JPH06276609A - Electric drive system - Google Patents

Electric drive system

Info

Publication number
JPH06276609A
JPH06276609A JP32072893A JP32072893A JPH06276609A JP H06276609 A JPH06276609 A JP H06276609A JP 32072893 A JP32072893 A JP 32072893A JP 32072893 A JP32072893 A JP 32072893A JP H06276609 A JPH06276609 A JP H06276609A
Authority
JP
Japan
Prior art keywords
voltage
drive system
energy storage
electric drive
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32072893A
Other languages
Japanese (ja)
Other versions
JP3910220B2 (en
Inventor
Doncker Rik W A A De
リック・ウイヴィナ・アンナ・アデルソン・デ・ドンカー
Robert D King
ロバート・ディーン・キング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH06276609A publication Critical patent/JPH06276609A/en
Application granted granted Critical
Publication of JP3910220B2 publication Critical patent/JP3910220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/18Reluctance machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE: To supply an electric drive system improving the reliability of a battery and the efficiency of the system. CONSTITUTION: An AC electric drive system contains a bi-directional power semiconductor interface 20 between a battery 22 or an auxiliary energy storage device and a power inverter 10. The bi-directional power semiconductor interface 20 boosts the input DC voltage so that DC link voltage substantially has no relation with the input DC voltage and the parameter of the battery 22 or the energy storage device and reduces/connects DC link voltage from input DC voltage. Then, input DC voltage is controlled so that efficiency is made maximum by using a prescribed torque envelope value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般的には電気駆動シ
ステムに関する。更に具体的に言えば、本発明は、推進
用蓄電池の電圧又は補助エネルギ貯蔵装置の電圧を電気
駆動システムの直流リンク電圧から減結合することによ
り、信頼性及び効率を改善することができるようにする
電力半導体インタフェイスに関する。
FIELD OF THE INVENTION This invention relates generally to electric drive systems. More specifically, the present invention enables reliability and efficiency to be improved by decoupling the propulsion battery voltage or the auxiliary energy storage device voltage from the DC link voltage of the electrical drive system. Power semiconductor interface.

【0002】[0002]

【従来の技術】今日の電気車輌駆動装置は、乗物の厳し
い加速条件及び登坂条件に適合するように、それに要求
されるトルク及び電力のレベルが増加しつつある。実用
的であるためには、商業用の電気車輌駆動装置は、コス
ト、寸法及び重量を最小限にしなければならない。最近
10年間、一層高い電圧の半導体装置が利用され得るよ
うになるにつれて、業界は系統電圧(即ち、直流リンク
電圧)をほぼ100Vから300Vまでに高めることに
より、駆動システムの電力密度を高め、こうして定格電
圧が一層高いが、定格電流の一層小さい電力半導体をイ
ンバータに用いることができるようにしてきた。この兼
合いにより、電気駆動システムの寸法及びコストを最小
限に抑えられたことが利点であった。蓄電池を別にする
と、インバータは電気駆動システム全体の中で最も費用
のかかるサブシステムであり、電力半導体スイッチが一
般的には、このインバータの中で最も費用のかかる部品
である。これらの駆動装置の典型的な電圧レベルでは、
電力半導体のコストは、電圧ではなく、電流の関数とし
て一層急速に増加する。
2. Description of the Prior Art Today's electric vehicle drives have increased torque and power levels required to meet the severe acceleration and climbing conditions of vehicles. To be practical, commercial electric vehicle drives must minimize cost, size and weight. As higher voltage semiconductor devices have become available in the last decade, the industry has increased the power density of drive systems by increasing the system voltage (ie, DC link voltage) from almost 100V to 300V, thus Power semiconductors with higher rated voltage but lower rated current have become available for use in inverters. This tradeoff was an advantage in that the size and cost of the electric drive system was minimized. Apart from the battery, the inverter is the most expensive subsystem of the entire electric drive system, and the power semiconductor switch is generally the most expensive component of the inverter. At the typical voltage levels of these drives,
The cost of power semiconductors increases more rapidly as a function of current rather than voltage.

【0003】直流系統電圧を高くすることにより、コス
トを下げながら目立って性能が改善されてきた。しかし
ながら、直流系統電圧を増加することは、蓄電池を比較
的高い電圧(典型的には公称300V)用に設計するこ
とを必要とし、これは、一層電流容量の小さいセルを設
計すると共に、一層多数の小さいセル(例えば2V)を
直列に接続することによって達成されているが、そのた
め、セルごとの容量の不釣合(ミスマッチ)により、蓄
電池の信頼性及び寿命を低下させてしまうことが不利で
ある。一層多数のセルが直列に接続されればされるほ
ど、セルごとの変動の確率が一層大きくなる。蓄電池の
重量の制約も又、並列に接続することができるセルの直
列ストリングの数を制限し、更に信頼性を低下させる。
By increasing the DC system voltage, the performance has been remarkably improved while reducing the cost. However, increasing the DC system voltage requires that the accumulator be designed for a relatively high voltage (typically 300 V nominal), which in turn designs a cell with a smaller current capacity and a greater number. This is achieved by connecting small cells (for example, 2 V) in series. However, it is disadvantageous that the capacity of each cell is mismatched and the reliability and life of the storage battery are reduced. The more cells that are connected in series, the greater the probability of variation from cell to cell. Battery weight constraints also limit the number of series strings of cells that can be connected in parallel, further reducing reliability.

【0004】従って、高電圧蓄電池の信頼性の問題に対
する解決策を提供すると共に、エネルギ貯蔵装置を直流
リンク電圧から減結合することにより、交流電気駆動シ
ステムの効率を高めることが望ましい。
Therefore, it is desirable to provide a solution to the reliability problem of high voltage accumulators and to increase the efficiency of AC electrical drive systems by decoupling the energy storage device from the DC link voltage.

【0005】[0005]

【発明の要約】交流電気駆動システムが、直流リンク電
圧を交流出力電圧に変換する電力インバータと、駆動シ
ステムに入力直流電圧を送出するように、エネルギ貯蔵
装置を電力インバータに接続する手段と、接続する手段
とインバータとの間に接続されている直流−直流変換器
を含んでいる双方向電力半導体インタフェイスとを備え
ている。直流−直流変換器は、直流リンク電圧が入力直
流電圧、及びエネルギ貯蔵装置のパラメータと実質的に
無関係になるように、入力直流電圧を所定の率だけ昇圧
していると共に直流リンク電圧を入力直流電圧から減結
合している。所定のトルクの包絡値(エンベロープ)を
用いて効率を最大にすべく電気駆動システムの動作を制
御するために、入力電圧を制御する制御手段が設けられ
ている。
SUMMARY OF THE INVENTION An AC electrical drive system includes a power inverter for converting a DC link voltage to an AC output voltage, and means for connecting an energy storage device to the power inverter to deliver an input DC voltage to the drive system. And a bidirectional power semiconductor interface including a DC-DC converter connected between the means and the inverter. The DC-DC converter boosts the input DC voltage by a predetermined rate and the DC link voltage to the input DC voltage so that the DC link voltage becomes substantially independent of the input DC voltage and the parameters of the energy storage device. Decoupled from voltage. Control means are provided to control the input voltage to control the operation of the electric drive system to maximize efficiency using a predetermined torque envelope.

【0006】本発明の電力半導体インタフェイスを用い
ることにより、電気駆動システムの蓄電池又はエネルギ
貯蔵装置は、その信頼性及び寿命を最大にするような電
圧に設計することができることが有利であり、その一
方、駆動システムに対する電圧入力は、効率を最大にす
ると共に、所与のトルク/速度動作点に対して、インバ
ータの部品に対するストレスを最小限にするように、イ
ンタフェイスを介して制御されている。
By using the power semiconductor interface of the present invention, it is advantageous that the storage battery or energy storage device of an electric drive system can be designed to a voltage that maximizes its reliability and life. On the other hand, the voltage input to the drive system is controlled through the interface to maximize efficiency and, for a given torque / speed operating point, minimize stress on the components of the inverter. .

【0007】本発明の特徴及び利点は、以下図面につい
て詳しく説明するところから明らかになろう。
The features and advantages of the present invention will be apparent from the following detailed description of the drawings.

【0008】[0008]

【実施例】図1はモータ14を駆動するために蓄電池1
2に直接接続されているインバータ10を含んでいる普
通の電気駆動システムを示す。モータ14は、例えば誘
導機、永久磁石(内部若しくは表面磁石)形同期機、電
子転流形モータ、又は切り換えリラクタンス機を含んで
いる任意の適当な形式の交流機を備えていてもよい。入
力フィルタ・キャパシタCdcが直流リンクVDCの間に接
続されている。インバータ10は、相岐路当たり2つの
直列接続されているスイッチング装置T1 −T2 、T3
−T4 、及びT5 −T6 をそれぞれ有している3相イン
バータを備えているものとして示されている。ダイオー
ドD1 −D2 、D3 −D4 、及びD5−D6 が各々のス
イッチング装置T1 −T2 、T3 −T4 、及びT5 −T
6 と逆並列にそれぞれ接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows a storage battery 1 for driving a motor 14.
1 shows a conventional electric drive system including an inverter 10 connected directly to 2. The motor 14 may comprise any suitable type of alternator including, for example, an induction machine, a permanent magnet (internal or surface magnet) synchronous machine, an electronic commutation motor, or a switched reluctance machine. An input filter capacitor Cdc is connected between the DC link VDC. The inverter 10 comprises two switching devices T1-T2, T3 connected in series per phase branch.
-T4 and T5-T6 are shown as having three-phase inverters respectively. Diodes D1-D2, D3-D4, and D5-D6 provide respective switching devices T1-T2, T3-T4, and T5-T4.
6 and anti-parallel, respectively.

【0009】普通のように、スイッチング装置T1 〜T
6 は、外部のトルク指令に応答して、マイクロプロセッ
サを基本としたインバータ/モータ制御装置(図に示し
ていない)によって制御されている。直流リンク電圧V
DCの瞬時値は、蓄電池のパラメータ(例えば、開路電
圧、内部抵抗、充電状態、温度)及びモータの特性と、
電気駆動システムに対するトルク指令の大きさ及び極性
との関数である。低速軽トルク運転には、インバータが
パルス幅変調(PWM)モードで動作して、比較的高い
蓄電池電圧Vbat を、モータの適正な運転に要求される
レベルまでチョッパ作用で下げることが必要であり、そ
の結果、インバータのスイッチング装置に実質的な切り
換え損失が生じる。
As usual, the switching devices T1 to T
6 is controlled by a microprocessor based inverter / motor controller (not shown) in response to an external torque command. DC link voltage V
The instantaneous value of DC is the parameters of the storage battery (for example, open circuit voltage, internal resistance, state of charge, temperature) and motor characteristics,
It is a function of the magnitude and polarity of the torque command for the electric drive system. For low speed light torque operation, it is necessary for the inverter to operate in a pulse width modulation (PWM) mode to lower the relatively high storage battery voltage V bat to a level required for proper operation of the motor by a chopper action. As a result, a substantial switching loss occurs in the switching device of the inverter.

【0010】図1では、蓄電池12は、それぞれがV
bat /3の電圧を有している3つの蓄電池モジュールの
直列接続として構成されている比較的高い電圧の蓄電池
として図式的に示されている。図1に示すような普通の
電気駆動システムでは、電圧の高い蓄電池の1つのモジ
ュールを構成しているセルの並列ストリングのうちの1
つ又は更に多くのストリングに故障が起こったときに、
蓄電池の容量に著しい劣化が生ずることが欠点である。
In FIG. 1, each of the storage batteries 12 has a V
It is shown diagrammatically as a relatively high voltage accumulator configured as a series connection of three accumulator modules having a voltage of bat / 3. In a typical electric drive system as shown in FIG. 1, one of the parallel strings of cells that make up one module of the high voltage battery is
When one or more strings fail,
The disadvantage is that the capacity of the storage battery is significantly deteriorated.

【0011】しかしながら、本発明によれば、蓄電池又
は補助エネルギ貯蔵装置からのエネルギが、電力半導体
インタフェイス回路を介して高い電圧の交流駆動部へ効
率的に転送される。補助エネルギ貯蔵装置の例として
は、ウルトラキャパシタ、又は超導電磁気エネルギ貯蔵
装置(SMES)のような磁気エネルギ貯蔵装置があ
る。インタフェイス回路は、エネルギ貯蔵装置の電圧を
駆動システムの直流リンク電圧から減結合し、こうして
エネルギ貯蔵装置の利用度を最大にする。更に、インタ
フェイス回路は双方向の敏速なエネルギ変換を行い、駆
動システムの敏速な加速及び回生エネルギの回収を可能
にする。
However, according to the present invention, energy from the storage battery or auxiliary energy storage device is efficiently transferred to the high voltage AC drive via the power semiconductor interface circuit. Examples of auxiliary energy storage devices are magnetic energy storage devices such as ultracapacitors or superconducting magnetic energy storage devices (SMES). The interface circuit decouples the energy storage device voltage from the drive system DC link voltage, thus maximizing utilization of the energy storage device. In addition, the interface circuit provides rapid bidirectional energy conversion, allowing for rapid acceleration of the drive system and recovery of regenerative energy.

【0012】図2は本発明の一実施例による電気交流駆
動システムを示す。直流−直流変換器を含んでいるイン
タフェイス回路20が、蓄電池22とインバータ10と
の間に接続されている。インタフェイス回路20のおか
げで、蓄電池22は図1の蓄電池12(Vbat )よりも
電圧が一層低い蓄電池(V´ bat )を備えていること
が有利である。具体的に言うと、図2では蓄電池22
は、直列ではなく並列に接続されている3つの蓄電池モ
ジュールを備えているものとして示されており、図1の
場合に比べて、蓄電池全体の電圧を1/3に減少させて
いる。
FIG. 2 shows an electric AC drive system according to an embodiment of the present invention. An interface circuit 20 including a DC-DC converter is connected between the storage battery 22 and the inverter 10. Thanks to the interface circuit 20, storage battery 22 battery 12 (V bat) voltage than in FIG. 1 is advantageously provided with a much lower battery (V'bat). Specifically, in FIG.
Are shown as having three storage battery modules connected in parallel instead of in series, and the voltage of the entire storage battery is reduced to 1/3 as compared with the case of FIG.

【0013】図2の駆動システムを用いて高い動力及び
高い速度を達成するために、一層低い蓄電池電圧V´
bat は、せいぜい3倍だけ昇圧されなければならない。
更に、合計の蓄電池電流Idc´ は、図1の直流リンク
電流Idcの3倍でなければならない。従って、図2の直
流−直流変換器20のスイッチング装置の定格電流は、
図1の従来のシステムの各相枝路のスイッチの定格電流
の約3倍にすることが必要になる。
In order to achieve high power and high speed with the drive system of FIG. 2, a lower battery voltage V '
The bat must be boosted by at most 3 times.
Furthermore, the total battery current Idc 'must be three times the DC link current Idc of FIG. Therefore, the rated current of the switching device of the DC-DC converter 20 of FIG.
It is necessary to make it about three times the rated current of the switch in each phase branch of the conventional system of FIG.

【0014】図2は、直流−直流変換器20が周知の形
式の突き合わせ昇圧形(即ち、双方向形)変換器を備え
ているものとして示されており、この変換器は、第1の
スイッチング装置TB1及び逆並列ダイオードDB1の並列
の組み合わせと直列に接続されている入力フィルタ誘導
子Lf を有している。第2のスイッチング装置TB2及び
逆並列ダイオードDB2の並列の組み合わせが、負の直流
リンク電圧−VDCと、フィルタ誘導子Lf 及びスイッチ
ング装置TB1を結んでいる接続点との間に接続されてい
る。スナッバ抵抗Rsnub及びスナッバ・キャパシタCsn
ubの直列の組み合わせが、負の直流リンク電圧−VDCと
ダイオードDB1の陰極との間に接続されている。
FIG. 2 illustrates that the DC-DC converter 20 comprises a butt boost (ie, bidirectional) converter of the well-known type, which converter is the first switching device. It has an input filter inductor Lf connected in series with a parallel combination of device TB1 and anti-parallel diode DB1. A parallel combination of the second switching device TB2 and the anti-parallel diode DB2 is connected between the negative DC link voltage -VDC and the connection point connecting the filter inductor Lf and the switching device TB1. Snubber resistor Rsnub and snubber capacitor Csn
A series combination of ub is connected between the negative DC link voltage -VDC and the cathode of diode DB1.

【0015】電気車輌駆動システム制御装置30は、
(図1について前に述べたような)外部のトルク指令、
タコメータ32からのモータ速度測定値、電流センサ3
4からの相電流測定値、及び電圧センサ36からの直流
リンク電圧測定値を受け取る。制御装置30は更に、後
で説明するような直流−直流変換器20の状態を表す信
号を直流−直流制御装置40から受け取る。これに対し
て、制御装置30は、タコメータ32からのモータ速度
信号を直流−直流制御装置40に対する周波数信号FR
EQに変換すると共に、直流−直流変換器20及びイン
バータ10のスイッチング装置に対するゲート信号を発
生するためのフィードフォワード(前送り)信号を発生
する。
The electric vehicle drive system controller 30 is
An external torque command (as described above for FIG. 1),
Motor speed measurement value from tachometer 32, current sensor 3
4. Receive phase current measurements from 4 and DC link voltage measurements from voltage sensor 36. The controller 30 further receives from the DC-DC controller 40 a signal representative of the state of the DC-DC converter 20, as will be explained later. On the other hand, the control device 30 sends the motor speed signal from the tachometer 32 to the frequency signal FR to the DC-DC control device 40.
While converting into EQ, it also generates a feedforward signal for generating a gate signal for the DC-DC converter 20 and the switching device of the inverter 10.

【0016】図2に示すように、直流−直流制御装置4
0は、電圧センサ44からの蓄電池電圧測定値V´
bat と、電流センサ42からの直流入力電流Idc´ 測
定値とを受け取る。具体的に言うと、電圧V´ bat
び電流Idc´ の測定値は効率調整器46に供給され、
調整器46は、所定のトルクの包絡値(エンベロープ)
を用いて効率を最大にするために、電圧制御ブロック4
8に対する効率調整信号を発生する。電圧制御ブロック
48は、所定のトルクの包絡値を用いて効率を最大にす
ると共にモータの運転を制御するために、電圧センサ4
4からの直流リンク電圧測定値及び制御装置30からの
周波数信号FREQを用いて、入力直流電圧V´ bat
を制御する。このトルクの包絡値を用いて運転を制御す
るための適正なゲート信号が、ゲート制御ブロック50
によって発生される。
As shown in FIG. 2, DC-DC controller 4
0 is the storage battery voltage measurement value V ′ from the voltage sensor 44.
bat and the DC input current Idc ′ measured value from the current sensor 42 are received. Specifically, the measured values of the voltage V ′ bat and the current Idc ′ are supplied to the efficiency regulator 46,
The regulator 46 has an envelope value (envelope) of a predetermined torque.
Voltage control block 4 to maximize efficiency with
The efficiency adjustment signal for 8 is generated. The voltage control block 48 uses the envelope value of the predetermined torque to maximize efficiency and control the operation of the motor.
Using a frequency signal FREQ from the DC link voltage measurement and control device 30 from 4, the input DC voltage V'bat
To control. An appropriate gate signal for controlling the operation using the envelope value of the torque is the gate control block 50.
Generated by.

【0017】図3は、電圧制御ブロック48で用いられ
るような、電気車輌駆動システムに対する直流リンク電
圧対モータ速度データ及びその結果得られるトルクの包
絡線を示す。本発明によれば、直流−直流制御装置40
は、効率が最大になるように、図3に示すような所定の
トルクの包絡線に沿って運転を制御する。図3に示すよ
うなデータは、例えば直流−直流制御装置40(図2)
にルックアップテーブルとして記憶することができる。
動作について説明すると、駆動時(又はモータ動作の
間)に、直流−直流変換器20は一層低い蓄電池電圧V
´ bat を一層高い直流リンク電圧VDCに昇圧する。低
速及び軽トルクのとき、スイッチTB1及びTB2はオフで
あり、そのため変換器20の状態もオフであり、蓄電池
電圧V´ bat は順バイアスされたダイオードDB1を介
してインバータ10に接続される。速度及びトルクを増
加するためには、インタフェイス20のスイッチング装
置TB1及びTB2を用いて、蓄電池電圧を昇圧する。具体
的に言うと、変換器20の状態がオンであり、動作は次
に述べるように所定のトルクの包絡値を用いて維持され
る。スイッチTB2がターンオンになると、誘導子Lf の
電流が増加する。電流が制御されたレベルまで増加した
後、スイッチTB2はターンオフになり、誘導子Lf に流
れていた電流の微分の符号が変わり、誘導子Lf の両端
に電圧を誘起する。ダイオードDB1が順バイアスされ、
直流リンク電圧を高めて、モータに電力を供給する。誘
導子電流が制御された値まで減少すると、スイッチTB2
が再びオンに切り替わり、このサイクルが繰り返され
る。
FIG. 3 shows the DC link voltage versus motor speed data and the resulting torque envelope for an electric vehicle drive system, as used in voltage control block 48. According to the present invention, the DC-DC controller 40
Controls the operation along the envelope of a predetermined torque as shown in FIG. 3 so that the efficiency is maximized. The data as shown in FIG. 3 is, for example, the DC-DC controller 40 (FIG. 2).
Can be stored as a look-up table.
In operation, the DC-DC converter 20 operates at a lower storage battery voltage V during driving (or during motor operation).
' Bat is boosted to a higher DC link voltage VDC. When the low-speed and light torque, switches TB1 and TB2 are turned off, therefore the transducer 20 state is also turned off, battery voltage V'bat is connected to the inverter 10 via a diode DB1 which is forward biased. To increase speed and torque, switching devices TB1 and TB2 of interface 20 are used to boost the battery voltage. Specifically, the transducer 20 is in the on state and operation is maintained using a predetermined torque envelope value as described below. When switch TB2 turns on, the current in inductor Lf increases. After the current has increased to a controlled level, switch TB2 is turned off, changing the sign of the derivative of the current flowing in inductor Lf, inducing a voltage across inductor Lf. Diode DB1 is forward biased,
Powers the motor by increasing the DC link voltage. When inductor current decreases to a controlled value, switch TB2
Turns on again and the cycle repeats.

【0018】他方、回生制動の間、高圧直流リンクから
の電力が蓄電池電圧の値V´ batに変換され、この結
果、蓄電池に電流が流れ込む。特に、回生制動の間、ス
イッチTB2はオフに保たれる。スイッチTB1をターンオ
ンし、誘導子Lf の電流を増加させる。電流が制御され
たレベルまで増加した後、スイッチTB1をターンオフに
すると、誘導子Lf の電流の微分の符号が変わり、その
両端に電圧を誘起する。電流は、誘導子Lf から蓄電池
に入り、その後、順バイアスされたダイオードDB2を介
して誘導子Lf に戻る閉じた回路に流れる。スイッチT
B1がオフである時間の間、直流リンク電流はフィルタ・
キャパシタCdcを充電する。回生制動モードでは、高周
波チョッパ作用を利用して、直流−直流変換器20及び
インバータ10の受動形部品の規模及び重量を減少する
ことができるようにするのが有利である。更に、蓄電池
の回生電流の限界に応じて、スイッチTB1はスイッチT
B2よりも定格電流を一層小さくすることができる。
[0018] On the other hand, during regenerative braking, the power from the high-voltage DC link is converted to a value V'bat of the battery voltage, as a result, current flows into the battery. In particular, the switch TB2 is kept off during regenerative braking. The switch TB1 is turned on, increasing the current in the inductor Lf. When the switch TB1 is turned off after the current has increased to the controlled level, the sign of the derivative of the current in the inductor Lf changes, inducing a voltage across it. Current flows from the inductor Lf into the accumulator and then into a closed circuit back to the inductor Lf via the forward biased diode DB2. Switch T
During the time B1 is off, the DC link current is
Charge the capacitor Cdc. In the regenerative braking mode, it is advantageous to be able to take advantage of the high frequency chopper action to reduce the size and weight of the passive components of the DC / DC converter 20 and the inverter 10. Further, depending on the limit of the regenerative current of the storage battery, the switch TB1 is
The rated current can be made smaller than that of B2.

【0019】図2の電気駆動システムは、モータのコー
ナ点の速度よりも低い速度及び軽トルクでの運転の際に
効率が改善される。しかしながら、大トルク及び高速で
は、直流−直流変換器20を含んでいる交流駆動システ
ム全体の効率は、図1に示すもとの駆動システムよりも
若干低くなると予想される。しかしながら、蓄電池を電
源とする大抵の電気車輌の用途では、全体の駆動のう
ち、最大動力又はトルクの包絡値で運転されるのは極く
小さい部分である。従って、最大トルクの包絡値のとき
にシステムの効率が低下することは、蓄電池又はエネル
ギ貯蔵装置の信頼性、及び故障に対する寛容度を改善す
る点で、妥当な兼合いである。
The electric drive system of FIG. 2 has improved efficiency when operating at speeds lower than the corner speed of the motor and at light torque. However, at high torques and high speeds, the overall efficiency of the AC drive system including the DC-DC converter 20 is expected to be slightly lower than the original drive system shown in FIG. However, in most electric vehicle applications that use a battery as a power source, only a small portion of the total drive is driven at the maximum power or torque envelope. Thus, reduced system efficiency at maximum torque envelope is a reasonable tradeoff in improving battery reliability or energy storage device reliability, and fault tolerance.

【0020】本発明の電力半導体インタフェイス回路の
他の利点として、直列誘導子Lf が存在するために、蓄
電池に加えられる交流電流リップルが減少する。図4は
本発明による他の実施例の電気駆動システムを示す図で
あって、それぞれが蓄電池とインバータ10との間に直
流−直流変換器インタフェイスを有している複数(n
個)の蓄電池が用いられている。変換器のスイッチング
装置の各々は、図2の直流−直流変換器の場合に比べて
1/nの定格電流、又は図1の従来のシステムのスイッ
チング装置とほぼ同じ定格電流を有している。例えば、
図4のシステムは、3つの蓄電池60〜62と、3つの
対応する直流−直流変換器インタフェイス63〜65と
をそれぞれ有しているものとして示されている。図4の
システムは、個々の蓄電池のハード故障又はソフト故障
の際に、余分の故障に対する寛容度を有することが有利
である。ハード故障(例えば、短絡又は開路)が検出さ
れたとき、それぞれの直流−直流変換器は不作動に(デ
ィセーブル)され、駆動システムは2/3の容量で運転
される。ソフト故障(即ち、蓄電池の劣化)の際には、
外部の制御装置を用いて、他の2つの蓄電池と同じ電圧
を保つように、劣化した蓄電池に対する負荷を減少さ
せ、こうして、容量が低下した蓄電池に対するストレス
を増やさずに、モータに対して最高の電力レベルを供給
することができる。
Another advantage of the power semiconductor interface circuit of the present invention is that the presence of the series inductor Lf reduces the alternating current ripple applied to the battery. FIG. 4 is a diagram showing an electric drive system according to another embodiment of the present invention, each of which has a DC-DC converter interface between a storage battery and an inverter 10 (n).
Individual) storage batteries are used. Each of the converter switching devices has a rated current of 1 / n compared to the DC-DC converter of FIG. 2, or approximately the same rated current as the conventional system switching device of FIG. For example,
The system of FIG. 4 is shown as having three storage batteries 60-62 and three corresponding DC-DC converter interfaces 63-65, respectively. The system of FIG. 4 advantageously has a tolerance for extra failures in case of hard or soft failures of individual batteries. When a hard fault (eg short circuit or open circuit) is detected, the respective DC-DC converter is disabled and the drive system is operated at 2/3 capacity. In the case of soft failure (that is, deterioration of the storage battery),
Using an external controller, reduce the load on the deteriorated storage battery so as to keep the same voltage as the other two storage batteries, thus increasing the maximum for the motor without increasing the stress on the storage battery with the reduced capacity. A power level can be supplied.

【0021】図5は、低電圧の推進用蓄電池22及び補
助エネルギ貯蔵装置70の両方を用いている本発明の他
の実施例の電気駆動システムを示す。エネルギ貯蔵装置
70は、ウルトラキャパシタ・バンクを備えているもの
として示されている。蓄電池20及びウルトラキャパシ
タ・バンク70は、別々の直流−直流変換器インタフェ
イス20及び72をそれぞれ介してインバータ10に接
続されている。各々の直流−直流変換器インタフェイス
は、電流フィードバック、ゲート駆動及び保護の機能を
有するそれ自身の局所的な制御装置40を有している。
推進源の順序制御(即ち、トルク指令に応答した、蓄電
池とウルトラキャパシタ・バンクとの間の瞬時電力の配
分)が制御装置30′によって行われる。直流−直流変
換器20及び22は両方共、双方向性であるので、シス
テムの制御装置はウルトラキャパシタを、回生制動によ
り、又は推進用蓄電池からのいずれかによって充電する
ことができる。特に、ウルトラキャパシタ・バンクは、
車輌の加速及び回生制動の際に、ダイナミックに大電力
を送出したり、又は大電力を受け取り、こうして推進用
蓄電池のピーク電力を、駆動装置の平均電力よりも若干
高いレベルに下げる。従って、図5のシステムは、図2
のシステムに比べて2つ余分のスイッチング装置を用い
ているが、直流−直流変換器インタフェイス20がピー
ク電力ではなく平均電力を切り換えるので、定格電流が
一層低いスイッチング装置を用いることができる。
FIG. 5 illustrates an electrical drive system of another embodiment of the present invention that employs both a low voltage propulsion battery 22 and an auxiliary energy storage device 70. Energy storage device 70 is shown as comprising an ultracapacitor bank. The storage battery 20 and the ultracapacitor bank 70 are connected to the inverter 10 via separate DC-DC converter interfaces 20 and 72, respectively. Each DC-DC converter interface has its own local controller 40 with current feedback, gate drive and protection functions.
Sequential control of the propulsion source (ie, distribution of instantaneous power between the accumulator and the ultracapacitor bank in response to a torque command) is provided by controller 30 '. Since both DC-DC converters 20 and 22 are bidirectional, the controller of the system can charge the ultracapacitor, either by regenerative braking or from a propulsion battery. In particular, the Ultra Capacitor Bank
During vehicle acceleration and regenerative braking, high power is dynamically delivered or received, thus reducing the peak power of the propulsion storage battery to a level slightly above the average power of the drive. Therefore, the system of FIG.
Although two extra switching devices are used as compared to the above system, since the DC-DC converter interface 20 switches the average power rather than the peak power, a switching device having a lower rated current can be used.

【0022】図6は図5のウルトラキャパシタ・バンク
70の代わりに、超導電磁気エネルギ貯蔵装置(SME
S)80を用いている本発明の他の実施例を示す。本発
明の電気駆動システムの利点は、要約すれば次のような
ことを含んでいる。 (1) 直列に接続されている一層少ない数のセルを有
している電圧の一層低い蓄電池モジュールを用いて、蓄
電池の信頼性を改善すると共に、蓄電池の寿命を長くす
る。
FIG. 6 shows a superconducting magnetic energy storage device (SME) in place of the ultracapacitor bank 70 of FIG.
S) 80 is used in another embodiment of the present invention. The advantages of the electric drive system of the present invention include the following in summary. (1) Using a lower voltage storage battery module having a smaller number of cells connected in series improves the reliability of the storage battery and extends the life of the storage battery.

【0023】(2) 蓄電池のハード及びソフト故障の
際に、駆動システムの故障に対する寛容度を改善する。 (3) 直流−直流変換器インタフェイス回路に設けら
れている直列誘導子のために、蓄電池に印加される交流
電流リップルが減少する。 (4) 容量が同じでない内部セルを有している蓄電池
を用いて、運転中のシステムの性能及び制御作用が改善
される。
(2) Tolerance for a failure of the drive system in the case of hard and soft failures of the storage battery is improved. (3) The AC inductor ripple applied to the storage battery is reduced due to the series inductor provided in the DC-DC converter interface circuit. (4) The performance and control action of the system in operation are improved by using the storage battery having the internal cells whose capacities are not the same.

【0024】(5) 各々がそれぞれの電圧範囲で動作
すると共に高圧交流駆動インバータの1つの直流母線に
接続されている1つ又は更に多くの直流−直流変換器イ
ンタフェイス回路を有しているような、多数の蓄電池及
び/又はウルトラキャパシタ・エネルギ貯蔵装置を用い
たシステムの形式を採れる。 (6) 時間のかなりの部分の間、ソフト・スイッチン
グ動作ができる余分の制御能力があるため、インバータ
のスイッチング装置に対するストレスが減少する。
(5) Each has one or more DC-DC converter interface circuits operating in their respective voltage range and connected to one DC bus of a high voltage AC drive inverter. However, it can take the form of a system with multiple accumulators and / or ultracapacitor energy storage devices. (6) The stress on the switching device of the inverter is reduced due to the extra control capability that allows soft switching operation for a significant portion of the time.

【0025】(7) インバータのスイッチング損失が
減少するために、低速及び軽トルク運転での駆動システ
ムの効率が改善される。 (8) あらゆる形式の交流機に対して、直流母線の電
圧が一層高いために、速度範囲が一層広くなる。 本発明の好ましい実施例を図面に示して説明したが、こ
れらの実施例が例に過ぎないことは言うまでもない。当
業者には、本発明の要旨の範囲内で、種々の変更及び置
換が容易に考えられよう。従って、本発明は特許請求の
範囲の要旨のみによって限定されることを承知された
い。
(7) The efficiency of the drive system at low speed and light torque operation is improved because the switching loss of the inverter is reduced. (8) The speed range is wider due to the higher voltage on the DC bus for all types of AC machines. Although the preferred embodiments of the present invention have been shown and described in the drawings, it goes without saying that these embodiments are merely examples. Those skilled in the art can easily think of various changes and substitutions within the scope of the present invention. Therefore, it is to be understood that the invention is limited only by the spirit of the claims.

【図面の簡単な説明】[Brief description of drawings]

【図1】蓄電池に直接接続されているインバータを有し
ている従来の電気駆動装置の回路図である。
FIG. 1 is a circuit diagram of a conventional electric drive device having an inverter directly connected to a storage battery.

【図2】本発明の一実施例によるインタフェイス回路を
含んでいる交流電気駆動装置の回路図である。
FIG. 2 is a circuit diagram of an AC electric drive device including an interface circuit according to an embodiment of the present invention.

【図3】本発明による交流電気駆動装置を制御するとき
の、直流リンク電圧対モータ速度及びその結果得られる
トルクの包絡線の一例を示すグラフである。
FIG. 3 is a graph showing an example of a DC link voltage vs. motor speed and resulting torque envelope when controlling an AC electric drive according to the present invention.

【図4】本発明の他の実施例による交流電気駆動装置の
回路図である。
FIG. 4 is a circuit diagram of an AC electric drive device according to another embodiment of the present invention.

【図5】本発明の更に他の実施例による交流電気駆動装
置の回路図である。
FIG. 5 is a circuit diagram of an AC electric drive device according to still another embodiment of the present invention.

【図6】本発明の他の実施例による交流電気駆動装置の
回路図である。
FIG. 6 is a circuit diagram of an AC electric drive device according to another embodiment of the present invention.

【符号の説明】 10 インバータ 14 モータ 20 直流−直流変換器 22 蓄電池 30 電気車輌駆動システム制御装置 32 タコメータ 34、42 電流センサ 36、44 電圧センサ 40 直流−直流制御装置 46 効率調整器 48 電圧制御ブロック 50 ゲート制御器[Explanation of Codes] 10 Inverter 14 Motor 20 DC-DC Converter 22 Storage Battery 30 Electric Vehicle Drive System Controller 32 Tachometer 34, 42 Current Sensor 36, 44 Voltage Sensor 40 DC-DC Controller 46 Efficiency Regulator 48 Voltage Control Block 50 gate controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ロバート・ディーン・キング アメリカ合衆国、ニューヨーク州、スケネ クタデイ、ウェンプル・ロード、アールデ ィー・ナンバー6(番地なし) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Robert Dean King Art Day No. 6 (No Address), Wenple Road, Schenectady, New York, USA

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 直流リンク電圧を交流出力電力に変換す
る電力インバータと、 当該駆動システムに入力直流電圧を送出するように、エ
ネルギ貯蔵装置を前記電力インバータに接続する手段
と、 該接続する手段と前記インバータとの間に接続されてい
る双方向直流−直流変換器であって、該直流−直流変換
器は、前記入力直流電圧を所定の率だけ昇圧しており、
前記直流リンク電圧が前記入力直流電圧及び前記エネル
ギ貯蔵装置のパラメータと実質的に無関係になるよう
に、前記直流リンク電圧を前記エネルギ貯蔵装置から送
出された前記入力直流電圧から減結合している、双方向
直流−直流変換器と、 所定のトルクの包絡値を用いて効率を最大にするように
当該電気駆動システムの動作を制御することにより、前
記入力直流電圧を制御する制御手段とを備えた電気駆動
システム。
1. A power inverter for converting a DC link voltage to AC output power; means for connecting an energy storage device to the power inverter to deliver an input DC voltage to the drive system; and means for connecting the same. A bidirectional DC-DC converter connected between the inverter and the DC-DC converter, boosting the input DC voltage by a predetermined rate,
Decoupling the DC link voltage from the input DC voltage delivered from the energy storage device such that the DC link voltage is substantially independent of the input DC voltage and the parameters of the energy storage device. A bidirectional DC-DC converter, and a control means for controlling the input DC voltage by controlling the operation of the electric drive system so as to maximize the efficiency by using a predetermined torque envelope value. Electric drive system.
【請求項2】 前記エネルギ貯蔵装置は、並列接続され
たモジュールを有している蓄電池を含んでいる請求項1
に記載の電気駆動システム。
2. The energy storage device includes a storage battery having modules connected in parallel.
The electric drive system according to.
【請求項3】 前記直流−直流変換器は、突き合わせ昇
圧形変換器を含んでいる請求項1に記載の電気駆動シス
テム。
3. The electric drive system of claim 1, wherein the DC-DC converter comprises a butt boost converter.
【請求項4】 前記制御手段は、ルックアップテーブル
としてメモリに記憶されている直流リンク電圧対モータ
速度データ及びその結果得られる所定のトルクの包絡値
を用いている請求項1に記載の電気駆動システム。
4. The electric drive according to claim 1, wherein the control means uses DC link voltage vs. motor speed data stored in a memory as a look-up table and an envelope value of a predetermined torque obtained as a result. system.
【請求項5】 直流リンク電圧を交流出力電圧に変換す
る電力インバータと、 当該駆動システムに入力直流電圧を送出するように、複
数のエネルギ貯蔵装置の各々を前記電力インバータに接
続する手段と、 該接続する手段の各々と前記インバータとの間に接続さ
れている双方向直流−直流変換器であって、該直流−直
流変換器の各々は、前記エネルギ貯蔵装置の各々の前記
入力直流電圧を所定の率だけ昇圧しており、前記直流リ
ンク電圧がそれぞれの前記入力直流電圧及びそれぞれの
前記エネルギ貯蔵装置のパラメータと実質的に無関係に
なるように、前記直流リンク電圧をそれぞれの前記エネ
ルギ貯蔵装置から送出された前記入力直流電圧から減結
合している、双方向直流−直流変換器と、 所定のトルクの包絡値を用いて効率を最大にするように
当該電気駆動システムの動作を制御することにより、前
記エネルギ貯蔵装置の各々から供給された前記入力直流
電圧を制御する制御手段とを備えた電気駆動システム。
5. A power inverter for converting a DC link voltage to an AC output voltage; means for connecting each of a plurality of energy storage devices to the power inverter for delivering an input DC voltage to the drive system; A bidirectional DC-DC converter connected between each of the connecting means and the inverter, wherein each of the DC-DC converters determines the input DC voltage of each of the energy storage devices. Are boosted by a factor of 10 and the DC link voltage is removed from each of the energy storage devices such that the DC link voltage is substantially independent of the respective input DC voltage and parameters of the respective energy storage device. Maximize efficiency using a bidirectional DC-DC converter that is decoupled from the delivered input DC voltage and a predetermined torque envelope value. And a control means for controlling the input DC voltage supplied from each of the energy storage devices by controlling the operation of the electric drive system.
【請求項6】 前記エネルギ貯蔵装置の少なくとも1つ
は、蓄電池を含んでいる請求項5に記載の電気駆動シス
テム。
6. The electric drive system of claim 5, wherein at least one of the energy storage devices comprises a storage battery.
【請求項7】 前記エネルギ貯蔵装置の少なくとも1つ
は、ウルトラキャパシタを含んでいる請求項5に記載の
電気駆動システム。
7. The electric drive system of claim 5, wherein at least one of the energy storage devices comprises an ultracapacitor.
【請求項8】 前記エネルギ貯蔵装置の少なくとも1つ
は、超導電磁気エネルギ貯蔵装置を含んでいる請求項5
に記載の電気駆動システム。
8. At least one of said energy storage devices comprises a superconducting magnetic energy storage device.
The electric drive system according to.
【請求項9】 前記制御手段は、直流−直流変換器の各
々に付設されているそれぞれ別個の制御装置を含んでい
る請求項5に記載の電気駆動システム。
9. The electric drive system according to claim 5, wherein the control means includes a separate control device associated with each of the DC-DC converters.
【請求項10】 前記直流−直流変換器の各々は、突き
合わせ昇圧形変換器を含んでいる請求項5に記載の電気
駆動システム。
10. The electric drive system of claim 5, wherein each of the DC / DC converters includes a butt boost converter.
【請求項11】 前記制御手段は、ルックアップテーブ
ルとしてメモリに記憶されている直流リンク電圧対モー
タ速度データ及びその結果得られる所定のトルクの包絡
値を用いている請求項5に記載の電気駆動システム。
11. The electric drive according to claim 5, wherein the control means uses DC link voltage vs. motor speed data stored in a memory as a look-up table and an envelope value of a predetermined torque obtained as a result. system.
JP32072893A 1992-12-23 1993-12-21 Electric drive system Expired - Lifetime JP3910220B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/993,879 US5373195A (en) 1992-12-23 1992-12-23 Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
US993879 1997-12-18

Publications (2)

Publication Number Publication Date
JPH06276609A true JPH06276609A (en) 1994-09-30
JP3910220B2 JP3910220B2 (en) 2007-04-25

Family

ID=25540028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32072893A Expired - Lifetime JP3910220B2 (en) 1992-12-23 1993-12-21 Electric drive system

Country Status (7)

Country Link
US (1) US5373195A (en)
JP (1) JP3910220B2 (en)
BR (1) BR9305202A (en)
CA (1) CA2110011C (en)
CH (1) CH687946A5 (en)
IT (1) IT1274348B (en)
MX (1) MX9308198A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182676A (en) * 1998-11-12 2000-06-30 General Electric Co <Ge> Hybrid storage battery device
JP2001275367A (en) * 2000-03-29 2001-10-05 Toei Denki Kk Motor controller
JP2002281609A (en) * 2001-03-21 2002-09-27 Masayuki Hattori Combined secondary battery circuit and regenerative control system
JP2007295791A (en) * 2006-04-21 2007-11-08 Ford Global Technologies Llc Power supplying apparatus for vehicles
WO2008004647A1 (en) * 2006-07-06 2008-01-10 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle having the same
WO2008004464A1 (en) * 2006-07-03 2008-01-10 Toyota Jidosha Kabushiki Kaisha Voltage converter and vehicle having the same
WO2008007627A1 (en) * 2006-07-10 2008-01-17 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle using the same, and its control method
WO2008062856A1 (en) * 2006-11-20 2008-05-29 Toyota Jidosha Kabushiki Kaisha Controller for power supply circuit
JP2008131787A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Power supply, and vehicle therewith
JP2008154439A (en) * 2006-11-20 2008-07-03 Toyota Motor Corp Controller of power circuit
JP2008154302A (en) * 2006-12-14 2008-07-03 Toyota Motor Corp Power supply system, vehicle equipped with the same, and control method thereof
WO2008081983A1 (en) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha Power source device for vehicle and vehicle
US7417393B2 (en) 2003-07-31 2008-08-26 Toyota Jidosha Kabushiki Kaisha Load driver capable of suppressing overcurrent
JP2008295159A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp On-vehicle equipment control system and vehicle
JP2010213404A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Control device of boost converter, hybrid vehicle mounted with the control device, and control method of boost converter
WO2010128550A1 (en) 2009-05-08 2010-11-11 トヨタ自動車株式会社 Power supply system and vehicle equipped with power supply system
JP2012029553A (en) * 2010-07-21 2012-02-09 General Electric Co <Ge> Apparatus and system for power conversion
JP2012525812A (en) * 2009-04-30 2012-10-22 ダイムラー・アクチェンゲゼルシャフト Electric driveable car
JP2015073423A (en) * 2013-09-06 2015-04-16 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Power conversion system for motor car
JP2020018167A (en) * 2014-08-19 2020-01-30 ゼネラル・エレクトリック・カンパニイ Vehicle propulsion system having energy storage system and optimized method of controlling operation thereof

Families Citing this family (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121535A (en) * 1992-10-02 1994-04-28 Toko Inc Ac-dc converter
US6075331A (en) * 1993-03-18 2000-06-13 Imra America, Inc. Systems and methods for managing energy of electric power supply systems
US5483436A (en) * 1993-08-30 1996-01-09 General Electric Company Gate drive power supply operable from a source of unregulated DC electric power
FR2717014B1 (en) * 1994-03-01 1996-04-26 Telemecanique PWM inverter control system.
FI112737B (en) * 1994-05-11 2003-12-31 Kone Corp Hardware for adjusting the lift motor
US5550458A (en) * 1994-05-31 1996-08-27 Lucent Technologies Inc. Low-loss snubber for a power factor corrected boost converter
US5502630A (en) * 1994-07-19 1996-03-26 Transistor Devices, Inc. Power factor corrected rectification
CA2151532C (en) * 1994-07-25 1998-12-22 Emerson Electric Co. Auxiliary starting switched reluctance motor
JPH0835712A (en) * 1994-07-26 1996-02-06 Fujitsu General Ltd Controller for air conditioner
FR2728408B1 (en) * 1994-12-20 1997-01-31 Alsthom Cge Alcatel ELECTRICAL SUPPLY DEVICE, PARTICULARLY FOR PORTABLE DEVICES
US5703456A (en) * 1995-05-26 1997-12-30 Emerson Electric Co. Power converter and control system for a motor using an inductive load and method of doing the same
US5670859A (en) * 1995-06-23 1997-09-23 General Resource Corporation Feedback control of an inverter output bridge and motor system
US5923142A (en) * 1996-01-29 1999-07-13 Emerson Electric Co. Low cost drive for switched reluctance motor with DC-assisted excitation
US5780949A (en) * 1996-01-29 1998-07-14 Emerson Electric Co. Reluctance machine with auxiliary field excitations
US5866964A (en) * 1996-01-29 1999-02-02 Emerson Electric Company Reluctance machine with auxiliary field excitations
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
US5723956A (en) * 1996-05-28 1998-03-03 General Electric Company Low cost electronic ultracapacitor interface technique to provide load leveling of a battery for pulsed load or motor traction drive applications
US5734258A (en) * 1996-06-03 1998-03-31 General Electric Company Bidirectional buck boost converter
US5682067A (en) * 1996-06-21 1997-10-28 Sierra Applied Sciences, Inc. Circuit for reversing polarity on electrodes
US5808884A (en) * 1996-07-16 1998-09-15 Texas Instruments Incorporated Circuit and method for conserving energy in a boost regulator circuit
US5798633A (en) * 1996-07-26 1998-08-25 General Electric Company Battery energy storage power conditioning system
US5914542A (en) * 1997-04-15 1999-06-22 The United States Of America As Represented By The Secretary Of The Air Force Super capacitor charging
GB9709405D0 (en) * 1997-05-10 1997-07-02 Oldham Crompton Batteries Limi Drive system for battery powered vehicles
US6487096B1 (en) 1997-09-08 2002-11-26 Capstone Turbine Corporation Power controller
US5903116A (en) 1997-09-08 1999-05-11 Capstone Turbine Corporation Turbogenerator/motor controller
US6784565B2 (en) 1997-09-08 2004-08-31 Capstone Turbine Corporation Turbogenerator with electrical brake
WO1999032769A1 (en) * 1997-12-20 1999-07-01 Alliedsignal Inc. Constant turbine inlet temperature control of a microturbine power generating system
US6870279B2 (en) 1998-01-05 2005-03-22 Capstone Turbine Corporation Method and system for control of turbogenerator power and temperature
US20020166324A1 (en) 1998-04-02 2002-11-14 Capstone Turbine Corporation Integrated turbine power generation system having low pressure supplemental catalytic reactor
DE19834315A1 (en) * 1998-07-30 2000-02-03 Ako Werke Gmbh & Co Circuit arrangement for measuring and limiting currents in converters for feeding motors
GB9821434D0 (en) * 1998-10-03 1998-11-25 Grant Duncan A battery management system
US6612112B2 (en) 1998-12-08 2003-09-02 Capstone Turbine Corporation Transient turbine exhaust temperature control for a turbogenerator
US6268666B1 (en) 1999-02-25 2001-07-31 Southwest Research Institute Bi-directional power conversion apparatus for combination of energy sources
WO2000059114A1 (en) 1999-03-29 2000-10-05 Anacon Systems, Inc. Method and apparatus for providing pulse width modulation
AU3927800A (en) * 1999-03-29 2000-10-16 Anacon Systems, Inc. Method and apparatus for controlling pulse width modulation device
US6101105A (en) * 1999-06-10 2000-08-08 Rockwell Technologies, Llc Apparatus and method for identifying an unregulated DC bus voltage
EP1205022A4 (en) * 1999-06-11 2004-07-14 Pri Automation Inc Ultracapacitor power supply for an electric vehicle
DE19946242A1 (en) * 1999-09-27 2001-04-05 Grundfos As Frequency converter for an electric motor
US6369461B1 (en) * 2000-09-01 2002-04-09 Abb Inc. High efficiency power conditioner employing low voltage DC bus and buck and boost converters
US6469476B1 (en) * 2000-10-17 2002-10-22 Delphi Technologies, Inc. Multi-mode converter for a motor vehicle electrical system
US6787933B2 (en) 2001-01-10 2004-09-07 Capstone Turbine Corporation Power generation system having transient ride-through/load-leveling capabilities
EP1358704A2 (en) * 2001-01-29 2003-11-05 Broadcom Corporation Battery-operated power supply
JP3654514B2 (en) * 2001-02-02 2005-06-02 東芝Itコントロールシステム株式会社 Power converter
US7231877B2 (en) * 2001-03-27 2007-06-19 General Electric Company Multimode hybrid energy railway vehicle system and method
US6973880B2 (en) * 2001-03-27 2005-12-13 General Electric Company Hybrid energy off highway vehicle electric power storage system and method
US7571683B2 (en) * 2001-03-27 2009-08-11 General Electric Company Electrical energy capture system with circuitry for blocking flow of undesirable electrical currents therein
US20060005739A1 (en) * 2001-03-27 2006-01-12 Kumar Ajith K Railroad system comprising railroad vehicle with energy regeneration
US7137344B2 (en) * 2001-03-27 2006-11-21 General Electric Company Hybrid energy off highway vehicle load control system and method
US7448328B2 (en) * 2001-03-27 2008-11-11 General Electric Company Hybrid energy off highway vehicle electric power storage system and method
US9193268B2 (en) 2001-03-27 2015-11-24 General Electric Company Hybrid energy power management system and method
US7430967B2 (en) * 2001-03-27 2008-10-07 General Electric Company Multimode hybrid energy railway vehicle system and method
US9151232B2 (en) 2001-03-27 2015-10-06 General Electric Company Control system and method
US6615118B2 (en) * 2001-03-27 2003-09-02 General Electric Company Hybrid energy power management system and method
US20060005736A1 (en) * 2001-03-27 2006-01-12 General Electric Company Hybrid energy off highway vehicle electric power management system and method
US7185591B2 (en) * 2001-03-27 2007-03-06 General Electric Company Hybrid energy off highway vehicle propulsion circuit
US20060005738A1 (en) * 2001-03-27 2006-01-12 Kumar Ajith K Railroad vehicle with energy regeneration
KR20070055584A (en) 2001-08-02 2007-05-30 도요다 지도샤 가부시끼가이샤 Motor drive control apparatus
WO2003026125A1 (en) * 2001-09-19 2003-03-27 Newage International Limited An electrical machine and an electrical power generating system
JP3692993B2 (en) * 2001-10-04 2005-09-07 トヨタ自動車株式会社 DRIVE DEVICE AND POWER OUTPUT DEVICE
US6674180B2 (en) 2001-10-12 2004-01-06 Ford Global Technologies, Llc Power supply for a hybrid electric vehicle
US6608396B2 (en) * 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
JP3700059B2 (en) * 2002-08-12 2005-09-28 トヨタ自動車株式会社 Voltage conversion device, voltage conversion method, and computer-readable recording medium storing a program for causing a computer to control voltage conversion
JP3582523B2 (en) * 2002-09-17 2004-10-27 トヨタ自動車株式会社 Electric load device, abnormality processing method, and computer-readable recording medium recording a program for causing a computer to execute electric load abnormality processing
US20040065080A1 (en) * 2002-10-04 2004-04-08 Fasca Ted S. Energy storage system and method
US7138730B2 (en) * 2002-11-22 2006-11-21 Virginia Tech Intellectual Properties, Inc. Topologies for multiple energy sources
DE10259879A1 (en) * 2002-12-20 2004-07-01 Zf Friedrichshafen Ag Circuit arrangement for providing energy to electrical consumers of different energy requirements
JP3928559B2 (en) * 2003-01-10 2007-06-13 トヨタ自動車株式会社 Voltage conversion apparatus, computer-readable recording medium storing a program for causing a computer to execute failure processing, and a failure processing method
KR100488522B1 (en) * 2003-02-07 2005-05-11 삼성전자주식회사 Control apparatus for a motor
JP3661689B2 (en) * 2003-03-11 2005-06-15 トヨタ自動車株式会社 Motor drive device, hybrid vehicle drive device including the same, and computer-readable recording medium storing a program for causing a computer to control the motor drive device
US8025115B2 (en) * 2003-06-02 2011-09-27 General Electric Company Hybrid vehicle power control systems and methods
EP1598930B1 (en) * 2003-06-05 2019-09-18 Toyota Jidosha Kabushiki Kaisha Motor drive device, vehicle using the same, and computer-readable recording medium containing a program for controlling a voltage converter
JP4120504B2 (en) * 2003-07-30 2008-07-16 トヨタ自動車株式会社 Vehicle and vehicle control method
JP4052195B2 (en) * 2003-07-31 2008-02-27 トヨタ自動車株式会社 Voltage conversion device and computer-readable recording medium recording program for causing computer to execute control of voltage conversion
JP4223880B2 (en) * 2003-07-31 2009-02-12 トヨタ自動車株式会社 Motor drive device
JP4220851B2 (en) * 2003-07-31 2009-02-04 トヨタ自動車株式会社 VOLTAGE CONVERTER AND COMPUTER-READABLE RECORDING MEDIUM RECORDING PROGRAM FOR CAUSING COMPUTER TO EXECUTE VOLTAGE CONVERSION
US6940735B2 (en) * 2003-11-14 2005-09-06 Ballard Power Systems Corporation Power converter system
US6977478B2 (en) * 2004-04-29 2005-12-20 International Business Machines Corporation Method, system and program product for controlling a single phase motor
GB0415511D0 (en) * 2004-07-10 2004-08-11 Trw Ltd Motor drive voltage-boost control
JP4665569B2 (en) * 2004-11-30 2011-04-06 トヨタ自動車株式会社 VOLTAGE CONVERTER AND COMPUTER-READABLE RECORDING MEDIUM RECORDING PROGRAM FOR CAUSING COMPUTER TO EXECUTE VOLTAGE CONVERSION IN VOLTAGE CONVERTER
TWI246099B (en) * 2004-12-07 2005-12-21 Luxon Energy Devices Corp Power supply apparatus and power supply method
DE102005016177B4 (en) * 2005-04-08 2008-07-03 Semikron Elektronik Gmbh & Co. Kg Circuit arrangement and associated driving method for an electric or hybrid vehicle with two DC sources
GB0516738D0 (en) * 2005-08-16 2005-09-21 Trw Ltd Motor drive circuit
US7688029B2 (en) * 2005-11-08 2010-03-30 Eveready Battery Company, Inc. Portable battery powered appliance and method of operation
US9166415B2 (en) * 2005-11-24 2015-10-20 Komatsu Ltd. AC link bidirectional DC-DC converter, hybrid power supply system using the same and hybrid vehicle
CN101317321A (en) * 2005-11-29 2008-12-03 丰田自动车株式会社 DC-DC converter for electric automobile
US7489048B2 (en) 2006-01-09 2009-02-10 General Electric Company Energy storage system for electric or hybrid vehicle
US7568537B2 (en) * 2006-01-09 2009-08-04 General Electric Company Vehicle propulsion system
US7780562B2 (en) 2006-01-09 2010-08-24 General Electric Company Hybrid vehicle and method of assembling same
US7595597B2 (en) * 2006-01-18 2009-09-29 General Electric Comapany Vehicle propulsion system
WO2007110016A1 (en) * 2006-03-20 2007-10-04 Temic Automotive Electric Motors Gmbh Power supply circuit comprising a four-quadrant dc/dc converter for an automotive on-board power supply network
US7589986B2 (en) * 2006-04-19 2009-09-15 International Rectifier Corporation Single stage integrated boost inverter motor drive circuit
JP4501893B2 (en) * 2006-04-24 2010-07-14 トヨタ自動車株式会社 Power supply system and vehicle
KR101201908B1 (en) * 2006-05-04 2012-11-16 엘지전자 주식회사 Control apparatus and method of synchronous reluctance motor
JP5109290B2 (en) * 2006-05-30 2012-12-26 トヨタ自動車株式会社 Electric motor drive control system and control method thereof
JP4356708B2 (en) * 2006-06-23 2009-11-04 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
JP4179351B2 (en) * 2006-07-07 2008-11-12 トヨタ自動車株式会社 Power supply system, vehicle equipped with the same, method for controlling power supply system, and computer-readable recording medium recording a program for causing computer to execute control of power supply system
JP4905300B2 (en) * 2006-09-28 2012-03-28 トヨタ自動車株式会社 Power supply system, vehicle equipped with the same, control method for power supply system, and computer-readable recording medium recording a program for causing a computer to execute the control method
JP4886487B2 (en) * 2006-12-01 2012-02-29 本田技研工業株式会社 Multi-input / output power converter and fuel cell vehicle
DE102007004151A1 (en) * 2007-01-22 2008-07-24 Braun Gmbh Circuit arrangement for supplying a load from a voltage source and energy storage device with such a circuit arrangement
KR20100028527A (en) * 2007-02-09 2010-03-12 에이일이삼 시스템즈 인코포레이티드 Control system for hybrid vehicles with reconfigurable multi-function power converter
DE102007025229A1 (en) * 2007-05-31 2008-12-04 Robert Bosch Gmbh Multiphase DC-DC converter
JP5118913B2 (en) * 2007-07-24 2013-01-16 トヨタ自動車株式会社 Power supply system, electric vehicle equipped with the same, and control method of power supply system
JP4640391B2 (en) * 2007-08-10 2011-03-02 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
CN101801708B (en) * 2007-09-10 2013-01-16 丰田自动车株式会社 Vehicle control device and control method
US8044536B2 (en) * 2007-10-10 2011-10-25 Ams Research Corporation Powering devices having low and high voltage circuits
JP2009106081A (en) * 2007-10-23 2009-05-14 Mitsubishi Heavy Ind Ltd Power converter
US20140299392A9 (en) * 2007-10-26 2014-10-09 Frederick William Klatt Brushless Multiphase Self-Commutation Control (BMSCC) And Related Inventions
US8544576B2 (en) * 2007-12-26 2013-10-01 Sumitomo Heavy Industries, Ltd. Hybrid construction machine and method of controlling hybrid construction machine
FI20085290A0 (en) * 2008-04-09 2008-04-09 Rocla Oyj Electrical system for a truck
US8063609B2 (en) * 2008-07-24 2011-11-22 General Electric Company Method and system for extending life of a vehicle energy storage device
US8212532B2 (en) 2008-07-24 2012-07-03 General Electric Company Method and system for control of a vehicle energy storage device
US8049362B2 (en) * 2008-08-29 2011-11-01 Lear Corporation Vehicle inverter
US8120290B2 (en) 2008-10-13 2012-02-21 General Electric Company Energy management system to improve efficiency of electric and hybrid drive trains
US8013548B2 (en) * 2008-10-14 2011-09-06 General Electric Company System, vehicle and related method
FR2937479B1 (en) * 2008-10-21 2010-10-29 Schneider Toshiba Inverter DEVICE FOR RECOVERING ENERGY IN A SPEED DRIVE
US8080973B2 (en) 2008-10-22 2011-12-20 General Electric Company Apparatus for energy transfer using converter and method of manufacturing same
US7932633B2 (en) * 2008-10-22 2011-04-26 General Electric Company Apparatus for transferring energy using power electronics and machine inductance and method of manufacturing same
US8164283B2 (en) * 2008-11-04 2012-04-24 The Boeing Company System and method for energy capture and distribution
US7960857B2 (en) * 2008-12-02 2011-06-14 General Electric Company System and method for vehicle based uninterruptable power supply
US8486570B2 (en) * 2008-12-02 2013-07-16 General Electric Company Apparatus for high efficiency operation of fuel cell systems and method of manufacturing same
US8274173B2 (en) 2008-12-02 2012-09-25 General Electric Company Auxiliary drive apparatus and method of manufacturing same
US8081494B2 (en) * 2008-12-08 2011-12-20 National Semiconductor Corporation Fully integrated multi-phase grid-tie inverter
TWI386789B (en) * 2008-12-29 2013-02-21 Acbel Polytech Inc Three port type AC and DC power supply
US8159181B2 (en) * 2009-02-05 2012-04-17 Infineon Technologies Ag Combining two or more DC to DC converters to limit external coils
US8115334B2 (en) * 2009-02-18 2012-02-14 General Electric Company Electrically driven power take-off system and method of manufacturing same
US8314578B2 (en) * 2009-03-09 2012-11-20 GM Global Technology Operations LLC Control of an alternator-starter for a hybrid electric vehicle having a disconnected high-voltage battery
US7973424B2 (en) 2009-04-03 2011-07-05 General Electric Company Method and apparatus for producing tractive effort with interface to other apparatus
US7928598B2 (en) * 2009-04-03 2011-04-19 General Electric Company Apparatus, method, and system for conveying electrical energy
US8154149B2 (en) * 2009-05-01 2012-04-10 General Electric Company Method and apparatus for charging a vehicle energy storage system
JP5375956B2 (en) * 2009-05-27 2013-12-25 トヨタ自動車株式会社 Voltage conversion device control device, vehicle equipped with the same, and voltage conversion device control method
US8916993B2 (en) 2009-08-11 2014-12-23 General Electric Company System for multiple energy storage and management and method of making same
US8829719B2 (en) 2009-08-11 2014-09-09 General Electric Company System for multiple energy storage and management and method of making same
US9000614B2 (en) 2009-08-11 2015-04-07 General Electric Company System for multiple energy storage and management and method of making same
US8026638B2 (en) * 2009-08-11 2011-09-27 General Electric Company System for multiple energy storage and management and method of making same
US8421271B2 (en) * 2009-08-31 2013-04-16 General Electric Company Apparatus for transferring energy using onboard power electronics and method of manufacturing same
US8030884B2 (en) * 2009-08-31 2011-10-04 General Electric Company Apparatus for transferring energy using onboard power electronics and method of manufacturing same
DE102009053410B4 (en) * 2009-11-14 2021-05-06 Volkswagen Ag Method and device for controlling a power supply from at least one battery cell
KR101094002B1 (en) * 2009-12-16 2011-12-15 삼성에스디아이 주식회사 Power converting device
US8698451B2 (en) 2009-12-18 2014-04-15 General Electric Company Apparatus and method for rapid charging using shared power electronics
US8575778B2 (en) * 2010-01-12 2013-11-05 Ford Global Technologies, Llc Variable voltage converter (VVC) with integrated battery charger
US20120280502A1 (en) * 2010-01-15 2012-11-08 Magna E-Car Systems Gmbh & Co Og Power transmission train
US8384343B2 (en) 2010-04-27 2013-02-26 Honeywell International Inc. Electric accumulators having self regulated battery with integrated bi-directional power management and protection
JP5234050B2 (en) * 2010-04-27 2013-07-10 株式会社デンソー Vehicle power supply
JP5553677B2 (en) 2010-05-06 2014-07-16 本田技研工業株式会社 Output controller for hybrid generator
CN102263430A (en) * 2010-05-28 2011-11-30 浙江奥力电器有限公司 Alternating current (AC) motor drive and battery charging integration system
CN101917016B (en) * 2010-07-21 2012-10-31 北京交通大学 Energy-saving type cascade multilevel photovoltaic grid-connected generating control system
DE102010038511A1 (en) * 2010-07-28 2012-02-02 Robert Bosch Gmbh Overvoltage protection circuit for at least one branch of a half-bridge, inverter, DC-DC converter and circuit arrangement for operating an electrical machine
DE102010039886B4 (en) * 2010-08-27 2013-02-07 Siemens Aktiengesellschaft Drive system for a battery-operated vehicle
US8860348B2 (en) 2010-09-02 2014-10-14 GM Global Technology Operations LLC Method and apparatus for controlling a high-voltage battery connection for hybrid powertrain system
DE102010048985A1 (en) 2010-10-20 2012-04-26 Li-Tec Battery Gmbh Battery management system for power supply system with low voltage range and high voltage range
US8378623B2 (en) 2010-11-05 2013-02-19 General Electric Company Apparatus and method for charging an electric vehicle
US9290097B2 (en) 2010-11-05 2016-03-22 Robert Louis Steigerwald Apparatus for transferring energy using onboard power electronics with high-frequency transformer isolation and method of manufacturing same
TWI433427B (en) * 2010-11-25 2014-04-01 Ind Tech Res Inst Battery power system
US8761978B2 (en) * 2011-03-23 2014-06-24 General Electric Company System for supplying propulsion energy from an auxiliary drive and method of making same
US8606447B2 (en) * 2011-05-23 2013-12-10 GM Global Technology Operations LLC Method and apparatus to operate a powertrain system including an electric machine having a disconnected high-voltage battery
DE102011106944A1 (en) 2011-07-08 2013-01-10 Li-Tec Battery Gmbh Battery management system for power supply system with low voltage range and high voltage range
US8896248B2 (en) * 2011-07-27 2014-11-25 Regal Beloit America, Inc. Methods and systems for controlling a motor
US8963365B2 (en) 2011-08-12 2015-02-24 General Electric Company System and method for optimizing energy storage device cycle life
US8994327B2 (en) 2011-08-24 2015-03-31 General Electric Company Apparatus and method for charging an electric vehicle
US20130076128A1 (en) * 2011-09-28 2013-03-28 Caterpillar, Inc. Active Switching Frequency Modulation
US9073438B2 (en) 2011-10-28 2015-07-07 General Electric Company System for selectively coupling an energy source to a load and method of making same
US9434258B2 (en) 2011-11-18 2016-09-06 GM Global Technology Operations LLC Power converter with diagnostic unit power supply output
US9290107B2 (en) 2011-11-29 2016-03-22 Ruijie Shi System and method for energy management in an electric vehicle
US9120390B2 (en) 2012-03-08 2015-09-01 General Electric Company Apparatus for transferring energy using onboard power electronics and method of manufacturing same
US9174525B2 (en) 2013-02-25 2015-11-03 Fairfield Manufacturing Company, Inc. Hybrid electric vehicle
CN104044475B (en) 2013-03-15 2017-07-11 通用电气公司 Improved drive system and the device using the drive system
DE102013009823A1 (en) 2013-06-11 2014-12-11 Liebherr-Components Biberach Gmbh Electric drive system and energy storage device therefor
US10046646B2 (en) 2013-09-06 2018-08-14 Samsung Sdi Co., Ltd. Power conversion system for electric vehicles
DE102013222641A1 (en) * 2013-11-07 2015-05-07 Bayerische Motoren Werke Aktiengesellschaft Energy storage system for an electrically powered vehicle
CN104901574A (en) * 2014-03-05 2015-09-09 日月元科技(深圳)有限公司 Bridge circuit and short circuit protection method thereof
CN103872911B (en) * 2014-03-27 2016-04-13 南京西普尔科技实业有限公司 Super capacitor power-adjustable controller
US9399407B2 (en) 2014-08-19 2016-07-26 General Electric Company Vehicle propulsion system having an energy storage system and optimized method of controlling operation thereof
US9387766B2 (en) * 2014-09-11 2016-07-12 GM Global Technology Operations LLC Vehicle with selectively enabled boost converter
US10320202B2 (en) * 2014-09-30 2019-06-11 Johnson Controls Technology Company Battery system bi-stable relay control
US20160137076A1 (en) * 2014-11-14 2016-05-19 General Electric Company System, method and apparatus for remote opportunity charging
CN105730257B (en) 2014-12-08 2018-05-22 通用电气公司 Propulsion system, Energy Management System and method
US9827865B2 (en) 2014-12-30 2017-11-28 General Electric Company Systems and methods for recharging vehicle-mounted energy storage devices
US9809119B2 (en) 2015-01-13 2017-11-07 General Electric Company Bi-directional DC-DC power converter for a vehicle system
US9666379B2 (en) * 2015-03-13 2017-05-30 Saft America Nickel supercapacitor engine starting module
US10300804B2 (en) 2015-04-29 2019-05-28 General Electric Company Apparatus and method for automated positioning of a vehicle
KR101875996B1 (en) * 2015-06-17 2018-07-06 현대자동차주식회사 Device and method for controlling bidirectional converter of eco-friendly vehicle
EP3121952B1 (en) * 2015-07-21 2018-12-05 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Switched reluctance motor with a driver circuit and method for operating a switched reluctance motor
US11479139B2 (en) 2015-09-11 2022-10-25 Invertedpower Pty Ltd Methods and systems for an integrated charging system for an electric vehicle
WO2017041144A1 (en) 2015-09-11 2017-03-16 Invertedpower Pty Ltd A controller for an inductive load having one or more inductive windings
US9987938B2 (en) 2015-12-04 2018-06-05 General Electric Company Energy storage device, exchange apparatus, and method for exchanging an energy storage device
JP6437959B2 (en) * 2016-06-30 2018-12-12 トヨタ自動車株式会社 Power converter
US10164522B2 (en) 2016-09-21 2018-12-25 Fca Us Llc Selective response control of DC-DC converters in mild hybrid electric vehicles
JP2019532615A (en) * 2016-10-13 2019-11-07 深▲セン▼易▲馬▼▲達▼科技有限公司 Power supply connection device and power supply control system
US11267358B2 (en) 2017-05-08 2022-03-08 Invertedpower Pty Ltd Vehicle charging station
US10110103B1 (en) * 2017-06-21 2018-10-23 GM Global Technology Operations LLC Electric drive system enhancement using a DC-DC converter
DE102022132523A1 (en) 2022-12-07 2024-06-13 HORIBA Europe GmbH, Zweigniederlassung Darmstadt Drive and load system for a rotating electrical machine, test bench and electrical load and drive train

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102172A (en) * 1984-10-23 1986-05-20 Hitachi Ltd Current type converter utilizing self-extinguishing element
JPS61248881A (en) * 1985-04-22 1986-11-06 三菱電機株式会社 Controller for elevator
GB2201848B (en) * 1987-01-14 1991-01-30 Hitachi Ltd Current-type converter apparatus
GB9012365D0 (en) * 1990-06-02 1990-07-25 Jaguar Cars Motor vehicles

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000182676A (en) * 1998-11-12 2000-06-30 General Electric Co <Ge> Hybrid storage battery device
JP4650911B2 (en) * 1998-11-12 2011-03-16 ゼネラル・エレクトリック・カンパニイ Hybrid storage battery device
JP2001275367A (en) * 2000-03-29 2001-10-05 Toei Denki Kk Motor controller
JP2002281609A (en) * 2001-03-21 2002-09-27 Masayuki Hattori Combined secondary battery circuit and regenerative control system
US7417393B2 (en) 2003-07-31 2008-08-26 Toyota Jidosha Kabushiki Kaisha Load driver capable of suppressing overcurrent
JP2007295791A (en) * 2006-04-21 2007-11-08 Ford Global Technologies Llc Power supplying apparatus for vehicles
WO2008004464A1 (en) * 2006-07-03 2008-01-10 Toyota Jidosha Kabushiki Kaisha Voltage converter and vehicle having the same
WO2008004647A1 (en) * 2006-07-06 2008-01-10 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle having the same
WO2008007627A1 (en) * 2006-07-10 2008-01-17 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle using the same, and its control method
US7928603B2 (en) 2006-07-10 2011-04-19 Toyota Jidosha Kabushiki Kaisha Power supply system, vehicle using the same and its control method
US8471413B2 (en) 2006-11-20 2013-06-25 Toyota Jidosha Kabushiki Kaisha Control device of power supply circuit
US8476790B2 (en) 2006-11-20 2013-07-02 Toyota Jidosha Kabushiki Kaisha Control device of power supply circuit
WO2008062856A1 (en) * 2006-11-20 2008-05-29 Toyota Jidosha Kabushiki Kaisha Controller for power supply circuit
JP2008154439A (en) * 2006-11-20 2008-07-03 Toyota Motor Corp Controller of power circuit
US8581448B2 (en) 2006-11-20 2013-11-12 Toyota Jidosha Kabushiki Kaisha Control device of power supply circuit
US8344555B2 (en) 2006-11-20 2013-01-01 Toyota Jidosha Kabushiki Kaisha Control device of power supply circuit
JP4665890B2 (en) * 2006-11-22 2011-04-06 トヨタ自動車株式会社 Power supply device and vehicle equipped with power supply device
JP2008131787A (en) * 2006-11-22 2008-06-05 Toyota Motor Corp Power supply, and vehicle therewith
JP4600390B2 (en) * 2006-12-14 2010-12-15 トヨタ自動車株式会社 Power supply system, vehicle including the same, and control method thereof
JP2008154302A (en) * 2006-12-14 2008-07-03 Toyota Motor Corp Power supply system, vehicle equipped with the same, and control method thereof
US8344699B2 (en) 2006-12-14 2013-01-01 Toyota Jidosha Kabushiki Kaisa Power supply, system having a plurality of power storage units, vehicle using the same, and its control method
WO2008081983A1 (en) * 2007-01-04 2008-07-10 Toyota Jidosha Kabushiki Kaisha Power source device for vehicle and vehicle
JP4513812B2 (en) * 2007-01-04 2010-07-28 トヨタ自動車株式会社 Vehicle power supply device and vehicle
KR101011074B1 (en) * 2007-01-04 2011-01-25 도요타지도샤가부시키가이샤 Power source device for vehicle and vehicle
US8004109B2 (en) 2007-01-04 2011-08-23 Toyota Jidosha Kabushiki Kaisha Vehicle power supply apparatus, and vehicle
JP2008167620A (en) * 2007-01-04 2008-07-17 Toyota Motor Corp Vehicle power supply device and the vehicle
US8515605B2 (en) 2007-05-23 2013-08-20 Toyota Jidosha Kabushiki Kaisha On-vehicle equipment control system and vehicle
US9731667B2 (en) 2007-05-23 2017-08-15 Toyota Jidosha Kabushiki Kaisha On-vehicle equipment control system and vehicle
JP2008295159A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp On-vehicle equipment control system and vehicle
JP2010213404A (en) * 2009-03-09 2010-09-24 Toyota Motor Corp Control device of boost converter, hybrid vehicle mounted with the control device, and control method of boost converter
JP2012525812A (en) * 2009-04-30 2012-10-22 ダイムラー・アクチェンゲゼルシャフト Electric driveable car
US8952651B2 (en) 2009-04-30 2015-02-10 Daimler Ag Electrically drivable motor vehicle with two anti-parallel power branches
JP5287983B2 (en) * 2009-05-08 2013-09-11 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
JPWO2010128550A1 (en) * 2009-05-08 2012-11-01 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
WO2010128550A1 (en) 2009-05-08 2010-11-11 トヨタ自動車株式会社 Power supply system and vehicle equipped with power supply system
US8598734B2 (en) 2009-05-08 2013-12-03 Toyota Jidosha Kabushiki Kaisha Power supply system and vehicle equipped with the same
CN102421630A (en) * 2009-05-08 2012-04-18 丰田自动车株式会社 Power supply system and vehicle equipped with power supply system
JP2012029553A (en) * 2010-07-21 2012-02-09 General Electric Co <Ge> Apparatus and system for power conversion
JP2015073423A (en) * 2013-09-06 2015-04-16 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Power conversion system for motor car
JP2020018167A (en) * 2014-08-19 2020-01-30 ゼネラル・エレクトリック・カンパニイ Vehicle propulsion system having energy storage system and optimized method of controlling operation thereof

Also Published As

Publication number Publication date
JP3910220B2 (en) 2007-04-25
CH687946A5 (en) 1997-03-27
IT1274348B (en) 1997-07-17
ITMI932168A1 (en) 1995-04-13
CA2110011C (en) 2002-08-27
CA2110011A1 (en) 1994-06-24
MX9308198A (en) 1995-01-31
BR9305202A (en) 1994-06-28
ITMI932168A0 (en) 1993-10-13
US5373195A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
JP3910220B2 (en) Electric drive system
US7728562B2 (en) Voltage link control of a DC-AC boost converter system
US5710699A (en) Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
US8487568B2 (en) Circuit arrangement for an electric drive
US7830036B2 (en) Power electronic module pre-charge system and method
US7605497B2 (en) Two-source inverter
US7675192B2 (en) Active DC bus filter for fuel cell applications
CN105228851A (en) Power supply on vehicle system
JP5539337B2 (en) Energy recovery device for variable speed drive
US20110199801A1 (en) Energy recovery device in a variable-frequency drive
KR101835742B1 (en) Dual Battery Package and Operating Method of the Same
US20090066163A1 (en) Two-source series inverter
US6628105B1 (en) Operation of switched reluctance drive systems from dual voltage sources
JP4591741B2 (en) Rotating electric machine drive device for vehicle
JPH1084628A (en) Power supply unit for driving motor
JPH10136674A (en) Power circuit of motor control apparatus
JP3606760B2 (en) Hybrid electric vehicle power supply system
JPH1014222A (en) Step down type dc-dc converter corresponding to regenerated power
KR101686864B1 (en) Dual Battery Package
KR20150062999A (en) Electrical driving system having charging circuit for an energy storage device and method for operating an energy storage device
US20220410741A1 (en) System for charging vehicle battery using motor driving system
US20220416560A1 (en) System for charging vehicle battery using motor driving system
JP2022160874A (en) Electric motor drive device and control method for the same
JPH06319292A (en) Load drive equipment and drive method
JP2002218653A (en) Power converter with electric double layer capacitor applied

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

EXPY Cancellation because of completion of term