JPH06277497A - Reaction apparatus and reaction method using the apparatus - Google Patents

Reaction apparatus and reaction method using the apparatus

Info

Publication number
JPH06277497A
JPH06277497A JP7409193A JP7409193A JPH06277497A JP H06277497 A JPH06277497 A JP H06277497A JP 7409193 A JP7409193 A JP 7409193A JP 7409193 A JP7409193 A JP 7409193A JP H06277497 A JPH06277497 A JP H06277497A
Authority
JP
Japan
Prior art keywords
reaction
raw material
gas
tubular reactor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7409193A
Other languages
Japanese (ja)
Inventor
Hiroshi Kimura
洋 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP7409193A priority Critical patent/JPH06277497A/en
Publication of JPH06277497A publication Critical patent/JPH06277497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prevent decrease of reaction efficiency due to drift phenomenon and improve the productivity by supplying a liquid raw material to the inside of a tubular reaction apparatus made of a porous material and filled with a filler from one end of the apparatus and supplying a gaseous raw material to the inside of the tubular reaction apparatus through the side wall face of the tubular reaction apparatus. CONSTITUTION:A tubular reaction apparatus 1, a filler 2 (e.g. a formation catalyst) in the tubular reaction apparatus 1, and a casing 3 are installed wherein the apparatus 1 is made of a porous material and the casing is set to cover the tubular reaction apparatus and supplies a gas to the inside of the tubular reaction apparatus 1 through the porous material. A liquid raw material is supplied to the inside of the tubular reaction apparatus 1 made of the porous material and filled with a filler through one end of the apparatus and a gaseous raw material is supplied to the inside of the tubular reaction apparatus through the side wall face of the tubular reaction apparatus 1 and thus the liquid raw material and the gaseous raw material are reacted. Consequently, reaction decrease due to drift phenomenon is prevented and gas-liquid contact is accelerated and productivity is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気−液系反応を効率よ
く行なうことができる反応装置及びこれを用いた反応方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactor capable of efficiently carrying out a gas-liquid reaction and a reaction method using the same.

【0002】[0002]

【従来の技術】充填塔形式の気−液系反応塔は、簡便な
反応装置として、従来、種々の気液反応に適用されてい
る。
2. Description of the Related Art A packed column type gas-liquid reaction tower has been conventionally applied to various gas-liquid reactions as a simple reaction apparatus.

【0003】しかしながら、充填塔では、一般に偏流現
象(channeling)が発生し、特に下向き並流
とした場合、これが顕著となる。この偏流現象は同時に
気液接触効率の低下を招き、反応効率を大きく低下させ
ることが知られている。従って、この現象を防止するこ
めに、充填塔内に複数個の液分配器を導入する方法が採
られている。ここで用いる液分配器としては、例えば蒸
留塔に使用されるバブルキャップ方式のものが挙げられ
る。
However, in a packed column, generally, a phenomenon of uneven flow (channeling) occurs, which becomes remarkable especially when downward co-current flow is used. It is known that this uneven flow phenomenon causes a decrease in gas-liquid contact efficiency at the same time, and a reaction efficiency is greatly reduced. Therefore, in order to prevent this phenomenon, a method of introducing a plurality of liquid distributors into the packed column is adopted. Examples of the liquid distributor used here include a bubble cap type used in a distillation column.

【0004】しかし、このように液分配器を使用しても
偏流現象の完全な抑制は困難であり、固定床接触反応の
場合は、この現象により、触媒がその本来の性能を充分
発揮できないことがある。
However, even if such a liquid distributor is used, it is difficult to completely suppress the nonuniform flow phenomenon, and in the case of a fixed bed catalytic reaction, this phenomenon prevents the catalyst from sufficiently exhibiting its original performance. There is.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の目的
は、偏流現象による反応の低下を防止するのみならず、
気液接触を促進させ、生産性のよい気−液系反応装置及
び反応方法を提供することにある。
Therefore, the object of the present invention is not only to prevent the deterioration of the reaction due to the phenomenon of nonuniform flow, but
An object of the present invention is to provide a gas-liquid reaction device and a reaction method that promote gas-liquid contact and have good productivity.

【0006】[0006]

【課題を解決するための手段】斯かる実情に鑑み、本発
明者らは、鋭意研究を行なった結果、従来のように液体
原料と気体原料との双方を充填反応塔の端部入口から供
給せず、気体原料を反応塔側壁の多孔質材料を通して供
給すれば、偏流現象及び気液接触効率の低下による生産
性低下は抑制され、従来の方法に比べ反応速度が増大
し、その結果生産性を向上させることができることを見
出し、本発明を完成した。
In view of such circumstances, the inventors of the present invention have conducted diligent research, and as a result, conventionally supplied both a liquid raw material and a gas raw material from the end inlet of a packed reaction column. If the gas raw material is supplied through the porous material on the side wall of the reaction column, the productivity decrease due to the nonuniform flow phenomenon and the decrease in gas-liquid contact efficiency is suppressed, and the reaction rate is increased as compared with the conventional method, resulting in productivity. The present invention has been completed by finding out that the above can be improved.

【0007】すなわち本発明は、多孔質材料で形成され
た管型反応器と、該管型反応器内の充填物と、該管型反
応器に外装され、気体を多孔質材料を通して管型反応器
内に供給するための外套を配設したことを特徴とする気
−液系反応装置を提供するものである。
That is, according to the present invention, a tubular reactor formed of a porous material, a filling material in the tubular reactor, and an exterior of the tubular reactor are provided, and gas is passed through the porous material to form a tubular reaction. The present invention provides a gas-liquid type reaction device, which is provided with an outer jacket for supplying it into the vessel.

【0008】また本発明は、多孔質材料で形成され、充
填物が充填された管型反応器の内部にその一端から液体
原料を供給し、該管型反応器の側壁面を通して気体原料
を該管型反応器内に供給し、該液体原料及び気体原料を
反応させることを特徴とする気一液系反応方法を提供す
るものである。
In the present invention, a liquid raw material is supplied from one end into a tubular reactor which is made of a porous material and is filled with a packing material, and the gaseous raw material is passed through a side wall surface of the tubular reactor. It is intended to provide a gas-liquid reaction method which is characterized in that the liquid raw material and the gas raw material are reacted with each other by supplying them into a tubular reactor.

【0009】本発明の反応装置に用いられる管型反応器
は、多孔質材料で形成されているものである。かかる多
孔質材料としては、例えばセラミック、焼結金属、素
焼、多孔質ガラス等が挙げられ、このうち多孔質ガラ
ス、素焼が特に好ましい。多孔質材料の気体通過のため
の細孔径は、特に限定されないが、気体原料供給圧の観
点から0.5μm以上、特に0.5〜20μmが好まし
い。細孔径が0.5μm未満の場合には気体原料を多孔
質材料を通して供給する際の圧力損失が大きくなり好ま
しくない。
The tubular reactor used in the reactor of the present invention is made of a porous material. Examples of such a porous material include ceramics, sintered metals, unglazed glass, and porous glass. Among these, porous glass and unglazed glass are particularly preferable. The pore size of the porous material for passing gas is not particularly limited, but is preferably 0.5 μm or more, and particularly preferably 0.5 to 20 μm from the viewpoint of the gas raw material supply pressure. If the pore size is less than 0.5 μm, the pressure loss at the time of supplying the gas raw material through the porous material becomes large, which is not preferable.

【0010】本発明においては管型反応器内の圧力よ
り、気体原料供給圧力を大きくすることにより気体原料
は多孔質材料を通して管型反応器内に供給される。管型
反応器の形状は、特に制限されず、例えば円筒状でも矩
形状でもよい。
In the present invention, the gas raw material is supplied into the tubular reactor through the porous material by making the gas raw material supply pressure larger than the pressure in the tubular reactor. The shape of the tubular reactor is not particularly limited, and may be, for example, a cylindrical shape or a rectangular shape.

【0011】特に好ましい管型反応器の例としては、宮
崎県工業試験場がシラス多孔質ガラス(SPG)を原料
に開発し、伊勢化学(株)によって製造されている多孔
質ガラスより成る円筒構造体(商品名 MPG、内径1
0mm、高さ500mm)が挙げられる。
As an example of a particularly preferable tubular reactor, a cylindrical structure made of porous glass developed by Miyazaki Prefectural Industrial Research Institute using Shirasu porous glass (SPG) as a raw material and manufactured by Ise Chemical Co., Ltd. (Product name MPG, inner diameter 1
0 mm, height 500 mm).

【0012】管型反応器に充填される充填物としては、
接触反応の場合は担持触媒、成形触媒が好ましく、形状
は球、円柱、矩形体等特に限定されない。また、無触媒
反応の場合には液の分散性向上のためにマクマホン、ラ
シヒリング又はテラレット等の充填物が好ましい。
The packing material to be packed in the tubular reactor is
In the case of the catalytic reaction, a supported catalyst or a shaped catalyst is preferable, and the shape is not particularly limited, such as a sphere, a cylinder or a rectangular body. Further, in the case of non-catalytic reaction, a filling material such as McMahon, Raschig ring or terraret is preferable for improving the dispersibility of the liquid.

【0013】本発明反応装置に用いられる外套は、前記
管型反応器に外装され、気体を管型反応器の材料である
多孔質材料を通して当該反応器内に供給するためのもの
であり、材質は特に制限されない。当該外套と管型反応
器の間の空間は気体が通過できる幅があればよい。
The jacket used in the reaction apparatus of the present invention is to be packaged in the tubular reactor to supply gas into the reactor through a porous material which is a material of the tubular reactor. Is not particularly limited. The space between the jacket and the tubular reactor may have a width that allows gas to pass therethrough.

【0014】本発明の反応装置は、上記管型反応器、充
填物及び外套により構成されるが、その一例を図1に示
す。図1に従って、原料の供給、反応を概説すれば次の
通りである。
The reactor of the present invention is composed of the above-mentioned tubular reactor, packing and jacket, and one example thereof is shown in FIG. The supply of raw materials and the reaction are outlined below with reference to FIG.

【0015】すなわち、液体原料を管6から管型反応器
1内に供給する。一方、気体原料は外套の入口7から外
套3に供給され、更に気体原料は管型反応器1の側壁の
細孔を通り、管型反応器1内に入る。管型反応器内には
成形触媒等の充填物2が充填されており、気−液反応は
管型反応器1内で行なわれる。なお、4は、外套3と管
型反応器1を分けるパッキングであり、5は、充填物支
持体である。得られた反応生成物は、管8より取り出さ
れる。なお、液体原料の供給は塔頂から下向きに供給し
てもよく、塔底から上向きに供給してもよいが、特に下
向き供給方式でトリクルベッド(trickle be
d)方式が好ましい。
That is, the liquid raw material is supplied from the pipe 6 into the tubular reactor 1. On the other hand, the gas raw material is supplied to the outer jacket 3 through the inlet 7 of the outer jacket, and further the gas raw material passes through the pores on the side wall of the tubular reactor 1 and enters the tubular reactor 1. The tubular reactor is filled with a filler 2 such as a shaped catalyst, and the gas-liquid reaction is carried out in the tubular reactor 1. In addition, 4 is packing which separates the jacket 3 and the tubular reactor 1, and 5 is a packing support. The obtained reaction product is taken out from the tube 8. The liquid raw material may be supplied from the top of the tower downward or may be supplied from the bottom of the tower upward, but a trickle bed is particularly used in the downward supply method.
d) method is preferable.

【0016】本発明方法は、酸化反応、水素化反応、ア
ミノ化反応、還元アルキル化反応、カルボニル化反応、
酸化分解反応、水素化分解反応のみならず、充填塔形式
の気−液系反応であれば全てに適用できる。例えば、酸
化反応としては、粒状活性炭に担持された貴金属触媒を
使用するヒドロキシ化合物の触媒酸化による対応するカ
ルボン酸もしくはカルボン酸塩の製造、非イオン界面活
性剤の末端水酸基の酸化によるエーテルカルボン酸もし
くはその塩の製造、ベンジルアルコールの接触酸化によ
るベンツアルデヒドの製造等が挙げられる。還元反応と
しては二重結合の接触水素化による対応する飽和結合の
生成、三重結合の選択水素化による二重結合の生成等が
挙げられる。更に、ニトリルの水素化による一級アミ
ン、二級アミンの製造が挙げられる。アミノ化反応とし
ては成形銅クロマイト触媒使用による高級アルコールと
水素/ジメチルアミン混合ガスとの反応によるN,N−
ジメチル長鎖アルキル3級アミンの製造が挙げられる。
更に、高級アルコールと水素/モノメチルアミン混合ガ
スとの反応によるN,N−ジ長鎖アルキル−N−メチル
三級アミンの製造が挙げられる。還元アルキル化反応と
しては一級アミンとホルムアルデヒドと水素との反応に
よるN,N−ジメチル型の三級アミンの製造が挙げられ
る。水素化分解反応としては銅クロマイト触媒使用によ
る脂肪酸メチルエステルの高級アルコールの製造が挙げ
られる。以上の反応例からも分かるように、本発明方法
は接触反応の場合に特に有効であり適用反応は広範囲に
渡る。
The method of the present invention comprises oxidation reaction, hydrogenation reaction, amination reaction, reductive alkylation reaction, carbonylation reaction,
Not only the oxidative decomposition reaction and the hydrogenolysis reaction, but also any packed column type gas-liquid reaction can be applied. For example, as the oxidation reaction, the production of a corresponding carboxylic acid or carboxylic acid salt by catalytic oxidation of a hydroxy compound using a noble metal catalyst supported on granular activated carbon, ether carboxylic acid by oxidation of the terminal hydroxyl group of a nonionic surfactant, or Examples thereof include production of its salt and production of benzaldehyde by catalytic oxidation of benzyl alcohol. Examples of the reduction reaction include formation of a corresponding saturated bond by catalytic hydrogenation of a double bond, formation of a double bond by selective hydrogenation of a triple bond, and the like. Further, production of primary amines and secondary amines by hydrogenation of nitriles can be mentioned. As the amination reaction, N, N- by the reaction of a higher alcohol with a hydrogen / dimethylamine mixed gas using a molded copper chromite catalyst
Examples include the production of dimethyl long-chain alkyl tertiary amines.
Further, production of N, N-dilong-chain alkyl-N-methyl tertiary amine by reaction of higher alcohol with hydrogen / monomethylamine mixed gas can be mentioned. Examples of the reductive alkylation reaction include the production of N, N-dimethyl type tertiary amine by the reaction of primary amine, formaldehyde and hydrogen. Examples of the hydrogenolysis reaction include production of higher alcohols of fatty acid methyl esters by using a copper chromite catalyst. As can be seen from the above reaction examples, the method of the present invention is particularly effective in the case of catalytic reaction, and the applicable reaction covers a wide range.

【0017】[0017]

【発明の効果】本発明の装置及び反応方法によれば、管
型反応器内、特に管型反応器内壁に生じた液体原料の偏
流に対して、気体原料が管型反応器壁面全体から供給さ
れるため、気−液の接触効率が極めて優れており、ま
た、管型反応器の垂直性が完全に確保されなくとも、充
分な気−液接触効率を達成することができる。更に接触
効率が向上するため、滞留時間を短縮できることから副
反応が減少し、選択性が向上する。従って本発明の装置
及び反応方法によれば、反応効率を飛躍的に向上せしめ
ることができ、生産性を著しく向上させることができ
る。
According to the apparatus and the reaction method of the present invention, the gas raw material is supplied from the entire wall surface of the tubular reactor against the drift of the liquid raw material generated in the tubular reactor, particularly on the inner wall of the tubular reactor. Therefore, the gas-liquid contact efficiency is extremely excellent, and sufficient gas-liquid contact efficiency can be achieved even if the verticality of the tubular reactor is not completely ensured. Further, since the contact efficiency is improved, the residence time can be shortened, side reactions are reduced, and the selectivity is improved. Therefore, according to the apparatus and the reaction method of the present invention, the reaction efficiency can be dramatically improved and the productivity can be remarkably improved.

【0018】[0018]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明するが、本発明はこれらに限定されるものではない。
なお、グリセリンの転化率は原料グリセリンが他の物質
に転化したモル%であり、ジヒドロキシアセトン及びタ
ルトロン酸ソーダ選択率は反応したグリセリンに対する
各々のモノ%である。 実施例1 反応装置の製造:伊勢化学製の平均細孔径
2.4μ、内径10mm、長さ500mmのMPGを固定床
反応塔として使用した。このMPGは反応ガス導入管の
ついたステンレス製の外套に挿入し、その他の部材を配
設し図1に示す装置を製造した。
The present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
The conversion rate of glycerin is the mol% of the raw material glycerin converted to other substances, and the selectivity of dihydroxyacetone and sodium tartronic acid is each mono% of the reacted glycerin. Example 1 Production of reactor: MPG manufactured by Ise Chemical Co., Ltd. having an average pore diameter of 2.4 μ, an inner diameter of 10 mm and a length of 500 mm was used as a fixed bed reaction tower. This MPG was inserted into a stainless steel jacket equipped with a reaction gas introduction tube, and other members were arranged to manufacture the apparatus shown in FIG.

【0019】実施例2 グリセリンの接触酸化:次の
式に示す如く、グリセリンを酸化し、ジヒドロキシアセ
トンを本発明方法により製造した。
Example 2 Catalytic Oxidation of Glycerin: Dihydroxyacetone was prepared by the method of the present invention by oxidizing glycerin as shown in the following formula.

【0020】[0020]

【化1】 [Chemical 1]

【0021】すなわち、武田薬品工業(株)製の粒状活
性炭、WH2C(40−80 メッシュ、1300m2
g)にPtを3wt%、Biを0.6wt%担持させた
触媒を調製し実施例1のMPG製反応塔(図1)に吸引
充填し、これをグリセリン接触酸化用の反応塔として使
用した。触媒充填容積は39.3cm3であった。反応温
度は50℃に設定した。反応塔塔頂より50wt%グリ
セリン水溶液を液空間速度(LHSV)0.07hr-1
供給した。一方、空気をガス入口よりグリセリンに対す
る酸素のモル比が2.1になるように供給した。反応塔
出口より酸化反応混合物と空気を連続的に流出させた。
定常に達してから酸化生成物を高速液体クロマトグラフ
ィー(HPLC)で分析した結果、グリセリン転化率は
70モル%、ジヒドロキシアセトン選択率は60%であ
り、残りは主にグリセリン酸であった。
That is, granular activated carbon manufactured by Takeda Pharmaceutical Co., Ltd., WH 2 C (40-80 mesh, 1300 m 2 /
A catalyst in which 3 wt% of Pt and 0.6 wt% of Bi were supported in g) was prepared and suction-filled into the MPG reaction tower of Example 1 (FIG. 1), and this was used as a reaction tower for glycerin catalytic oxidation. . The catalyst packing volume was 39.3 cm 3 . The reaction temperature was set to 50 ° C. A 50 wt% glycerin aqueous solution was supplied from the top of the reaction tower at a liquid hourly space velocity (LHSV) of 0.07 hr −1 . On the other hand, air was supplied from the gas inlet so that the molar ratio of oxygen to glycerin was 2.1. The oxidation reaction mixture and air were continuously discharged from the outlet of the reaction tower.
After reaching a steady state, the oxidation product was analyzed by high performance liquid chromatography (HPLC). As a result, the glycerin conversion rate was 70 mol%, the dihydroxyacetone selectivity was 60%, and the rest was mainly glyceric acid.

【0022】実施例3 グリセリンの接触酸化:下記
式に示す如くグリセリンの接触酸化を行なった。
Example 3 Catalytic Oxidation of Glycerin: Catalytic oxidation of glycerin was carried out as shown in the following formula.

【0023】[0023]

【化2】 [Chemical 2]

【0024】触媒成分を3wt%Pd及び0.6wt%
Biとし、原料液を50wt%グリセリン水溶液と30
wt%水酸化ナトリウム水溶液とを重量比で1.00:
1.22(タルトロン酸ソーダ生成に対して当量の85
%比)になるように混合し、該混合液のLHSVを0.
14hr-1にする以外は実施例2と同様にグリセリンの接
触酸化を行なった。その結果、グリセリン転化率は10
0モル%、タルトロン酸ソーダ選択率は80モル%であ
った。
The catalyst component is 3 wt% Pd and 0.6 wt%
Bi and the raw material liquid was 50 wt% glycerin aqueous solution and 30
A weight ratio of a wt% sodium hydroxide aqueous solution is 1.00:
1.22 (85 equivalents to sodium tartronic acid production
% Ratio), and the LHSV of the mixed solution was adjusted to 0.
Catalytic oxidation of glycerin was performed in the same manner as in Example 2 except that the time was changed to 14 hr -1 . As a result, the glycerin conversion rate was 10
0 mol% and sodium tartronic acid selectivity were 80 mol%.

【0025】比較例1 グリセリン水溶液及び空気を共に図2に示す反応塔塔頂
から導入し、その他は実施例2と同様の条件でグリセリ
ンの接触酸化を行なった。反応塔は硬質ガラス製で、内
径20mm、長さ600mm、触媒充填容積184.4cm3
である。その結果、グリセリン転化率は23モル%であ
り、ジヒドロキシアセトンの選択率は50%であった。
Comparative Example 1 Both the aqueous glycerin solution and air were introduced from the top of the reaction column shown in FIG. 2, and the catalytic oxidation of glycerin was carried out under the same conditions as in Example 2 except for the above. The reaction tower is made of hard glass and has an inner diameter of 20 mm, a length of 600 mm and a catalyst filling volume of 184.4 cm 3.
Is. As a result, the glycerin conversion rate was 23 mol% and the dihydroxyacetone selectivity was 50%.

【0026】比較例2 グリセリン水溶液及び空気を共に図2に示す反応塔塔頂
から導入し、その他は実施例3と同様の条件でグリセリ
ンの接触酸化を行なった。その結果、グリセリン転化率
は40モル%であり、タルトロン酸ソーダの選択率は6
0%であった。
Comparative Example 2 Both the aqueous glycerin solution and air were introduced from the top of the reaction tower shown in FIG. 2, and the catalytic oxidation of glycerin was carried out under the same conditions as in Example 3 except for the above. As a result, the conversion rate of glycerin was 40 mol%, and the selectivity of sodium tartronate was 6%.
It was 0%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の反応装置の一例を示す図である。FIG. 1 is a diagram showing an example of a reaction apparatus of the present invention.

【図2】比較例の反応装置を示す図である。 <符号の説明> 1 管型反応器 2 充填物(接触) 3 外套 4 パッキング 5 充填物支持体 6 管 7 ガス入口 8 管FIG. 2 is a diagram showing a reaction device of a comparative example. <Explanation of reference symbols> 1 tube reactor 2 packing (contact) 3 jacket 4 packing 5 packing support 6 tube 7 gas inlet 8 tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多孔質材料で形成された管型反応器と、
該管型反応器内の充填物と、該管型反応器に外装され、
気体を多孔質材料を通して管型反応器内に供給するため
の外套を配設したことを特徴とする気−液系反応装置。
1. A tubular reactor formed of a porous material,
The packing in the tubular reactor and the exterior of the tubular reactor,
A gas-liquid type reaction device comprising an outer jacket for supplying gas into a tubular reactor through a porous material.
【請求項2】 充填物が、成形触媒である請求項1記載
の反応装置。
2. The reactor according to claim 1, wherein the packing is a shaped catalyst.
【請求項3】 多孔質材料で形成され、充填物が充填さ
れた管型反応器の内部にその一端から液体原料を供給
し、該管型反応器の側壁面を通して気体原料を該管型反
応器内に供給し、該液体原料及び気体原料を反応させる
ことを特徴とする気−液系反応方法。
3. A tubular reactor formed of a porous material and filled with a packing is supplied with a liquid raw material from one end thereof, and a gaseous raw material is passed through the side wall surface of the tubular reactor to transform the tubular raw material into the tubular reaction. A gas-liquid reaction method, characterized in that the liquid raw material and the gas raw material are reacted with each other.
【請求項4】 充填物が、成形触媒である請求項3記載
の反応方法。
4. The reaction method according to claim 3, wherein the packing is a shaped catalyst.
JP7409193A 1993-03-31 1993-03-31 Reaction apparatus and reaction method using the apparatus Pending JPH06277497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7409193A JPH06277497A (en) 1993-03-31 1993-03-31 Reaction apparatus and reaction method using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7409193A JPH06277497A (en) 1993-03-31 1993-03-31 Reaction apparatus and reaction method using the apparatus

Publications (1)

Publication Number Publication Date
JPH06277497A true JPH06277497A (en) 1994-10-04

Family

ID=13537170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7409193A Pending JPH06277497A (en) 1993-03-31 1993-03-31 Reaction apparatus and reaction method using the apparatus

Country Status (1)

Country Link
JP (1) JPH06277497A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078672A1 (en) * 1999-06-22 2000-12-28 Merck Patent Gmbh Spray pyrolysis or spray drying method and facility for the implementation thereof
WO2006011616A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Reactor
JP2009263263A (en) * 2008-04-23 2009-11-12 Idemitsu Kosan Co Ltd Method for reducing organic compound and reduction treatment apparatus
JP2011236209A (en) * 2010-04-15 2011-11-24 China Petroleum & Chemical Corp Method for producing c1-c4 alkyl nitrite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078672A1 (en) * 1999-06-22 2000-12-28 Merck Patent Gmbh Spray pyrolysis or spray drying method and facility for the implementation thereof
WO2006011616A1 (en) * 2004-07-26 2006-02-02 Ngk Insulators, Ltd. Reactor
JP2009263263A (en) * 2008-04-23 2009-11-12 Idemitsu Kosan Co Ltd Method for reducing organic compound and reduction treatment apparatus
JP2011236209A (en) * 2010-04-15 2011-11-24 China Petroleum & Chemical Corp Method for producing c1-c4 alkyl nitrite

Similar Documents

Publication Publication Date Title
US6117409A (en) Process for producing hydrogen peroxide by direct synthesis
CN101945847B (en) Method for producing 6-hydroxy hexanoic acid esters
US10875821B2 (en) Process for the preparation of alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of a liquid phase
KR101182621B1 (en) Microreactor and liquid phase chemical reaction method using the microreactor
US20030109758A1 (en) Selective hydrogenation of olefinically unsaturated carbonyl compounds
JPH08269007A (en) Production of epsilon-caprolactam and epsilon-caprolactam precursor
US7393978B2 (en) Method for producing ethylene-amines
CN109415287B (en) Process for preparing alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of a liquid phase
US20080161611A1 (en) Method for Producing Bis-[(3-Dimethylamino)Propyl]Amine (Bisdmapa)
JPH06277497A (en) Reaction apparatus and reaction method using the apparatus
US5840981A (en) Process for producing N-methyl-2(3,4 dimethoxyphenyl)-ethylamine
US11111197B2 (en) Process for the preparation of alpha, beta unsaturated aldehydes by oxidation of alcohols in the presence of a liquid phase
CN102964246A (en) Method and device for manufacturing dialkyl oxalate or/and dialkyl carbonate
JP4975409B2 (en) Method for producing tertiary amine
JP7177156B2 (en) Continuous production method for 2,3-butanediol
JP2006312624A (en) Method for producing tertiary amine
KR101819023B1 (en) Refining mehtod for crude propylene oxide product and preparation method for propylene oxide
US7005554B2 (en) Method for continuous hydrogenation of citronellal to form citronellol
CN104968639B (en) By the manufacturing method of 1,2- alkanediol synthesis saturated aldehyde
EP0057629A1 (en) Vapor state process for the preparation of diesters of oxalic acid
KR101271339B1 (en) Process for Preparing Gulonic-lactones Using Hydrogenation
KR20020012550A (en) Process for producing hydrogenated ester, hydrogenation catalyst for use therein, and process for producing the catalyst
JP2006265233A (en) Method for producing olefin oxide