まず、図3に示すように、初期(例えば出
荷前等)の無人状態の前記エラーマイク15、16とス
ピーカ13との間を未知システム(実際の伝達特性C0m
n1を有する未知システム)31aとし、所定の周波数成
分を含むランダムノイズRNを、上記未知システム31
aと更新可能な伝達特性C0mn (C011 、C021 )を有
する伝達特性設定回路(C0mn 設定回路)32とに入力
する。上記未知システム31aに入力されたランダムノ
イズRN はスピーカ13から音として発生させられ、実
際のスピーカ/マイク間伝達特性(C0111、C0211)の
影響を受けてエラーマイク15、16に達し検出され
る。そして、このエラーマイク15、16で検出された
信号と上記C0mn 設定回路32から出力された信号とを
重ね合わせ誤差信号としてLMS回路33に入力し、こ
のLMS回路33で、この誤差信号が最小となるように
上記C0mn 設定回路32の伝達特性C0mn を更新し、こ
の値を初期無人状態スピーカ/マイク間伝達特性C011
、C021 として設定する。これと同様に、前記エラー
マイク15、16とスピーカ14との間を未知システム
としてシステム同定を行ない初期無人状態スピーカ/マ
イク間伝達特性C012 、C022 を設定する。
First, as shown in FIG. 3, an unknown system (actual transfer characteristic C0m) is provided between the error microphones 15 and 16 and the speaker 13 which are in an unmanned state in an initial stage (for example, before shipment).
unknown system 31a having n1) and the random noise RN containing a predetermined frequency component
a and a transfer characteristic setting circuit (C0mn setting circuit) 32 having an updatable transfer characteristic C0mn (C011, C021). The random noise RN input to the unknown system 31a is generated as a sound from the speaker 13, reaches the error microphones 15 and 16 under the influence of the actual speaker / microphone transfer characteristic (C0111, C0211), and is detected. Then, the signals detected by the error microphones 15 and 16 and the signal output from the C0mn setting circuit 32 are input to the LMS circuit 33 as a superposition error signal, and the LMS circuit 33 determines that the error signal is the minimum. The transfer characteristic C0mn of the C0mn setting circuit 32 is updated so that the value becomes the initial unmanned speaker / microphone transfer characteristic C011.
, C021. Similarly, system identification is performed between the error microphones 15 and 16 and the speaker 14 as an unknown system, and initial unmanned speaker / microphone transfer characteristics C012 and C022 are set.

【0022】次に、図4に示すように、初期(例えば出
荷前等)の有人状態(例えば、運転者のみ着座した状
態)の前記エラーマイク15、16とスピーカ13との
間を未知システム(実際の伝達特性C0mn2を有する未知
システム)31bとし、所定の周波数成分を含むランダ
ムノイズRN を、上記未知システム31bと、前記C0m
n 設定回路32に直列に接続され更新可能な乗員影響特
性CXmn (CX11 、CX21 )を有する乗員影響特性設定
回路(CXmn 設定回路)34とに入力する。上記未知シ
ステム31bに入力されたランダムノイズRN はスピー
カ13から音として発生させられ、実際のスピーカ/マ
イク間伝達特性(C0112、C0212)の影響を受けてエラ
ーマイク15、16に達し検出される。そして、このエ
ラーマイク15、16で検出された信号と上記CXmn 設
定回路34から出力された信号とを重ね合わせ誤差信号
としてLMS回路33に入力し、このLMS回路33
で、この誤差信号が最小となるように上記CXmn 設定回
路34の乗員影響特性CXmn を更新し、この値を乗員影
響特性CX11 、CX21 として設定する。これと同様に、
前記エラーマイク15、16とスピーカ14との間を未
知システムとしてシステム同定を行ない乗員影響特性C
X12 、CX22 を設定する。また、乗員が助手席に着座し
ている場合にもシステム同定を行ない乗員影響特性CXm
n を測定し、このようにして求められた乗員影響特性C
Xmn を前記CX 記憶設定回路23bに記憶させる。尚、
ここで求める乗員の着座条件の組み合わせは、使用する
着座センサでの検出可能な組み合わせの数だけ設定する
ことが可能となる。また、本実施例ではエラーマイクを
2つとして、「運転者のみ」、「運転者、助手席乗員」
の2通りの乗員影響特性を求めるようにしたが、エラー
マイクを後部座席側にさらに2つ配設して後部座席乗員
の騒音低減を図る場合には、「運転者のみ」、「運転
者、助手席乗員」、「運転者、運転席側後部座席乗
員」、「運転者、助手席側後部座席乗員」、「運転者、
助手席乗員、運転席側後部座席乗員」、「運転者、助手
席乗員、助手席側後部座席乗員」、「運転者、運転席側
後部座席乗員、助手席側後部座席乗員」、「運転者、助
手席乗員、運転席側後部座席乗員、助手席側後部座席乗
員」の各場合についての乗員影響特性を予め求めて記憶
すれば良い。
Next, as shown in FIG. 4, an unknown system (such as before shipment, etc.) between the error microphones 15 and 16 and the speaker 13 in the manned state (for example, only the driver is seated) ( An unknown system) 31b having an actual transfer characteristic C0mn2, and a random noise RN including a predetermined frequency component is added to the unknown system 31b and C0m.
and an occupant influence characteristic setting circuit (CXmn setting circuit) 34 which is connected in series to the n setting circuit 32 and has an occupant influence characteristic CXmn (CX11, CX21) that can be updated. The random noise RN input to the unknown system 31b is generated as a sound from the speaker 13 and reaches the error microphones 15 and 16 under the influence of the actual speaker / microphone transfer characteristic (C0112, C0212) and is detected. The signal detected by the error microphones 15 and 16 and the signal output from the CXmn setting circuit 34 are input to the LMS circuit 33 as a superposition error signal, and the LMS circuit 33
Then, the occupant influence characteristic CXmn of the CXmn setting circuit 34 is updated so as to minimize this error signal, and this value is set as the occupant influence characteristics CX11, CX21. Similarly to this,
A system is identified between the error microphones 15 and 16 and the speaker 14 as an unknown system, and the occupant influence characteristic C
Set X12 and CX22. In addition, the system identification is performed even when the occupant is seated in the passenger seat, and the occupant influence characteristic CXm
The occupant influence characteristic C thus obtained by measuring n
Xmn is stored in the CX storage setting circuit 23b. still,
It is possible to set the number of combinations of occupant seating conditions obtained here as many as the number of combinations that can be detected by the seating sensor used. Further, in this embodiment, the number of error microphones is set to "driver only", "driver, passenger occupant".
However, if two more error microphones are installed on the rear seat side to reduce the noise of the rear seat occupant, "driver only", "driver,""Passenger seat occupant", "Driver, driver side rear seat occupant", "Driver, passenger side rear seat occupant", "Driver,
"Passenger seat passenger, rear passenger seat on driver side", "Driver, passenger passenger, rear passenger seat on passenger side", "Driver, rear passenger seat on driver side, rear passenger passenger on passenger side", "driver" , Passenger seat occupant, driver seat rear seat occupant, passenger seat rear seat occupant ”may be obtained and stored in advance.

【0023】そして、図5に示すように、出荷後は、乗
員の乗車前あるいは降車後の無人状態を検出し、無人状
態の前記エラーマイク15、16とスピーカ13との間
あるいはスピーカ14との間を未知システム(実際の伝
達特性C0mn3を有する未知システム)31cとし、前記
初期無人状態スピーカ/マイク間伝達特性C0mn の設定
と同様にして、使用前無人状態スピーカ/マイク間伝達
特性C'0mn(C'011、C'021、C'012、C'022)の設定
を随時行なう。
After shipment, as shown in FIG. 5, the unattended state of the passenger before or after getting off is detected, and the unattended state between the error microphones 15 and 16 and the speaker 13 or between the speaker 14 is detected. An unknown system (unknown system having an actual transfer characteristic C0mn3) 31c is used as the unknown system, and similarly to the setting of the initial unattended speaker / microphone transfer characteristic C0mn, the unattended speaker / microphone transfer characteristic before use C'0mn ( C'011, C'021, C'012, C'022) are set at any time.

【0024】すなわち、図6に示すように、初期の有人
状態のインパルス応答が、初期無人状態スピーカ/マイ
ク間伝達特性C0mn による補正と乗員影響特性CXmn に
よる補正とから求められるようにし、まず、初期無人状
態スピーカ/マイク間伝達特性C0mn を求め、このC0m
n の値から乗員影響特性CXmn を予め求め記憶してお
く。そして、車使用前等の無人状態でスピーカ/マイク
間伝達特性設定回路C'0mnを随時求め、乗員による影響
の補正を、上記予め記憶されている乗員影響特性CXmn
によって行なうことにより、騒音低減システム作動前に
正確なスピーカ/マイク間伝達特性を求めるものであ
る。
That is, as shown in FIG. 6, the impulse response in the initial manned state is obtained from the correction by the initial unmanned speaker / microphone transfer characteristic C0mn and the correction by the occupant influence characteristic CXmn. Obtain the transfer characteristic C0mn between the unattended speaker / microphone and
The occupant influence characteristic CXmn is obtained in advance from the value of n and stored. Then, the speaker / microphone transmission characteristic setting circuit C'0mn is obtained at any time in an unmanned state such as before use in a vehicle, and the influence of the occupant is corrected by the occupant influence characteristic CXmn stored in advance.
By performing the above, the accurate transmission characteristic between the speaker and the microphone is obtained before the operation of the noise reduction system.

【0025】次に、上記構成による実施例の作用につい
て説明する。まず、上述したように初期(例えば出荷前
等)における無人状態のエラーマイク15、16とスピ
ーカ13との間の初期無人状態スピーカ/マイク間伝達
特性C011 、C021 と、エラーマイク15、16とスピ
ーカ14との間の初期無人状態スピーカ/マイク間伝達
特性C012 、C022 とをシステム同定により求めた後、
これらの初期無人状態スピーカ/マイク間伝達特性C0m
n(C011 、C021 、C012 、C022)を用いて、各着座条
件の組み合わせ(例えば、「運転者のみ」、「運転者、
助手席乗員」)についての各乗員影響特性CXmn(CX11
、CX21 、CX12 、CX22)をシステム同定により求め
て予めCX 記憶設定回路23bに記憶させておく。そし
て、出荷後は、乗員の乗車前あるいは降車後の無人状態
を検出し、無人状態における上記エラーマイク15、1
6と上記スピーカ13との間の使用前無人状態スピーカ
/マイク間伝達特性C'011、C'021と、上記エラーマイ
ク15、16と上記スピーカ14との間の使用前無人状
態スピーカ/マイク間伝達特性C'012、C'022とをシス
テム同定により求め、これらの値をC'0mn回路(C'011
回路17a、C'021回路18a、C'012回路19a、
C'022回路20a)に設定する。
Next, the operation of the embodiment having the above structure will be described. First, as described above, the initial unattended speaker / microphone transfer characteristics C011 and C021 between the unattended error microphones 15 and 16 and the speaker 13 in the initial stage (for example, before shipment), and the error microphones 15 and 16 and the speakers. After obtaining the initial unattended speaker / microphone transfer characteristics C012 and C022 between 14 and 14 by system identification,
These initial unattended speaker / microphone transfer characteristics C0m
n (C011, C021, C012, C022) is used to combine each seating condition (for example, "driver only", "driver,
Passenger characteristics "CXmn (CX11
, CX21, CX12, CX22) are obtained by system identification and stored in advance in the CX storage setting circuit 23b. After shipment, the unmanned state of the passenger before or after getting off is detected, and the error microphones 15 and 1 in the unmanned state are detected.
Before use unattended speaker / microphone transfer characteristics C'011 and C'021 between the speaker 6 and the speaker 13 and before use unattended speaker / microphone between the error microphones 15 and 16 and the speaker 14. Transfer characteristics C'012 and C'022 are obtained by system identification, and these values are calculated in the C'0mn circuit (C'011
Circuit 17a, C'021 circuit 18a, C'012 circuit 19a,
C'022 circuit 20a).

【0026】次に、乗員が乗車して着座すると、助手席
26シート内部の着座センサA24と運転席27シート
内部着座センサB25とからの信号に基づき乗員影響特
性記憶設定回路23の乗員着座判定回路23aにより乗
員着座状態(例えば、「運転者のみ」あるいは「運転
者、助手席乗員」の状態)が判定され、上記CX 記憶設
定回路23bに対して、乗員着座状態に対応する乗員影
響特性CXmn(CX11 、CX21 、CX12 、CX22)をCXmn
回路(CX11 回路17b、CX21 回路18b、CX12 回
路19b、CX22 回路20b)に設定するように信号が
出力され、これらCX11 回路17b、CX21 回路18
b、CX12 回路19b、CX22 回路20bに所定の乗員
影響特性(Xmn(CX11 、CX21 、CX12 、CX22)が設定
される。
Next, when the occupant gets on and sits down, the occupant seating determination circuit of the occupant influence characteristic memory setting circuit 23 is based on signals from the seating sensor A24 inside the passenger seat 26 and the seating sensor B25 inside the driver seat 27. The occupant sitting state (for example, "driver only" or "driver, passenger occupant state") is determined by 23a, and the occupant influence characteristic CXmn (corresponding to the occupant sitting state is indicated to the CX memory setting circuit 23b. CX11, CX21, CX12, CX22) to CXmn
A signal is output so as to be set in the circuits (CX11 circuit 17b, CX21 circuit 18b, CX12 circuit 19b, CX22 circuit 20b), and these CX11 circuit 17b, CX21 circuit 18 are output.
b, a predetermined occupant influence characteristic (Xmn (CX11, CX21, CX12, CX22) is set in the CX12 circuit 19b and the CX22 circuit 20b.

【0027】次いで、エンジンが始動すると、エンジン
振動騒音はマウント等を伝達して車内音となり、また、
吸気や排気の音等も車室内に伝播して所定の車体伝達特
性Cが乗ぜられて、助手席26の乗員の耳に近接する位
置と運転席27のドライバーの耳に近接する位置に設定
されている受聴点に達する。これと同時に、例えば、点
火パルス、燃料噴射パルスあるいはクランク角センサ
(図示せず)等からの信号を所定に成形・加工した信号
や、これらの信号にエンジンの負荷情報を反映させた信
号でエンジン関連の室内振動騒音と相関の高いプライマ
リソースPSEが、適応フィルター11、12とスピーカ
/マイク間伝達特性推定回路17、18、19、20と
に入力される。
Next, when the engine is started, engine vibration noise is transmitted through the mount or the like to become a vehicle interior sound.
Sounds of intake air and exhaust air are also propagated in the passenger compartment, and a predetermined vehicle body transmission characteristic C is put on the passenger seat 26, which is set to a position close to the ears of the passenger and a position of the driver seat 27 close to the ears of the driver. Reach the listening point. At the same time, for example, a signal obtained by shaping and processing a signal from an ignition pulse, a fuel injection pulse, a crank angle sensor (not shown), or the like, or a signal in which the load information of the engine is reflected in these signals is used. The primary source PSE having a high correlation with the related room vibration noise is input to the adaptive filters 11 and 12 and the speaker / microphone transfer characteristic estimation circuits 17, 18, 19, and 20.

【0028】上記適応フィルター11に入力されたプラ
イマリソースPSEは、フィルター係数との畳み込み積和
により、振動騒音を相殺する相殺音の信号であるキャン
セル信号として、D/A変換器、増幅器(いずれも図示
せず)を経て、フロントドア等に配設されているスピー
カ13から上記受聴点における振動騒音に対する相殺音
として出力される。このとき、上記スピーカ13から出
力された相殺音には、スピーカ/マイク間伝達特性Cmn
(C11、C21)が乗ぜられて上記受聴点に達する。同様
に、上記適応フィルター12に入力されたプライマリソ
ースPSEは、フィルター係数との畳み込み積和により、
振動騒音を相殺する相殺音の信号であるキャンセル信号
として、D/A変換器、増幅器(いずれも図示せず)を
経て、フロントドア等に配設されているスピーカ14か
ら上記受聴点における振動騒音に対する相殺音として出
力される。このとき、上記スピーカ14から出力された
相殺音には、スピーカ/マイク間伝達特性Cmn(C12、
C22)が乗ぜられて上記受聴点に達する。
The primary source PSE input to the adaptive filter 11 is a D / A converter and an amplifier (both are cancellation signals that are cancellation signals for canceling vibration noise by the convolution product sum with the filter coefficient). (Not shown), it is output as a canceling sound for the vibration noise at the listening point from the speaker 13 arranged in the front door or the like. At this time, the canceling sound output from the speaker 13 includes the transfer characteristic Cmn between the speaker and the microphone.
(C11, C21) is multiplied to reach the listening point. Similarly, the primary source PSE input to the adaptive filter 12 is given by the convolution product sum with the filter coefficient.
As a canceling signal which is a canceling sound signal for canceling the vibration noise, the vibration noise at the listening point is output from the speaker 14 provided on the front door or the like via a D / A converter and an amplifier (neither is shown). Is output as a canceling sound for. At this time, in the canceling sound output from the speaker 14, the speaker / microphone transfer characteristic Cmn (C12, C12,
C22) is added to reach the listening point.

【0029】このため、上記受聴点では、上記エンジン
関連振動騒音と上記相殺音とが干渉して振動騒音が低減
させられると同時に、上記受聴点の近傍に配設されてい
るエラーマイク15、16により、振動騒音と相殺音と
の干渉の結果が検出され、LMS演算回路21、22に
誤差信号として送られる。
Therefore, at the listening point, the engine-related vibration noise and the canceling noise interfere with each other to reduce the vibration noise, and at the same time, the error microphones 15 and 16 arranged near the listening point. As a result, the result of the interference between the vibration noise and the canceling noise is detected and sent to the LMS arithmetic circuits 21 and 22 as an error signal.

【0030】また、前記スピーカ/マイク間伝達特性推
定回路17に入力されたプライマリソースPSEは、前記
C'011回路17aと前記CX11 回路17bとにより補正
され、前記スピーカ/マイク間伝達特性推定回路18に
入力されたプライマリソースPSEは、前記C'021回路1
8aと前記CX21 回路18bとにより補正されて上記L
MS演算回路21に送られる。そして、このLMS演算
回路21において、上記エラーマイク15、16からの
誤差信号と、上記スピーカ/マイク間伝達特性推定回路
17、18により補正されたプライマリソースとからフ
ィルター修正量を求め、上記エラーマイク15、16か
らの誤差信号が最小となるように、上記適応フィルター
11のフィルター係数を更新するアルゴリズムが行なわ
れる。
The primary source PSE input to the speaker / microphone transfer characteristic estimation circuit 17 is corrected by the C'011 circuit 17a and the CX11 circuit 17b and the speaker / microphone transfer characteristic estimation circuit 18 is corrected. The primary source PSE input to is the C'021 circuit 1
8a and the CX21 circuit 18b correct the L
It is sent to the MS arithmetic circuit 21. Then, in the LMS operation circuit 21, the filter correction amount is obtained from the error signal from the error microphones 15 and 16 and the primary source corrected by the speaker / microphone transfer characteristic estimation circuits 17 and 18, and the error microphones are obtained. An algorithm for updating the filter coefficient of the adaptive filter 11 is performed so that the error signals from 15 and 16 are minimized.

【0031】さらに、前記スピーカ/マイク間伝達特性
推定回路19に入力されたプライマリソースPSEは、前
記C'012回路19aと前記CX12 回路19bとにより補
正され、前記スピーカ/マイク間伝達特性推定回路20
に入力されたプライマリソースPSEは、前記C'022回路
20aと前記CX22 回路20bとにより補正されて上記
LMS演算回路22に送られる。そして、このLMS演
算回路22において、上記エラーマイク15、16から
の誤差信号と、上記スピーカ/マイク間伝達特性推定回
路19、20により補正されたプライマリソースとから
瞬間自乗誤差を求め、上記エラーマイク15、16から
の誤差信号が最小となるように、上記適応フィルター1
2のフィルター係数を更新するアルゴリズムが行なわれ
る。
Further, the primary source PSE input to the speaker / microphone transfer characteristic estimating circuit 19 is corrected by the C'012 circuit 19a and the CX12 circuit 19b, and the speaker / microphone transfer characteristic estimating circuit 20 is corrected.
The primary source PSE input to is corrected by the C'022 circuit 20a and the CX22 circuit 20b and sent to the LMS operation circuit 22. Then, in the LMS arithmetic circuit 22, an instantaneous square error is obtained from the error signal from the error microphones 15 and 16 and the primary source corrected by the speaker / microphone transfer characteristic estimating circuits 19 and 20, and the error microphone is obtained. The adaptive filter 1 so that the error signals from 15 and 16 are minimized
An algorithm that updates the filter coefficient of 2 is performed.

【0032】このように、本実施例では、乗員のいない
ときに随時システム同定を行ない、乗員以外による車内
環境(車内温度、車内湿度、経時変化および備品の配置
等)のスピーカ/マイク間伝達特性への影響を求めて設
定し、乗員の着座状態がスピーカ/マイク間伝達特性へ
及ぼす影響を乗員影響特性として予め記憶しておき、乗
員が着座したときに、着座状態に対応する乗員影響特性
を設定するようにしているので、乗員がスピーカ/マイ
ク間伝達特性を設定する煩雑な作業を無くすことがで
き、また、スピーカ/マイク間伝達特性を設定する際の
スピーカからのランダムノイズの発生も乗員のいないと
きに行なわれるので、乗員に不快感を与えることもな
い。
As described above, in the present embodiment, system identification is performed at any time when there is no occupant, and the speaker / microphone transfer characteristics of the in-vehicle environment (in-vehicle temperature, in-vehicle humidity, change over time, arrangement of equipment, etc.) other than the occupant. The occupant's seating condition is stored in advance as the occupant's seating condition. Since the setting is performed, the occupant can eliminate the complicated work of setting the speaker / microphone transfer characteristic, and the random noise from the speaker when the speaker / microphone transfer characteristic is set is also generated by the passenger. Since it is carried out when there is no light, it does not make passengers feel uncomfortable.

【0033】また、乗員のいないときに随時システム同
定を行ない、乗員以外による車内環境(車内温度、車内
湿度、経時変化および備品の配置等)のスピーカ/マイ
ク間伝達特性への影響を求めて設定するようにしている
ので、これらの車内環境により変化するスピーカ/マイ
ク間伝達特性を正確に得ることができ、効果的に安定し
た細かい騒音低減が可能となる。
Further, the system identification is performed at any time when there is no occupant, and it is set by obtaining the influence of the environment other than the occupant on the inside of the vehicle (temperature inside the vehicle, humidity inside the vehicle, change over time, arrangement of equipment, etc.) on the transmission characteristics between the speaker and the microphone. Therefore, it is possible to accurately obtain the speaker / microphone transmission characteristics that change depending on the in-vehicle environment, and it is possible to effectively and stably reduce noise.

【0034】尚、本実施例ではエラーマイク2個、スピ
ーカ2個のLMSアルゴリズムを多チャンネルに拡大し
たMEFX−LMS(Multiple Error Filtered X
−LMS)アルゴリズムを利用した車室内こもり音低減
装置について説明したが、他のMEFX−LMSアルゴ
リズムを利用した車室内こもり音低減装置(例えば、エ
ラーマイク4個、スピーカ2個等)についても適用可能
で、また、シングルチャンネル(エラーマイク1個、ス
ピーカ1個)のLMSアルゴリズムを利用した車室内こ
もり音低減装置についても適用可能である。
In this embodiment, MEFX-LMS (Multiple Error Filtered X) in which the LMS algorithm of two error microphones and two speakers is expanded to multiple channels.
-A vehicle interior muffler noise reduction device using the LMS algorithm has been described, but it is also applicable to a vehicle interior muffler noise reduction device using another MEFX-LMS algorithm (for example, four error microphones, two speakers, etc.). In addition, the present invention is also applicable to a vehicle interior muffled noise reducing apparatus that uses a single-channel (one error microphone, one speaker) LMS algorithm.

【0035】[0035]

【発明の効果】以上、説明したように本発明によれば、
予め乗員のいない状態で随時相殺音発生手段と誤差信号
検出手段との間の伝達特性を無人状態伝達特性として設
定する無人状態伝達特性設定手段と、乗員の着座状態が
上記無人状態伝達特性に与える影響を予め記憶し乗員影
響特性として設定する乗員影響特性記憶設定手段とを備
えたので、乗員に煩雑な作業や不快感を与えることな
く、乗員の着座状態、車内温度、車内湿度、経時変化お
よび備品の配置等の車内環境により変化する相殺音発生
手段と誤差信号検出手段との間の伝達特性を正確に得る
ことができ、効果的に安定して細かい騒音低減が可能と
なる。
As described above, according to the present invention,
An unmanned state transfer characteristic setting means for setting the transfer characteristic between the canceling sound generating means and the error signal detecting means as an unmanned state transfer characteristic in advance in the absence of an occupant, and the seated state of the occupant gives the unmanned state transfer characteristic. Since the occupant influence characteristic memory setting means for storing the influence in advance and setting it as the occupant influence characteristic is provided, the occupant's seated state, vehicle interior temperature, vehicle interior humidity, aging change and It is possible to accurately obtain the transfer characteristic between the canceling sound generating means and the error signal detecting means that changes depending on the vehicle interior environment such as the arrangement of equipment, and it is possible to effectively and stably reduce fine noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による車室内こもり音低減装
置のシステム概略図
FIG. 1 is a system schematic view of a vehicle interior muffled noise reducing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例による車室内こもり音低減装
置のシステムを車内に搭載した場合の概略説明図
FIG. 2 is a schematic explanatory diagram of a case where a system for a vehicle interior muffled noise reducing apparatus according to an embodiment of the present invention is installed in a vehicle.

【図3】本発明の一実施例による無人状態スピーカ/マ
イク間伝達特性の初期設定の概念図
FIG. 3 is a conceptual diagram of initial setting of unmanned speaker / microphone transfer characteristics according to an embodiment of the present invention.

【図4】本発明の一実施例による乗員影響特性の初期設
定の概念図
FIG. 4 is a conceptual diagram of initial setting of occupant influence characteristics according to an embodiment of the present invention.

【図5】本発明の一実施例による無人状態スピーカ/マ
イク間伝達特性の使用前設定の概念図
FIG. 5 is a conceptual diagram of pre-use setting of unmanned speaker / microphone transfer characteristics according to an embodiment of the present invention.

【図6】本発明の一実施例による無人状態スピーカ/マ
イク間伝達特性と乗員影響特性の概念説明図
FIG. 6 is a conceptual explanatory view of an unmanned speaker / microphone transmission characteristic and an occupant influence characteristic according to an embodiment of the present invention.

【図7】従来のスピーカ/マイク間伝達特性の設定概念
FIG. 7 is a conceptual diagram of setting a conventional speaker / microphone transfer characteristic.

【符号の説明】[Explanation of symbols]

10 車室内こもり音低減装置 11 適応フィルター(キャンセル信号合成手段) 12 適応フィルター(キャンセル信号合成手段) 13 スピーカ(相殺音発生手段) 14 スピーカ(相殺音発生手段) 15 エラーマイク(誤差信号検出手段) 16 エラーマイク(誤差信号検出手段) 17 スピーカ/マイク間伝達特性推定回路 17a C'011回路(無人状態伝達特性設定手段) 17b CX11 回路(乗員影響特性記憶設定手段) 18 スピーカ/マイク間伝達特性推定回路 18a C'021回路(無人状態伝達特性設定手段) 18b CX21 回路(乗員影響特性記憶設定手段) 19 スピーカ/マイク間伝達特性推定回路 19a C'012回路(無人状態伝達特性設定手段) 19b CX12 回路(乗員影響特性記憶設定手段) 20 スピーカ/マイク間伝達特性推定回路 20a C'022回路(無人状態伝達特性設定手段) 20b CX22 回路(乗員影響特性記憶設定手段) 21 LMS演算回路(キャンセル信号更新手段) 22 LMS演算回路(キャンセル信号更新手段) 23 乗員影響特性記憶設定回路(乗員影響特性記
憶設定手段) 23a 乗員着座判定回路 23b CX 記憶設定回路 24 着座センサA 25 着座センサB PSE プライマリソース(騒音振動源信号) RN ランダムノイズ C11 スピーカ/マイク間伝達特性 C21 スピーカ/マイク間伝達特性 C12 スピーカ/マイク間伝達特性 C22 スピーカ/マイク間伝達特性
10 Car interior noise reduction device 11 Adaptive filter (cancellation signal synthesizing means) 12 Adaptive filter (cancellation signal synthesizing means) 13 Speaker (cancellation sound generating means) 14 Speaker (cancellation sound generating means) 15 Error microphone (error signal detection means) 16 error microphone (error signal detection means) 17 speaker / microphone transfer characteristic estimation circuit 17a C'011 circuit (unmanned state transfer characteristic setting means) 17b CX11 circuit (occupant influence characteristic memory setting means) 18 speaker / microphone transfer characteristic estimation Circuit 18a C'021 circuit (unmanned state transfer characteristic setting means) 18b CX21 circuit (passenger influence characteristic memory setting means) 19 Speaker / microphone transfer characteristic estimation circuit 19a C'012 circuit (unmanned state transfer characteristic setting means) 19b CX12 circuit (Passenger influence characteristic memory setting means) 20 Speaker / microphone transmission characteristics Estimating circuit 20a C'022 circuit (unmanned state transfer characteristic setting means) 20b CX22 circuit (passenger influence characteristic memory setting means) 21 LMS arithmetic circuit (cancel signal updating means) 22 LMS arithmetic circuit (cancel signal updating means) 23 Occupant influence characteristic Memory setting circuit (occupant influence characteristic memory setting means) 23a Occupant seating determination circuit 23b CX Memory setting circuit 24 Seating sensor A 25 Seating sensor B PSE Primary source (noise vibration source signal) RN Random noise C11 Speaker / microphone transfer characteristic C21 Speaker / Microphone transfer characteristics C12 Speaker / microphone transfer characteristics C22 Speaker / microphone transfer characteristics

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 和幸 東京都新宿区西新宿一丁目7番2号 富士 重工業株式会社内 (72)発明者 横田 恵太郎 東京都新宿区西新宿一丁目7番2号 富士 重工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuyuki Kondo 1-7-2 Nishishinjuku, Shinjuku-ku, Tokyo Fuji Heavy Industries Ltd. (72) Inventor Keitaro Yokota 1-2-7 Nishishinjuku, Shinjuku-ku, Tokyo Within Fuji Heavy Industries Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジン振動と相関の高い騒音振動源信
号を適応フィルターによりキャンセル信号として合成す
るキャンセル信号合成手段と、 上記キャンセル信号を騒音に対する相殺音として音源か
ら発生する相殺音発生手段と、 受聴点における騒音低減状態を誤差信号として検出する
誤差信号検出手段と、 予め乗員のいない状態で随時上記相殺音発生手段と上記
誤差信号検出手段との間の伝達特性を無人状態伝達特性
として設定する無人状態伝達特性設定手段と、 乗員の着座状態が上記無人状態伝達特性に与える影響を
予め記憶し乗員影響特性として設定する乗員影響特性記
憶設定手段と、 上記騒音振動源信号を上記無人状態伝達特性と上記乗員
影響特性とで補正し、この補正した騒音振動源信号と上
記誤差信号とに基づき上記適応フィルターのフィルター
係数を更新するキャンセル信号更新手段とを備えたこと
を特徴とする車室内こもり音低減装置。
1. A cancel signal synthesizing means for synthesizing a noise vibration source signal having a high correlation with engine vibration as a cancel signal by an adaptive filter, a canceling sound generating means for generating the cancel signal as a canceling sound for noise from a sound source, and a listening sound. Error signal detecting means for detecting a noise reduction state at a point as an error signal, and an unmanned state in which a transfer characteristic between the canceling sound generating means and the error signal detecting means is set as an unmanned state transfer characteristic in advance without an occupant. State transfer characteristic setting means, occupant influence characteristic memory setting means for storing in advance the influence of the seating state of the occupant on the unmanned state transfer characteristic and setting it as the occupant influence characteristic, and the noise vibration source signal as the unmanned state transfer characteristic. It is corrected with the occupant influence characteristic, and the adaptive filter is corrected based on the corrected noise and vibration source signal and the error signal. Cabin muffled sound reducing device characterized by comprising a cancel signal updating means for updating the filter coefficients of the terpolymer.
JP08232692A 1992-03-17 1992-04-03 Interior noise reduction device Expired - Fee Related JP3384493B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP08232692A JP3384493B2 (en) 1992-04-03 1992-04-03 Interior noise reduction device
GB9305314A GB2265277B (en) 1992-03-17 1993-03-16 Noise reduction system for automobile compartment
US08/032,057 US5485523A (en) 1992-03-17 1993-03-16 Active noise reduction system for automobile compartment
DE4308398A DE4308398C2 (en) 1992-03-17 1993-03-17 Active noise reduction system for the passenger compartment of a motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08232692A JP3384493B2 (en) 1992-04-03 1992-04-03 Interior noise reduction device

Publications (2)

Publication Number Publication Date
JPH0627971A true JPH0627971A (en) 1994-02-04
JP3384493B2 JP3384493B2 (en) 2003-03-10

Family

ID=13771436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08232692A Expired - Fee Related JP3384493B2 (en) 1992-03-17 1992-04-03 Interior noise reduction device

Country Status (1)

Country Link
JP (1) JP3384493B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249763B1 (en) 1997-11-17 2001-06-19 International Business Machines Corporation Speech recognition apparatus and method
JP2017124686A (en) * 2016-01-13 2017-07-20 アルパイン株式会社 Electronic device, noise reduction program, and noise reduction method
EP3767618A1 (en) * 2019-07-16 2021-01-20 Alpine Electronics, Inc. Noise reduction device, vehicle, noise reduction system, and noise reduction method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148613A (en) * 2016-07-07 2019-09-05 パナソニックIpマネジメント株式会社 Noise reduction device and noise reduction system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348U (en) * 1986-06-20 1988-01-05
JPH03203493A (en) * 1989-12-29 1991-09-05 Nissan Motor Co Ltd Active type noise controller
JPH0453995A (en) * 1990-06-21 1992-02-21 Isuzu Motors Ltd Measuring instrument for acoustic characteristic in car room
JPH04234098A (en) * 1990-12-28 1992-08-21 Trans Tron:Kk Noise reduction device for car compartment
JPH054551A (en) * 1991-06-27 1993-01-14 Mazda Motor Corp Noise control device for vehicle
JPH05127681A (en) * 1991-10-31 1993-05-25 Isuzu Motors Ltd Reduction device for in-car noise
JPH05265467A (en) * 1992-03-19 1993-10-15 Nissan Motor Co Ltd Adaptive controller and active type noise controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348U (en) * 1986-06-20 1988-01-05
JPH03203493A (en) * 1989-12-29 1991-09-05 Nissan Motor Co Ltd Active type noise controller
JPH0453995A (en) * 1990-06-21 1992-02-21 Isuzu Motors Ltd Measuring instrument for acoustic characteristic in car room
JPH04234098A (en) * 1990-12-28 1992-08-21 Trans Tron:Kk Noise reduction device for car compartment
JPH054551A (en) * 1991-06-27 1993-01-14 Mazda Motor Corp Noise control device for vehicle
JPH05127681A (en) * 1991-10-31 1993-05-25 Isuzu Motors Ltd Reduction device for in-car noise
JPH05265467A (en) * 1992-03-19 1993-10-15 Nissan Motor Co Ltd Adaptive controller and active type noise controller

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6249763B1 (en) 1997-11-17 2001-06-19 International Business Machines Corporation Speech recognition apparatus and method
JP2017124686A (en) * 2016-01-13 2017-07-20 アルパイン株式会社 Electronic device, noise reduction program, and noise reduction method
EP3767618A1 (en) * 2019-07-16 2021-01-20 Alpine Electronics, Inc. Noise reduction device, vehicle, noise reduction system, and noise reduction method
JP2021015257A (en) * 2019-07-16 2021-02-12 アルパイン株式会社 Noise reduction device, vehicle, noise reduction system, and noise reduction method
US11276385B2 (en) 2019-07-16 2022-03-15 Alpine Electronics, Inc. Noise reduction device, vehicle, noise reduction system, and noise reduction method

Also Published As

Publication number Publication date
JP3384493B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
US5485523A (en) Active noise reduction system for automobile compartment
JP3094517B2 (en) Active noise control device
JP3410141B2 (en) Vehicle interior noise reduction device
EP0903726B1 (en) Active acoustic noise and echo cancellation system
JP2894035B2 (en) Active noise control device
JPH0627971A (en) In-cabin indistinct sound reducing device
JP2000322066A (en) Active noise control device
JPH0519776A (en) Active vibration controller
JPH0561479A (en) Active type noise controller
JPH04308899A (en) Adaptive active sound elimination system for sound in car
JP2674252B2 (en) Active noise control device
JP3328946B2 (en) Active uncomfortable wave control device
JPH07219560A (en) Active noise controller
JPH0511777A (en) Active noise control method
JPH069298U (en) Digital sound processor automatic adjuster
JPH04234098A (en) Noise reduction device for car compartment
JP3340139B2 (en) Active noise control device
JP3403209B2 (en) Vehicle interior noise reduction device
JPH0643881A (en) Active noise controller
JP3471369B2 (en) Active vibration control device
JPH0895579A (en) Device for decreasing noise in vehicle room
JP3517886B2 (en) Active noise control device
JP3621714B2 (en) Vehicle interior noise reduction device
JP3122192B2 (en) Active noise control device and adaptive noise control method
JPH07199965A (en) Adaptive active silencer for vehicle interior sound

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071227

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091227

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101227

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees