JPH0627624B2 - Freeze dryer for liquid substances - Google Patents

Freeze dryer for liquid substances

Info

Publication number
JPH0627624B2
JPH0627624B2 JP60172830A JP17283085A JPH0627624B2 JP H0627624 B2 JPH0627624 B2 JP H0627624B2 JP 60172830 A JP60172830 A JP 60172830A JP 17283085 A JP17283085 A JP 17283085A JP H0627624 B2 JPH0627624 B2 JP H0627624B2
Authority
JP
Japan
Prior art keywords
drying
freezing
heating
conduction
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60172830A
Other languages
Japanese (ja)
Other versions
JPS6233274A (en
Inventor
公博 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okawara Mfg Co Ltd
Original Assignee
Okawara Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okawara Mfg Co Ltd filed Critical Okawara Mfg Co Ltd
Priority to JP60172830A priority Critical patent/JPH0627624B2/en
Publication of JPS6233274A publication Critical patent/JPS6233274A/en
Publication of JPH0627624B2 publication Critical patent/JPH0627624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は食品、医薬品、工業薬品、セラミックス、磁性
材料等の付加価値の高い液状物質を凍結乾燥する装置に
関し、特に凍結と乾燥とを同一の減圧下で行なうように
したことを特徴とするものである。
TECHNICAL FIELD The present invention relates to an apparatus for freeze-drying a liquid substance having a high added value such as foods, pharmaceuticals, industrial chemicals, ceramics and magnetic materials, and particularly freeze-drying is the same. It is characterized in that it is performed under reduced pressure.

(従来の技術) 連続凍結乾燥装置は凍結装置と真空乾燥装置とから成っ
ていて、液状物質を先ず、凍結させ、然るのちこれを真
空乾燥装置に移して乾燥させるものである。
(Prior Art) A continuous freeze-drying device comprises a freezing device and a vacuum drying device, in which a liquid substance is first frozen and then transferred to a vacuum drying device for drying.

この装置は材料物質を変質させることなく能率よく乾燥
することができるので、食品や医薬品、工業薬品、セラ
ミックス、磁性材料等の付加価値の高い液状物質を乾燥
するのに適しているのである。
Since this apparatus can efficiently dry the material without degrading the material, it is suitable for drying a high value-added liquid material such as foods, pharmaceuticals, industrial chemicals, ceramics and magnetic materials.

(従来の技術の問題点) 反面従来の装置は、凍結装置が常圧で行なうものであっ
て、乾燥装置とは大きな圧力差があるので、凍結装置と
乾燥装置との間にエアロック装置を設けることが必要と
なり、そのため凍結装置からエアロック装置への凍結材
料の供給装置、エアロック装置から真空乾燥装置への供
給ホッパーの設置が必要となり、装置が煩雑となるうえ
設備コストが嵩む欠点があった。
(Problems of the conventional technique) On the other hand, in the conventional device, the freezing device operates at normal pressure and there is a large pressure difference from the drying device. Therefore, an airlock device is provided between the freezing device and the drying device. Therefore, it is necessary to install a supply device for the frozen material from the freezing device to the airlock device and a supply hopper from the airlock device to the vacuum drying device, which makes the device complicated and increases the equipment cost. there were.

上記した従来の連続凍結装置は回転ドラム式凍結装置や
ベルトコンベヤ式凍結装置であるが、この装置では液状
物質の冷却は液状物質と回転ドラム又はコンベヤベルト
との熱伝導によるので、凍結能力は25〜60kg/m2・hr程
度と小さく、しかも常温(20℃)の水を−30℃にまで冷
却するのに約115kcal /kgH2O の除熱を必要とするか
ら、冷却コストも嵩むこととなるのである。
The above-mentioned conventional continuous freezing device is a rotating drum type freezing device or a belt conveyor type freezing device.However, in this device, the cooling of the liquid substance is performed by heat conduction between the liquid substance and the rotating drum or the conveyor belt, so the freezing capacity is 25 It is as small as ~ 60kg / m 2 · hr, and it requires heat removal of about 115kcal / kgH 2 O to cool water at room temperature (20 ° C) to -30 ° C, which increases cooling cost. It will be.

勿論、従来も噴霧乾燥凍結装置等の減圧凍結装置も使用
された、しかしながらこの装置は冷却装置は不要となる
が、液状材料は噴霧が可能なものに限定され、ダスティ
ングの処理や自己凍結に必要な時間を保たせるなどのた
め、装置が大きくなる。
Needless to say, a reduced-pressure freezing device such as a spray-drying freezing device has also been used in the past. However, this device does not require a cooling device, but the liquid material is limited to those that can be sprayed, and it is suitable for dusting processing and self-freezing. The size of the device becomes large in order to keep the required time.

加えて従来の連続凍結乾燥装置では、真空乾燥装置は加
熱方式として放射加熱方式と伝導加熱方式の何れかが採
られていたのであるが、放射加熱方式の場合では乾燥能
力を上げるために加熱温度を上げると被乾燥材料の表面
部分のものが変質したり焦げたりして製品の劣化をまね
くことから、温度を一定以上に高くすることができな
い。殊に乾燥の後半(減率乾燥期間)では、加熱板の温
度を80〜100 ℃程度にまで下げなければならないので、
極度に乾燥速度が低下することとなるのである。又、伝
導加熱方式の場合には、初期温度を上げるために加熱板
の温度を上げると、加熱面に接触している部分が製品劣
化を起したり、材料によってはベルト等へ付着を起した
りするので、加熱部を品質許容温度にまで上げることが
難しいのである。
In addition, in the conventional continuous freeze-drying device, either the radiant heating method or the conduction heating method was adopted as the heating method for the vacuum drying apparatus.However, in the case of the radiant heating method, the heating temperature is increased to increase the drying capacity. If the temperature is raised, the surface portion of the material to be dried will be deteriorated or burned, leading to deterioration of the product, so that the temperature cannot be raised above a certain level. Especially in the latter half of drying (decrease rate drying period), the temperature of the heating plate must be lowered to about 80-100 ° C.
The drying speed will be extremely reduced. In addition, in the case of the conduction heating method, if the temperature of the heating plate is raised to raise the initial temperature, the part in contact with the heating surface may deteriorate the product or adhere to the belt etc. depending on the material. Therefore, it is difficult to raise the temperature of the heating section to the permissible quality temperature.

(問題点を解決するための手段) 本発明は上記した点に鑑みてなされたものであって、液
状材料の凍結を真空乾燥装置と同じ真空度にした凍結室
で行なうもので例えば回転円筒冷却ドラムを凍結室内に
設置し、ドラム面上に液状材料を供給塗布することによ
り、自己蒸発、伝導冷却により液を凍結させる。凍結し
た材料はドラム面上に当てたスクレーパにて掻きとり、
フレーク状の氷結粒を得る。然して液状材料の凍結能率
を高めると共に、凍結装置を真空乾燥装置に直接直結し
て形成してエアロック装置及びこれに付属する供給ホッ
パ等を無くして装置を単純化して設備費や運転費等を低
減させ、更に真空乾燥装置では伝導加熱方式と放射加熱
方式を併用すると共にコンベヤベルトには攪拌機構を取
付けて、高温で能率よく乾燥することができるようにし
たのである。
(Means for Solving Problems) The present invention has been made in view of the above points, and is one in which a liquid material is frozen in a freezing chamber having the same degree of vacuum as a vacuum dryer, for example, rotary cylinder cooling. The drum is installed in the freezing chamber, and the liquid material is supplied and applied on the surface of the drum to freeze the liquid by self-evaporation and conduction cooling. The frozen material is scraped off with a scraper on the drum surface,
Flake-shaped frozen particles are obtained. However, in addition to increasing the freezing efficiency of the liquid material, the freezing device is directly connected to the vacuum drying device to form the airlock device and the supply hopper attached to it, simplifying the device and reducing equipment costs and operating costs. In addition, the vacuum drying device uses both the conduction heating method and the radiant heating method, and the conveyor belt is equipped with a stirring mechanism to enable efficient drying at high temperatures.

(実施例) 図中符号1は凍結装置、2は真空乾燥装置である。 凍
結装置1は伝導冷却と自己蒸発とを併用したもので、凍
結室3には冷却ドラム4が設けられると共に真空ポンプ
14が接続されている。 この冷却ドラム4によって液状
材料を伝導冷却するのであって、冷却ドラム4には冷凍
機5が接続されていて、冷却ドラム4内にブライン液を
送り込んでその表面温度を−30℃程度にまで降下させる
ようになっていると共に、該ドラム4の上部には注液ノ
ズル6が取付けられていて、液送ポンプ7によって送り
込まれた液状材料を冷却ドラム4の表面に万遍なく、注
ぎかけて塗布するようになっている。 又、真空ポンプ
14は凍結室3内を0.1〜1torr程度に減圧して冷却ド
ラム4に注ぎかけられた液状材料中の水分の蒸発を促進
させるようになっている。
(Example) In the figure, reference numeral 1 is a freezing device, and 2 is a vacuum drying device. The freezing device 1 uses both conduction cooling and self-evaporation, and the freezing chamber 3 is provided with a cooling drum 4 and a vacuum pump.
14 are connected. The liquid material is conductively cooled by the cooling drum 4, and the refrigerator 5 is connected to the cooling drum 4. The brine liquid is fed into the cooling drum 4 to lower the surface temperature thereof to about -30 ° C. In addition, a liquid injection nozzle 6 is attached to the upper portion of the drum 4, and the liquid material fed by the liquid feed pump 7 is evenly poured and applied onto the surface of the cooling drum 4. It is supposed to do. Also a vacuum pump
Reference numeral 14 is designed to reduce the pressure in the freezing chamber 3 to about 0.1 to 1 torr to promote evaporation of water in the liquid material poured onto the cooling drum 4.

真空乾燥装置2は伝導加熱と放射加熱とを併用したベル
トコンベヤ式乾燥装置であって乾燥室8にはベルトコン
ベヤ9が設けられると共に該ベルトコンベヤ9の移送面
の下側にはベルトに接して伝導加熱板10が取付けれてい
てベルトを−20〜120 ℃程度に加熱するようになってい
ると共に、コンベヤの上部には移送面に向けて放射加熱
板11が取付けられていて、コンベヤ9上を移送される被
乾燥材料に対して100 〜200 ℃程度の熱線を照射するよ
うになっている。
The vacuum drying device 2 is a belt conveyor type drying device that uses both conductive heating and radiant heating. A belt conveyor 9 is provided in the drying chamber 8 and a belt is provided below the transfer surface of the belt conveyor 9 so as to contact the belt. A conduction heating plate 10 is attached to heat the belt to about -20 to 120 ° C., and a radiant heating plate 11 is attached to the upper part of the conveyor toward the transfer surface. The material to be dried is irradiated with heat rays of about 100 to 200 ° C.

符号12回転バー式の攪拌機である。 このものは、ベル
トコンベヤ9に載せられた被乾燥材料を攪拌して加熱む
らを無くし、過熱による製品劣化やベルトへの付着現象
を起す可能性を抑えることによって、加熱温度を高める
ことと可能にし、加熱能率を向上させるものである。
This is a 12-rotation bar type agitator. This one makes it possible to raise the heating temperature by stirring the material to be dried placed on the belt conveyor 9 to eliminate heating unevenness, and to suppress the possibility of product deterioration due to overheating and adhesion to the belt. , To improve the heating efficiency.

ところで、凍結室3は真空乾燥室8の始端部の上面に直
接取付けられていて、両室は連通している。 従って両
室の室内圧力は同一になっていて、凍結室3に送り込ま
れた液状材料は、ここで凍結されたのち、被乾燥材料と
して真空乾燥室9上に直接落とし込まれるのである。
By the way, the freezing chamber 3 is directly attached to the upper surface of the starting end portion of the vacuum drying chamber 8, and the two chambers communicate with each other. Therefore, the internal pressures of both chambers are the same, and the liquid material fed into the freezing chamber 3 is frozen here and then dropped directly onto the vacuum drying chamber 9 as the material to be dried.

(作用) 冷却ドラム4にブライン液を送入してその表面温度を−
30℃程度に冷却すると共に真空ポンプ14を作動させて凍
結室3と真空乾燥室8内を1torr以下に減圧し、然して
液送ポンプ7を作動させて、液状ノズル6より冷却ドラ
ム4に向けて所定量の液状材料を万遍なく注ぎかける。
すると液状材料は冷却ドラム4に熱を奪われて降温す
る。 それと同時に材料中の含有水分が蒸発するので、
その蒸発熱によって更に温度が下がり、やがて自己凍結
する。 そこでこれをスクレーバ13で掻き取り、フレー
ク状の氷結乾燥材料として、真空乾燥装置2のベルトコ
ンベヤ9上に投載するのである。
(Operation) Bringing the brine liquid into the cooling drum 4 to reduce the surface temperature thereof-
Cooling to about 30 ° C. and operating the vacuum pump 14 to reduce the pressure in the freezing chamber 3 and the vacuum drying chamber 8 to 1 torr or less, and then operate the liquid feed pump 7 to direct the liquid nozzle 6 toward the cooling drum 4. Pour the prescribed amount of liquid material evenly.
Then, the liquid material is deprived of heat by the cooling drum 4 to lower the temperature. At the same time, the water content in the material evaporates,
The heat of evaporation further lowers the temperature, and eventually freezing. Then, this is scraped off by the scraper 13 and put on the belt conveyor 9 of the vacuum drying device 2 as a flake-like freeze-drying material.

真空乾燥装置2では、被乾燥材料は攪拌機12により攪拌
されコンベヤベルトからの伝導加熱と放射加熱板11から
の放射加熱とによって加熱され、次第に乾燥してやが
て、乾燥製品となって系外に取出されるのである。
In the vacuum drying apparatus 2, the material to be dried is agitated by the agitator 12 and heated by conduction heating from the conveyor belt and radiant heating from the radiant heating plate 11 and gradually dried to be a dried product and taken out of the system. Is done.

(実験例) 凍結装置において、 回転円筒ドラムを−30℃に冷却し、且つ、0.4〜0.
5torrの真空下に置き、水、デキストリン15%、30%、
40%水溶液、フェライト45%水溶液、乳糖15%水溶液を
供給し、いずれも400 kg/m2・hrの凍結能力を出すこと
ができた。 同装置で大気下で操作した場合、水では25
kg/m2・hrの凍結能力であり、真空下で操作することに
より、16倍近い能力を得ることができた。
(Experimental example) In a freezing device, a rotating cylindrical drum was cooled to -30 ° C, and 0.4 to 0.
Place in a vacuum of 5 torr, water, dextrin 15%, 30%,
A 40% aqueous solution, a 45% aqueous ferrite solution, and a 15% lactose aqueous solution were supplied, and all of them could produce a freezing capacity of 400 kg / m 2 · hr. When operated under atmospheric pressure with the same device,
It has a freezing capacity of kg / m 2 · hr, and it was possible to obtain a capacity almost 16 times by operating under vacuum.

真空乾燥装置において、 乳糖15%水溶液を前記、凍結装置にて凍結し、伝導加熱
乾燥した場合、伝導加熱板の温度を40℃以上に上げると
付着を起こし恒率期間の乾燥能力は、1kg・H2O/m2・hr
程度となる。 また同材料を180 ℃で放射加熱した場
合、恒率期間の乾燥能力は、2.2 kg・H2O/m2・hrとな
る。 また、伝導及び放射を併用することにより約3kg
・H2O/m2・hrの乾燥能力を維持することが可能であっ
た。 またデキストリン15%水溶液を同凍結装置を使用
して、凍らしたものを乾燥テストした結果(デキストリ
ンの場合、伝導加熱板の温度を最初から100 ℃近くまで
上げても付着は起こらない)、伝導加熱100 ℃の場合、
恒率乾燥期間で、2.6kg・H2O/m2・hrの乾燥能力(蒸発能
力)であったが、100 ℃の放射加熱を併用することによ
り、恒率乾燥期間の乾燥能力は、3.5 kg・H2O/m2・hrま
で上げることが出来た。
In a vacuum dryer, when a 15% aqueous lactose solution was frozen in the freezer and conductively dried, the conductive heating plate was heated to 40 ° C or higher to cause adhesion, and the drying capacity during the constant rate period was 1 kg. H 2 O / m 2 · hr
It will be about. When this material is radiantly heated at 180 ° C, the drying capacity during the constant rate period is 2.2 kg · H 2 O / m 2 · hr. Approximately 3 kg by using conduction and radiation together
・ It was possible to maintain the drying capacity of H 2 O / m 2 · hr. In addition, as a result of a dry test of a frozen substance using a dextrin 15% aqueous solution using the same freezing device (in the case of dextrin, adhesion does not occur even if the temperature of the conduction heating plate is raised to about 100 ° C from the beginning), conduction heating At 100 ° C,
The drying capacity (evaporation capacity) was 2.6 kg · H 2 O / m 2 · hr in the constant rate drying period, but the combined use of radiant heating at 100 ° C resulted in a drying capacity of 3.5%. We were able to raise to kg · H 2 O / m 2 · hr.

また、減率乾燥期間においては、デキストリン15%水溶
液を同凍結装置にて、凍らしたものを100 ℃で伝導加熱
だけ行なった場合と伝導及び放射加熱共に100 ℃で併用
して乾燥したものとを比較した結果、減率期間の平均乾
燥能力はいずれも1.9kg・H2O/m2・hrでほとんど差は見ら
れなかった。 ちなみに100 ℃の放射加熱だけの場合
は、減率期間の平均乾燥能力は、0.8kg・H2O/m2・hrとな
り、非常に小さなものとなった。
Also, during the rate-decreasing drying period, a 15% aqueous solution of dextrin was frozen in the same freezer at 100 ° C for conduction heating only, and for both conduction and radiation heating at 100 ° C. As a result of comparison, the average drying capacity during the reduction period was 1.9 kg · H 2 O / m 2 · hr, and there was almost no difference. By the way, in the case of only radiant heating at 100 ° C, the average drying capacity during the reduction period was 0.8 kg · H 2 O / m 2 · hr, which was extremely small.

また、デキストリン15%水溶液を同凍結装置で、凍結し
たものを100 ℃の伝導加熱を行ない乾燥すると攪拌を行
なわない場合、恒率乾燥期間は56.7%D.Bから水分20
0%D.Bまでとなるが、攪拌を行なうと、80〜100%D.
Bまで延び、恒率期間(100%D.Bまでの)での平均乾
燥能力を1.8kg・H2O/m2・hrから2.6kg・H2O/m2・hrまで上
げることが出来た。 また、減率期間(100%D.B以
下)での平均乾燥能力も、0.6kg・H2O/m2・hrから1.9kg・
H2O/m2・hrまで上げることができた。 尚、攪拌する効
果は、乾燥能力をupするだけではなく、均一加熱させる
作用が有り、水分ムラを押えることによる品質の向上を
生む。 恒率期間で放射加熱と伝導加熱を併用する効果
は、前述した効果の他に、伝導加熱だけ場合に比較して
氷結粒の粒径分布が広くても、均一加熱が可能となり、
事実実験においても材料中に若干の塊状物(5mm程度)
であっても、水分ムラを、押えることが可能であった。
If a 15% aqueous solution of dextrin is frozen in the same freezing device by conducting conduction heating at 100 ° C and drying is not performed, the constant rate drying period is 56.7% D.I. B to water 20
0% D. However, when stirring is performed, 80 to 100% D.I.
B, and the average drying capacity during constant rate period (up to 100% DB) can be increased from 1.8kg ・ H 2 O / m 2・ hr to 2.6kg ・ H 2 O / m 2・ hr. It was Also, the average drying capacity during the rate reduction period (100% DB or less) is from 0.6 kg ・ H 2 O / m 2・ hr to 1.9 kg ・
I was able to raise it to H 2 O / m 2 · hr. In addition, the effect of stirring not only increases the drying capacity, but also has the effect of uniformly heating, which results in improvement in quality by suppressing unevenness in water content. The effect of using radiant heating and conduction heating together in a constant rate period is that, in addition to the above-mentioned effect, even if the particle size distribution of frozen particles is wider than in the case of only conduction heating, uniform heating is possible,
Even in actual experiments, some lumps (about 5 mm) in the material
Even with this, it was possible to suppress unevenness in water content.

(効果) 以上詳述した様に本発明は凍結装置1の凍結室3を減圧
して、液状材料を伝導冷却と自己蒸発とを併用して凍結
するようにし、これによって従来の常圧の回転冷却ドラ
ム方式の凍結装置に比べて凍結能力を5〜10倍に高める
と共に真空乾燥装置2では伝導加熱と放射加熱とを併用
し、更に攪拌機12を取付けることにより被乾燥材料の局
部的加熱を防ぐことにより加熱温度を高めることが出来
るようにして乾燥能率を高めたものであり、殊に凍結室
3と真空乾燥室8の圧力を同一にすることにより、凍結
室3を真空乾燥室8に直接連結して、エアロック装置そ
の他の中間装置を無くし、装置全体を著しく簡素化し、
設備コストを低減すると同時に装置の稼働率を高めたも
のである。
(Effects) As described in detail above, according to the present invention, the freezing chamber 3 of the freezing device 1 is decompressed so that the liquid material is frozen by the combined use of conduction cooling and self-evaporation. The freezing capacity is increased to 5 to 10 times as compared with the cooling drum type freezing device, and the vacuum drying device 2 uses both conduction heating and radiant heating, and a stirrer 12 is attached to prevent local heating of the material to be dried. The heating efficiency can be increased by increasing the heating temperature, and the freezing chamber 3 is directly connected to the vacuum drying chamber 8 by making the freezing chamber 3 and the vacuum drying chamber 8 have the same pressure. By connecting, eliminating the air lock device and other intermediate devices, greatly simplifying the entire device,
The equipment cost is reduced and the operating rate of the equipment is increased.

即ち、凍結装置では、凍結室3内を1torr以下に減圧す
ることにより、材料中の水分が蒸発して自己凍結するの
で、冷却ドラム4の単位面積あたりの冷却能力が200〜4
00kg/m2・hrとなるのである。 しかも殆どの液状材料
では凍結に要する除去熱量の80〜90%が自己凍結による
ので、冷凍機5の能力を常圧式の場合に比べて著しく小
さくすることができるし、殊に、凍結し易い材料では伝
導冷却を省くことも出来るので、装置が一段と簡素化さ
れ、冷却エネルギーの消費量が少なくなるのである。
尚、図では凍結装置1を真空ポンプ14との間に捕集機15
を取付けた一例を示したが、液状材料を冷却ドラム4に
注ぎかける方式としたので、従来の噴霧凍結装置の様な
ダストの飛散がないから、このものを必ずしも取付ける
必要はなく、粘着性の高い材料や固形分濃度の高い材料
の供給も可能となり、材料の適用範囲も広くなるのであ
る。
That is, in the freezing device, by reducing the pressure in the freezing chamber 3 to 1 torr or less, the moisture in the material evaporates and self-freezes, so that the cooling capacity per unit area of the cooling drum 4 is 200 to 4
It will be 00 kg / m 2 · hr. Moreover, in most liquid materials, 80 to 90% of the removal heat amount required for freezing is due to self-freezing, so the capacity of the refrigerator 5 can be made significantly smaller than in the case of the normal pressure type, and especially the material that is easily frozen. Since conduction cooling can also be omitted, the device is further simplified and the consumption of cooling energy is reduced.
In the figure, the freezing device 1 and the vacuum pump 14 are connected to a collector 15
An example in which the liquid material is attached is shown. However, since the liquid material is poured into the cooling drum 4, there is no dust scattering unlike the conventional spray freezing device. It is possible to supply high materials and materials with high solid content concentration, and the range of application of materials is widened.

又、真空乾燥装置は、これに投入される被乾燥材料が10
〜20%の水分を凍結過程で減少しているので、それだけ
装置を小形化することが出来、しかも恒率乾燥期間に放
射及び伝導加熱を採取し、減率乾燥期間に伝導加熱方式
を採用することにより、恒率乾燥期間において、ベルト
に付着しやすい材料では、伝導加熱板の温度を下げて
(−20℃〜40℃)操作しても、上部からの放射加熱によ
り乾燥能力を維持することが可能となり、また放射加熱
温度も極度に高くしなくても、伝導加熱による乾燥も加
わり3〜4kg・H2O/m2・hrの蒸発が可能となる。 又減
率乾燥期間では、放射加熱では、材料の放射率の減少、
また材料の品質劣化を避ける為、放射加熱温度を下げる
ことによる熱線量の低下により、極度に乾燥能力が落ち
るが伝導加熱方式を採用し、且つ、攪拌機構或いは揺動
機構を設けることにより、伝導加熱温度100 ℃前後まで
昇温でき(減率乾燥期間では、粒子表面が乾燥してお
り、ベルトの付着がおきない)、乾燥能力を放射加熱の
2倍近く維持することが可能である。
In addition, the vacuum drying device has 10 materials to be dried.
Since the water content of ~ 20% is reduced during the freezing process, the equipment can be made smaller, and radiation and conduction heating are sampled during the constant rate drying period, and the conduction heating method is used during the rate drying period. Therefore, in the constant rate drying period, even if the material that easily adheres to the belt is operated by lowering the temperature of the conduction heating plate (-20 ℃ to 40 ℃), the drying capacity is maintained by the radiant heating from the top. It is possible to evaporate 3 to 4 kg · H 2 O / m 2 · hr with the addition of drying by conduction heating without extremely increasing the radiant heating temperature. Also, in the rate-decreasing period, radiation heating reduces the emissivity of the material,
Also, in order to avoid quality deterioration of the material, the drying capacity is drastically reduced due to the reduction of the heat dose by lowering the radiant heating temperature, but the conduction heating method is adopted and the conduction mechanism is provided by the stirring mechanism or the rocking mechanism. The heating temperature can be raised to around 100 ° C (the particle surface is dry during the rate-decreasing drying period, and the belt does not adhere), and the drying capacity can be maintained nearly twice that of radiant heating.

尚、減率乾燥期間において、放射加熱を採用しないの
は、前述のように乾燥への寄与度が伝導に比べ小さく、
装置の煩雑さを避けることによるのである。
Incidentally, the reason why radiant heating is not adopted in the rate-decreasing drying period is that the contribution to drying is smaller than that of conduction as described above,
By avoiding the complexity of the device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す系統図、第2図は同上
要部わ示す系統図である。 1;凍結装置、2;真空乾燥装置 3;凍結室、4;冷却ドラム 5;冷凍機、6;注液ノズル 7;液送ポンプ、8;乾燥室 9;ベルトコンベヤ、10;伝導加熱板 11;放射加熱板、12;攪拌機 13;スクレーパ、14;真空ポンプ 15;捕集機
FIG. 1 is a system diagram showing an embodiment of the present invention, and FIG. 2 is a system diagram showing the main part of the same. 1; Freezing device, 2; Vacuum drying device 3; Freezing chamber, 4; Cooling drum 5; Freezer, 6; Injection nozzle 7; Liquid feed pump, 8; Drying chamber 9; Belt conveyor, 10; Conductive heating plate 11 Radiant heating plate, 12; stirrer 13; scraper, 14; vacuum pump 15; collector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】凍結室に真空ポンプを接続すると共に該室
内に回転冷却ドラムを設け、冷却ドラムの表面に液状材
料を塗布してこれを伝導冷却と自己蒸発とによって凍結
させ、スクレーパで掻きとるようにした凍結装置の凍結
室を、放射加熱板と伝導加熱板を有し、且つ被乾燥材料
の攪拌機を内設した真空乾燥装置の乾燥室に直結すると
共に凍結室内と乾燥室内とを1torr以下の同一圧力にす
ることを特徴とする液状物質の凍結乾燥装置。
1. A vacuum pump is connected to a freezing chamber and a rotary cooling drum is provided in the freezing chamber. A liquid material is applied to the surface of the cooling drum, the liquid material is frozen by conduction cooling and self-evaporation, and scraped by a scraper. The freezing chamber of the above freezing device is directly connected to the drying chamber of the vacuum drying device which has a radiant heating plate and a conduction heating plate and has a stirrer for the material to be dried, and the freezing chamber and the drying chamber are 1 torr or less. A freeze-drying device for liquid substances, characterized in that the same pressure is applied.
JP60172830A 1985-08-06 1985-08-06 Freeze dryer for liquid substances Expired - Fee Related JPH0627624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60172830A JPH0627624B2 (en) 1985-08-06 1985-08-06 Freeze dryer for liquid substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60172830A JPH0627624B2 (en) 1985-08-06 1985-08-06 Freeze dryer for liquid substances

Publications (2)

Publication Number Publication Date
JPS6233274A JPS6233274A (en) 1987-02-13
JPH0627624B2 true JPH0627624B2 (en) 1994-04-13

Family

ID=15949143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172830A Expired - Fee Related JPH0627624B2 (en) 1985-08-06 1985-08-06 Freeze dryer for liquid substances

Country Status (1)

Country Link
JP (1) JPH0627624B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6141479B1 (en) * 2016-03-18 2017-06-07 エスペック株式会社 Drying equipment
TW202202792A (en) * 2020-05-18 2022-01-16 日商Mii股份有限公司 Vacuum freeze-drying device and vacuum freeze-drying method
JP7367240B1 (en) * 2022-05-19 2023-10-23 株式会社神鋼環境ソリューション Particle manufacturing device and frozen particle manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5166157A (en) * 1974-12-05 1976-06-08 Sumitomo Shipbuild Machinery ODEIORENZOKUTEKINITOKETSUNOSHUKUSURUHOHO
JPS5432181A (en) * 1977-08-17 1979-03-09 Hitachi Ltd Washing material for tubular reverse osmotic membrane
JPS54125857A (en) * 1978-03-22 1979-09-29 Mitsubishi Electric Corp Continuous freezing liquidation dehydration device of sludge

Also Published As

Publication number Publication date
JPS6233274A (en) 1987-02-13

Similar Documents

Publication Publication Date Title
KR20100135262A (en) Freeze-drying method and freeze-drying apparatus
CN101922855B (en) Microwave continuous freeze-drying system
HU215783B (en) Process for heat-treating hydrates
US2859534A (en) Methods and apparatus for radio frequency freeze-drying
US5544425A (en) Aggressive convective drying in a nutsche type filter/dryer
US4590684A (en) Continuous freeze drying
JPH0627624B2 (en) Freeze dryer for liquid substances
WO1996036841A1 (en) Aggressive convective drying in a conical screw type mixer/dryer
US5546676A (en) Aggressive convective drying in an agitated pan type dryer
EP1601919B1 (en) Stirred freeze drying
Durance et al. Microwave drying of pharmaceuticals
US3304617A (en) Method and apparatus for freeze-drying foods
JP2020085346A (en) Decompression drying method
JPH0642867A (en) Tumbler type rotary dryer
US3218731A (en) Vacuum freeze dryer having integral freezing means
US3222796A (en) Method of freeze-drying foods by direct gas injection
JPS615767A (en) Method and apparatus for continuous vacuum drying
JP2020085347A (en) Method for manufacturing freeze-dried product, and freeze-dried system
SU848932A1 (en) Continuous-action unit for sublimation drying of heat susceptible materials
GB1195820A (en) A Method of Granulating Frozen Fine Particles
CN113606880B (en) Method for realizing dynamic ultra-fast agglomeration-free freeze drying by utilizing high-acceleration vibration
JPH0942833A (en) Freeze-drying method and apparatus
CN220119792U (en) Drying device is used in sodium gluconate processing
US3664033A (en) Method and apparatus for drying organic materials
RU2027964C1 (en) Liquid-viscous vacuum drying method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees