JPH06276176A - Cdma communication system - Google Patents

Cdma communication system

Info

Publication number
JPH06276176A
JPH06276176A JP5058457A JP5845793A JPH06276176A JP H06276176 A JPH06276176 A JP H06276176A JP 5058457 A JP5058457 A JP 5058457A JP 5845793 A JP5845793 A JP 5845793A JP H06276176 A JPH06276176 A JP H06276176A
Authority
JP
Japan
Prior art keywords
chip rate
base station
station
signal
cdma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5058457A
Other languages
Japanese (ja)
Inventor
Tetsuyoshi Takenaka
哲喜 竹中
Takayuki Ushiyama
隆幸 牛山
Atsushi Yamashita
敦 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5058457A priority Critical patent/JPH06276176A/en
Publication of JPH06276176A publication Critical patent/JPH06276176A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce intra-signal interference at the time of demodulating signals from respective remote stations and to solve a perspective problem by preparing plural chip rates and appropriately allocating them for the respective remote stations. CONSTITUTION:When the power level of reception signals initially detected by a reception power detection part 5 is as showh by a figure (b) for the signals from the remote stations RS1 and RS2 inputted to the spectrum inverse spread demodulation part 4 of a base station BS3, a chip rate deciding blade 6 judges that the reception power level of the RS1 is to be strong interference in the inverse spread demodulation of the signals of the RS2. Then, the present chip rate Cj of the RS1 is changed and decided to be Ci lower than the Cj and the RS1 is informed from a chip rate informing part 7. In the RS1, a spreading code is generated corresponding to the chip rate Ci informed from the BS by a spreading code generation part 8, is supplied to a spectrum spread modulation part 9 to perform spectrum spread modulation and is transmitted to the BS. Thus the reception power level from the RS1 and RS2 in the BS is turned to be as shown by the figure (c,) the BS performs an inverse spread processing by the chip rate Cj and the interference is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基地局とリモート局、
移動局あるいは衛星を介して接続される子局との間でC
DMA方式による多元接続を行う無線通信システムにお
ける回線品質の改善とシステム容量の増大とを可能にす
るためのCDMA通信方式に関する。
BACKGROUND OF THE INVENTION The present invention relates to a base station and a remote station,
C between a mobile station or a slave station connected via a satellite
The present invention relates to a CDMA communication system for improving the line quality and increasing the system capacity in a wireless communication system that performs multiple access by the DMA system.

【0002】[0002]

【従来の技術】CDMA通信方式は、送信側の局が変調
信号のディジタルデータ(ベースバンド信号)で搬送波
をディジタル変調し、さらにチャネルごとに異なる符号
系列の拡散符号を用いてスペクトル拡散変調を行って送
信し、受信側の局は受信信号についてチャネル対応の拡
散符号を用いて逆スペクトル拡散復調し、さらにディジ
タル復調してディジタルデータを復元するものであり、
異なる拡散符号をもつ複数のチャネルによって複数の局
が多元接続される。なおリモート局同士は基地局を介し
て接続される。
2. Description of the Related Art In a CDMA communication system, a transmitting station digitally modulates a carrier wave with digital data (baseband signal) of a modulated signal, and further spread spectrum modulation is performed by using a spreading code having a different code sequence for each channel. The station on the receiving side performs inverse spread spectrum demodulation on the received signal using the spread code corresponding to the channel, and further digitally demodulates to restore digital data.
Multiple stations are multiple-accessed by multiple channels with different spreading codes. The remote stations are connected to each other via the base station.

【0003】基地局と複数のリモート局がCDMA通信
方式により多元接続して通信を行う無線通信システムで
は、リモート局から基地局へ送信を行うアップリンクに
おいて、各リモート局の送信電力が同じであっても、各
リモート局から基地局までの距離の違いにより、基地局
での受信電界強度がリモート局によって異なるという問
題が生じる。この問題は遠近問題と呼ばれるもので、図
9に例を示す。
In a radio communication system in which a base station and a plurality of remote stations communicate by making multiple connections by a CDMA communication system, the transmission power of each remote station is the same in the uplink for transmitting from the remote station to the base station. However, due to the difference in the distance from each remote station to the base station, the received electric field strength at the base station varies depending on the remote station. This problem is called the perspective problem, and an example is shown in FIG.

【0004】図9の(a)は、基地局BSと2つのリモ
ート局RS1,RS2との物理的配置関係を示す。ここ
でRS1は、RS2よりもBSに近い位置に配置されて
いる。この場合BS,RS1,RS2それぞれにおける
スペクトル拡散信号の送信電力レベルを同じ+10と
し、RS1−BS間のリンクの電波伝播損失を−2、R
S2−BS間のリンクの電波伝播損失を−6とすると、
図9の(b)に示すように、RS1を受信点とするダウ
ンリンクでは、BSを送信源とするRS1向け、RS2
向け電波のRS1における受信電界強度(着信レベル)
はそれぞれ+8となる。同様に図9の(c)に示すよう
に、RS2を受信点とするダウンリンクでは、BS、R
S1を送信源とするRS1向け、RS2向け電波のRS
2における受信電界強度はそれぞれ+4となる。他方図
9の(d)に示すように、BSを受信点とするアップリ
ンクでは、RS1,RS2を送信源とする電源のBSに
おける受信電界強度はそれぞれ+8,+4となる。
FIG. 9A shows a physical arrangement relationship between the base station BS and the two remote stations RS1 and RS2. Here, RS1 is arranged at a position closer to BS than RS2. In this case, the transmission power level of the spread spectrum signal in each of BS, RS1 and RS2 is set to the same +10, and the radio wave propagation loss of the link between RS1 and BS is -2, R.
If the radio wave propagation loss of the link between S2-BS is -6,
As shown in (b) of FIG. 9, in the downlink having RS1 as a reception point, RS1 having BS as a transmission source and RS2 for BS1 as a transmission source.
Received field strength at RS1 of incoming radio waves (incoming level)
Are +8 respectively. Similarly, as shown in (c) of FIG. 9, in the downlink having RS2 as a reception point, BS, R
RS for S1 and RS2 radio waves with S1 as the transmission source
The received electric field strength at 2 is +4. On the other hand, as shown in (d) of FIG. 9, in the uplink where the BS is the reception point, the received electric field strengths at the BS of the power sources whose transmission sources are RS1 and RS2 are +8 and +4, respectively.

【0005】図10は、リモート局RS1,RS2と基
地局BSにおいて受信された図9(b),(c),
(d)に示される受信電界強度の信号をスペクトル逆拡
散復調したときの復調信号の帯域とレベルを示したもの
である。
FIG. 10 shows the remote stations RS1 and RS2 and the base stations BS which are received in FIG. 9 (b), (c),
It shows the band and level of the demodulated signal when the signal of the received electric field intensity shown in (d) is subjected to spectrum despread demodulation.

【0006】図10の(a)は、RS1がBSから送信
された受信レベル+8のスペクトル拡散信号を復調した
信号と干渉雑音となるRS2向け電波の受信レベル+8
のスペクトル拡散信号を逆拡散した結果の信号とを示
す。図10の(b)は、RS2がBSから送信された受
信レベル+4のスペクトル拡散信号を復調した信号とR
S1向け電波の受信レベル+4のスペクトル拡散信号を
逆拡散した結果とを示す。図10の(c)は、BSがR
S1から送信された受信レベル+8のスペクトル拡散信
号を復調した信号とRS2から送信された受信レベル+
4のスペクトル拡散信号を逆拡散した結果とを示す。図
10の(d)は、図10の(c)の信号を入れ替えたも
ので、RS2から送信された受信レベル+4のスペクト
ル拡散信号を復調した信号と、RS1から送信された受
信レベル+8のスペクトル拡散信号を逆拡散した結果と
を示す。
[0006] FIG. 10A shows a signal obtained by demodulating a spread spectrum signal with a reception level of +8 transmitted from the BS by the RS1 and a reception level of a radio wave for RS2 serving as interference noise +8.
And a signal as a result of despreading the spread spectrum signal of FIG. FIG. 10B shows a signal in which RS2 demodulates a spread spectrum signal of reception level +4 transmitted from BS and R.
The result of despreading the spread spectrum signal of the reception level +4 of the radio wave for S1 is shown. In FIG. 10C, BS is R
Received level +8 transmitted from S1 demodulated spread spectrum signal and received level transmitted from RS2 +
4 shows the result of despreading the spread spectrum signal of FIG. (D) of FIG. 10 is obtained by replacing the signal of (c) of FIG. 10 with the demodulated signal of the spread spectrum signal of the reception level +4 transmitted from RS2 and the spectrum of the reception level +8 transmitted from RS1. The result of despreading the spread signal is shown.

【0007】各局の送信電力が同一とすると、図9の
(d)に見られるように、基地局BSの近くに位置する
リモート局RS1からの信号の受信電界強度は、基地局
BSから遠くに位置するリモート局RS2からの信号の
受信電界強度よりも強くなる。このため受信電界強度の
弱いRS2の信号を復調するとき、受信電界強度の強い
RS1の信号は図10の(d)に見られるように復調信
号に対するレベル差が小さいことから強い干渉を与える
ことになる。
Assuming that the transmission power of each station is the same, as shown in FIG. 9 (d), the received electric field strength of the signal from the remote station RS1 located near the base station BS is far from the base station BS. It becomes stronger than the received electric field strength of the signal from the remote station RS2 located. Therefore, when demodulating a signal of RS2 having a weak received electric field strength, a signal of RS1 having a strong received electric field strength has a small level difference with respect to the demodulated signal as shown in FIG. Become.

【0008】遠近問題は、上に述べたように帯域内に大
小様々な電力の信号が存在し、小電力の信号を復調する
ときに干渉電力が大きくて回線品質が劣化することをい
う。ところで、回線品質は受信側で受信信号を逆拡散し
た後に希望信号の信号電力対干渉雑音電力との比(以後
SIRという)によって決まる。ここで、逆拡散後の信
号を情報変調信号と呼ぶことにすると、情報変調信号の
信号帯域で帯域制限した後の信号のSIRは、処理利
得、すなわち情報変調信号の帯域幅と拡散信号の帯域幅
の比の分だけ高くなっている。これは図10に示されて
いるように、逆拡散により希望波のみがもとの情報変調
信号にもどされレベルが高くなっているが、非希望波は
拡散されたままであることによる。
The near-far problem is that, as described above, signals of various power levels exist in the band, and when demodulating a low power signal, the interference power is large and the line quality deteriorates. By the way, the line quality is determined by the ratio of the signal power of the desired signal to the interference noise power (hereinafter referred to as SIR) after despreading the received signal on the receiving side. Here, when the signal after despreading is called an information modulation signal, the SIR of the signal after band limitation by the signal band of the information modulation signal is the processing gain, that is, the bandwidth of the information modulation signal and the band of the spread signal. It is higher by the width ratio. This is because, as shown in FIG. 10, only the desired wave is returned to the original information modulated signal by despreading and the level is increased, but the undesired wave remains diffused.

【0009】本来、スペクトル拡散方式では、拡散信号
のSIRはごく低いが、逆拡散による処理利得により情
報変調信号のSIRを向上させている。ダウンリンクで
は、基地局で全リモート局あてに一斉の送信をするた
め、絶対的な受信レベルは各リモート局と基地局との距
離に応じて異なるが、各リモート局あてのレベルの相対
的大きさは一定である。よって、逆拡散後の情報変調信
号(図10の復調信号)のSIRは全てのリモート局で
等しい。しかし、アップリンクでは、基地局・リモート
局の距離関係を反映して、図9(d)の例では、RS1
の受信レベルはRS2の受信レベルよりも高くなってい
る。このため、各リモート局の情報変調信号のSIRは
一定にはならず図10(d)の例に示すように、基地局
から遠くのリモート局の信号は、基地局近傍のリモート
局から強い干渉を受け、回線品質に劣化を招くことにな
る。
Originally, in the spread spectrum system, the SIR of the spread signal is very low, but the SIR of the information modulated signal is improved by the processing gain by despreading. In the downlink, since the base station broadcasts to all remote stations at once, the absolute reception level differs depending on the distance between each remote station and the base station, but the relative level of the level to each remote station is large. Is constant. Therefore, the SIR of the information-modulated signal after despreading (the demodulated signal in FIG. 10) is equal in all remote stations. However, in the uplink, the distance relationship between the base station and the remote station is reflected, and in the example of FIG.
Is higher than the reception level of RS2. Therefore, the SIR of the information-modulated signal of each remote station does not become constant, and as shown in the example of FIG. 10D, the signal of the remote station far from the base station strongly interferes with the remote stations near the base station. Therefore, the line quality is deteriorated.

【0010】ところでCDMA通信方式では、全てのリ
モート局の受信電界強度が等しいとき最大の収容能力を
もつと考えられる。したがって、収容能力を減少させな
いためには遠近問題を解決する必要がある。
By the way, the CDMA communication system is considered to have the maximum accommodation capacity when the received electric field strengths of all remote stations are equal. Therefore, it is necessary to solve the near-far problem in order not to reduce the accommodation capacity.

【0011】従来はこの問題を解決するため、基地局に
到達する信号電力が各リモート局で一定になるように、
各リモート局が送信電力制御を行っていた。図11はそ
の例を示したもので、図11の(a)は図9の(d)と
同じものであり、基地局BSにおけるリモート局RS1
とRS2から送信された信号の受信電界強度を表してい
る。図11の(b)は、RS2の送信電力を増大させる
制御を行って、RS1とRS2からの信号の受信電界強
度を等しくした状態を示す。
Conventionally, in order to solve this problem, the signal power reaching the base station is kept constant at each remote station.
Each remote station was controlling the transmission power. FIG. 11 shows an example thereof, (a) of FIG. 11 is the same as (d) of FIG. 9, and the remote station RS1 in the base station BS is shown.
And the received electric field strength of the signal transmitted from RS2. FIG. 11B shows a state in which control is performed to increase the transmission power of RS2 and the reception electric field strengths of signals from RS1 and RS2 are made equal.

【0012】しかし、多くのCDMAシステムでは、必
要とされる送信電力制御量は60〜80dbにも達する
場合があり、通常のリモート局の送信電力増幅器の制御
能力を超えているとともに、高精度に制御することが困
難であるため、CDMA通信システム実現上大きな支障
となっていた。
However, in many CDMA systems, the required transmission power control amount may reach as high as 60 to 80 dB, which exceeds the control capability of the transmission power amplifier of a normal remote station and is highly accurate. Since it is difficult to control, it has been a great obstacle in realizing the CDMA communication system.

【0013】[0013]

【発明が解決しようとする課題】本発明は、基地局と複
数のリモート局等からなるCDMA無線通信システムに
おいて、基地局における各リモート局からの信号の受信
電界強度のアンバランスに基づく復調時の信号間干渉を
低減して遠近問題を解決するために、リモート局の送信
電力制御以外の有効な手段を提供することを目的として
いる。
SUMMARY OF THE INVENTION In a CDMA wireless communication system including a base station and a plurality of remote stations, the present invention is for demodulation based on an imbalance of received electric field strength of signals from each remote station in the base station. It is an object of the present invention to provide an effective means other than the transmission power control of a remote station in order to reduce interference between signals and solve the near-far problem.

【0014】[0014]

【課題を解決するための手段】本発明は、次のような事
実に基づいている。すなわち、信号電力の大きい信号に
対しては、この処理利得を大きくとらなくてもSIRは
基準の回線品質を満たすことができる。逆に信号電力の
小さい信号に対しては、処理利得を大きくしないと回線
品質は基準を満たすことはできない。したがって、同じ
周波数帯域を共有するCDMA通信システムにおいて、
基地局での受信電界強度に応じて処理利得を適応的に変
えることは意味があるといえる。
The present invention is based on the following facts. That is, for a signal having a high signal power, the SIR can satisfy the reference line quality even if the processing gain is not large. Conversely, for signals with low signal power, the channel quality cannot meet the standard unless the processing gain is increased. Therefore, in a CDMA communication system sharing the same frequency band,
It can be said that it is meaningful to adaptively change the processing gain according to the received electric field strength at the base station.

【0015】一方、処理利得は拡散符号のチップレート
(符号速度)に依存している。つまり、チップレートが
上がれば拡散符号ビットのパルス幅は狭くなり、スペク
トル拡散帯域幅は拡大する。逆にチップレートが下がれ
ば拡散符号ビットのパルス幅は広くなり、スペクトル拡
散帯域幅は縮小する。
On the other hand, the processing gain depends on the chip rate (code rate) of the spread code. That is, as the chip rate increases, the pulse width of the spread code bit becomes narrower and the spread spectrum bandwidth becomes wider. On the contrary, if the chip rate decreases, the pulse width of the spread code bit becomes wider and the spread spectrum bandwidth becomes smaller.

【0016】そこで、信号電力が大きなリモート局に対
しては低いチップレートを割り当て、信号電力が小さい
リモート局には高いチップレートを割り当てることで、
逆拡散後の信号のSIRを改善し、遠近問題を解決する
ことができるものである。
Therefore, by assigning a low chip rate to a remote station having a large signal power and assigning a high chip rate to a remote station having a small signal power,
It is possible to improve the SIR of the signal after despreading and solve the near-far problem.

【0017】図1は、本発明の原理説明図である。図1
の(a)は本発明の基本構成図を示し、1は、リモート
局RS1である。
FIG. 1 is a diagram for explaining the principle of the present invention. Figure 1
(A) shows a basic configuration diagram of the present invention, and 1 is a remote station RS1.

【0018】2は、リモート局RS2である。3は、基
地局BSである。4は、スペクトル逆拡散復調部であ
る。
Reference numeral 2 is a remote station RS2. 3 is a base station BS. Reference numeral 4 is a spectrum despread demodulation unit.

【0019】5は、受信信号の電力を検出する受信電力
検出部である。6は、検出された受信電力に応じて、リ
モート局における適切なチップレートCiを決定するチ
ップレート決定部である。
Reference numeral 5 is a received power detector for detecting the power of the received signal. Reference numeral 6 denotes a chip rate determination unit that determines an appropriate chip rate Ci in the remote station according to the detected received power.

【0020】7は、決定されたチップレートCiをリモ
ート局に通知するチップレート通知部である。8は、予
め用意されている複数段階のチップレートC1,C2,
…,Ci,…,Cnの中から、通知されたチップレート
Ciを選択し、選択したチップレートCiでチャネル対
応の拡散符号を生成する拡散符号生成部である。
Reference numeral 7 denotes a chip rate notifying unit for notifying the remote station of the determined chip rate Ci. 8 is a plurality of chip rates C1, C2, which are prepared in advance.
, Ci, ..., Cn is a spreading code generation unit that selects the notified chip rate Ci and generates a spreading code corresponding to the channel at the selected chip rate Ci.

【0021】9は、生成された拡散符号を用いてスペク
トル拡散を行うスペクトル拡散変調部である。基地局B
Sのスペクトル逆拡散復調部4に入力されたRS1,R
S2からの信号について、受信電力検出部5がはじめに
検出した受信信号の電力レベルが図1の(b)に示すよ
うなものであった場合、チップレート決定部6は、RS
1の受信電力レベルがRS2の信号の逆拡散復調におい
て強い干渉となるものと判定すると、RS1の現在のチ
ップレートCjより低いチップレートのCiに変更する
決定を行い、チップレート通知部7からRS1に通知さ
せる。
Reference numeral 9 is a spread spectrum modulation unit that performs spread spectrum using the generated spread code. Base station B
RS1, R input to the S spectrum despread demodulation unit 4
For the signal from S2, if the power level of the received signal first detected by the received power detection unit 5 is as shown in FIG. 1 (b), the chip rate determination unit 6 determines that the RS
If it is determined that the received power level of 1 will cause strong interference in the despreading demodulation of the RS2 signal, a decision is made to change to a chip rate Ci lower than the current chip rate Cj of RS1. To notify.

【0022】RS1では、拡散符号生成部8がBSから
通知されたチップレートCiに応じてチップレートCi
の符号速度を選択して拡散符号を生成し、スペクトル拡
散変調部9に供給して、スペクトル拡散変調を行わせ、
前より拡散帯域を狭めたスペクトル拡散信号をBSへ送
信する。
In RS1, the spread code generator 8 determines the chip rate Ci according to the chip rate Ci notified from the BS.
, A spread code is generated and supplied to the spread spectrum modulator 9 to perform spread spectrum modulation.
A spread spectrum signal with a narrower spreading band than before is transmitted to the BS.

【0023】これにより、BSにおけるRS1,RS2
からの信号の受信電力レベルは図1(c)に示すような
ものとなり、BSでは元のチップレートCjで逆拡散処
理することにより干渉を減少させることができる。
As a result, RS1 and RS2 in BS are
The received power level of the signal from is as shown in FIG. 1 (c), and the BS can reduce the interference by despreading at the original chip rate Cj.

【0024】[0024]

【作用】具体例により本発明の作用を説明する。ここで
も、図9(a)に示されている基地局BSとリモート局
RS1,RS2の配置が援用される。
The function of the present invention will be described with reference to specific examples. Also here, the arrangement of the base station BS and the remote stations RS1 and RS2 shown in FIG. 9A is used.

【0025】実際に、アップリンクにのみ2つのチップ
レートを用いた場合の例を、従来例の図9および図10
に対応する形で図2および図3に示す。なお、ダウンリ
ンクのチップレートは固定される。リモート局RS1に
対するチップレートをC1,RS2に対するそれをC2
とし、ここでは、 C2= 2×C1 (1) として説明する。また簡単化のため、図2(c)に示す
ように基地局BSにおけるRS1の受信レベルL1とR
S2の受信レベルL2は、 L2=L1/2 (2) という関係にあるとする。RS1からの情報を得る場
合、RS1からの信号の情報変調信号の電力は、情報ビ
ットレートをRとすると、C1による逆拡散により、 G1=C1/R (3) で与えられる処理利得G1の分だけ大きくなる。このと
きRS2からの干渉波のレベル、帯域はそのままであ
る。よって、RS1からの復調信号のSIRは、 SIR1=L1 G1/L2=L1 C1/(R L2)=L1 C1/(R L1/2)=2 C1/R (4) となる。一方、RS2からの情報を得る場合、C2によ
る逆拡散による処理利得G2は、 G2=C2/R (5) である。また、RS1からの干渉波は、C2により拡散
されるため、そのレベルは半分に下がる。したがって、
RS2からの復調信号のSIRは、 SIR2=L2 G2/(L1/2)=(L1/2)C2/(R L1/2) =(L1/2)(2 C1)/(R L1/2) =2 C1/R (6) となり、送信電力が異なる場合でも、アップリンクにお
ける通信品質を同じにすることができる。
Actually, an example in which two chip rates are used only for the uplink is shown in FIGS. 9 and 10 of the conventional example.
2 and 3 in a form corresponding to The downlink chip rate is fixed. The chip rate for the remote station RS1 is C1, and that for RS2 is C2
In the following description, C2 = 2 × C1 (1). Further, for simplification, as shown in FIG. 2C, the reception levels L1 and R of RS1 at the base station BS are
It is assumed that the reception level L2 of S2 has a relationship of L2 = L1 / 2 (2). When the information from RS1 is obtained, the power of the information-modulated signal of the signal from RS1 is equal to the processing gain G1 given by G1 = C1 / R (3) due to despreading by C1, where R is the information bit rate. Only grows. At this time, the level and band of the interference wave from RS2 remain unchanged. Therefore, the SIR of the demodulated signal from RS1 is SIR1 = L1 G1 / L2 = L1 C1 / (R L2) = L1 C1 / (R L1 / 2) = 2 C1 / R (4) On the other hand, when obtaining information from RS2, the processing gain G2 by despreading by C2 is G2 = C2 / R (5). Further, the interference wave from RS1 is diffused by C2, so that its level drops to half. Therefore,
The SIR of the demodulated signal from RS2 is SIR2 = L2 G2 / (L1 / 2) = (L1 / 2) C2 / (R L1 / 2) = (L1 / 2) (2 C1) / (R L1 / 2) = 2 C1 / R (6), and the communication quality in the uplink can be made the same even if the transmission powers are different.

【0026】図3の(c),(d)は、それぞれ図2
(c)に示されるRS1,RS2からの受信信号に対し
てチップレートC1,C2を適用して得られた復調信号
を示している。
3C and 3D are respectively shown in FIG.
The demodulated signal obtained by applying the chip rates C1 and C2 to the received signals from RS1 and RS2 shown in (c) is shown.

【0027】[0027]

【実施例】図4ないし図8により、本発明の実施例を説
明する。図4は、基地局の1実施例の構成図である。図
中、11は指定されたチップレートでスペクトル拡散変
調を行うSS変調器、12は指定されたチップレートで
スペクトル逆拡散を行うSS復調器、13は受信信号の
レベルを検出する受信電力検出器、14は制御装置、1
5は受信レベルに基づいてチップレートを決定するチッ
プレート決定装置である。制御装置14はMPUとRA
M等で構成したプログラム制御の装置であり、チップレ
ート決定装置15は論理回路あるいはROMに格納した
制御テーブルで構成できる。
EXAMPLE An example of the present invention will be described with reference to FIGS. FIG. 4 is a block diagram of an embodiment of the base station. In the figure, 11 is an SS modulator that performs spread spectrum modulation at a specified chip rate, 12 is an SS demodulator that performs spectrum despreading at a specified chip rate, and 13 is a received power detector that detects the level of a received signal. , 14 are control devices, 1
Reference numeral 5 is a chip rate determination device that determines the chip rate based on the reception level. Controller 14 is MPU and RA
The chip rate determination device 15 is a program control device configured by M or the like, and can be configured by a logic circuit or a control table stored in a ROM.

【0028】図5は、リモート局の実施例の構成図であ
り、図中、16は制御装置、17は送信情報により搬送
波を一次変調する情報変調器、18は指示されたチップ
レートで拡散符号を生成する拡散符号生成部、19は指
示されたチップレートの拡散符号を用いてスペクトル拡
散を行うSS変調器、20はチップレートを固定された
SS復調器、21は受信信号のレベルを検出するレベル
検出器である。制御装置16は、図4の制御装置14と
同様にMPUおよびRAM等で構成される。
FIG. 5 is a block diagram of an embodiment of a remote station. In the figure, 16 is a control device, 17 is an information modulator for primary modulating a carrier wave by transmission information, and 18 is a spread code at an instructed chip rate. , An SS modulator that performs spread spectrum using the spread code of the designated chip rate, 20 is an SS demodulator with a fixed chip rate, and 21 detects the level of the received signal. It is a level detector. The control device 16 is composed of an MPU, a RAM and the like, like the control device 14 of FIG.

【0029】図4の基地局において、送信情報は制御装
置14によって取り込まれ、SS変調器11でスペクト
ル拡散変調されて送信される。また基地局に入力された
受信信号は、SS復調器12で逆拡散復調され、復調さ
れた信号は受信情報として制御装置14によって出力さ
れる。このとき受信電力検出器13は、受信レベルの検
出を行う。
In the base station of FIG. 4, the transmission information is taken in by the control device 14, spread spectrum modulated by the SS modulator 11 and transmitted. The received signal input to the base station is despread demodulated by the SS demodulator 12, and the demodulated signal is output by the control device 14 as received information. At this time, the reception power detector 13 detects the reception level.

【0030】図5のリモート局においても、送信情報は
制御装置16によって情報変調器17に送られ、一次変
調された後SS変調器19でスペクトル拡散され、基地
局へ送信される。基地局からの受信信号は、SS復調器
20で逆拡散復調され、制御装置16によって受信情報
として出力される。
Also in the remote station shown in FIG. 5, the transmission information is sent to the information modulator 17 by the control device 16, is primary-modulated, then is spread spectrum by the SS modulator 19, and is transmitted to the base station. The reception signal from the base station is despread and demodulated by the SS demodulator 20, and is output as reception information by the control device 16.

【0031】またリモート局では、レベル検出器21が
基地局からの受信信号のレベルを検出する。制御装置1
6は、検出された受信信号のレベル情報を情報変調器1
7、SS変調器19で変調して送信し、基地局へ報告す
る。なお拡散符号生成部18は、はじめ、制御装置16
によって初期設定されたチップレートで拡散符号を生成
し、その後制御装置16から他のチップレートを指示さ
れるとそれに応じた拡散符号生成を行う。
In the remote station, the level detector 21 detects the level of the signal received from the base station. Control device 1
Reference numeral 6 denotes the level information of the detected received signal, which is information modulator 1
7. The SS modulator 19 modulates and transmits, and reports to the base station. Note that the spread code generation unit 18 is first provided with the control device 16
The spread code is generated at the chip rate initialized by the above, and when the controller 16 instructs another chip rate thereafter, the spread code is generated accordingly.

【0032】図4の基地局の制御装置14は、各リモー
ト局から報告されたリモート局での受信レベルと、受信
電力検出器13が検出した基地局での受信レベルとをも
とに各リモート局の受信レベルを求め、これをチップレ
ート決定装置15に送る。先の例のように2つのチップ
レートC1,C2をもつシステムとすると、チップレー
ト決定装置15では、たとえば、受信レベルにしきい値
を設け、しきい値以上のリモート局には低チップレート
C1を、しきい値以下のリモート局には高チップレート
C2を割り当てる操作を行う。
The control device 14 of the base station shown in FIG. 4 operates on the basis of the reception level at the remote station reported from each remote station and the reception level at the base station detected by the reception power detector 13. The reception level of the station is obtained and sent to the chip rate determination device 15. Assuming that the system has two chip rates C1 and C2 as in the above example, the chip rate determination device 15 sets a threshold value for the reception level, and sets a low chip rate C1 to a remote station above the threshold value. , A high chip rate C2 is assigned to the remote stations below the threshold.

【0033】本発明を、CDMA通信方式の移動通信シ
ステムに適用する場合の実施例は、図4の構成の基地局
と、図5に示す構成の移動局とで実現できる。ただし、
基地局のカバーする無線ゾーンの大きさ及び移動局の移
動速度から決まる受信レベルの変化する速さに応じて、
移動局が基地局へ受信レベルを報告する時間間隔、チッ
プレートを変更する周期等をシステムに適合するように
決める必要がある。
The embodiment in which the present invention is applied to the mobile communication system of the CDMA communication system can be realized by the base station having the configuration shown in FIG. 4 and the mobile station having the configuration shown in FIG. However,
Depending on the size of the radio zone covered by the base station and the changing speed of the reception level determined by the moving speed of the mobile station,
It is necessary to determine the time interval for the mobile station to report the reception level to the base station, the cycle for changing the chip rate, etc. so as to suit the system.

【0034】このため、基地局の制御装置14は、移動
局ごとの受信レベルの変動データを時刻対応で管理し、
これら報告の時間間隔やチップレート変更周期などを動
的に決定し制御を行う。
For this reason, the control device 14 of the base station manages the reception level fluctuation data for each mobile station according to the time,
The time interval of these reports and the chip rate change period are dynamically determined and controlled.

【0035】本発明を、CDMA通信方式の衛星通信シ
ステムに適用する場合の実施例の概要を図6に示す。こ
の中の基地局は図4の構成、子局は図5の構成をもつも
のであるとする。静止衛星を用いる衛星通信システムに
おいては、基地局における各子局間の信号レベルの変動
は、主に降雨減衰によって起こるものである。よって、
本発明によるCDMA衛星通信システムでは、信号レベ
ルの低下により降雨減衰を検出したとき、降雨減衰を被
っている子局に、降雨減衰がないときよりも高いチップ
レートを割り当てるという制御が行われる。この制御
は、基地局の制御装置14によって行われる。
FIG. 6 shows an outline of an embodiment in which the present invention is applied to a satellite communication system of a CDMA communication system. It is assumed that the base station among them has the configuration of FIG. 4 and the slave station has the configuration of FIG. In a satellite communication system using geostationary satellites, fluctuations in signal level between each slave station in a base station are mainly caused by rain attenuation. Therefore,
In the CDMA satellite communication system according to the present invention, when rain attenuation is detected due to a decrease in signal level, a slave station which is suffering rain attenuation is assigned a higher chip rate than when there is no rain attenuation. This control is performed by the control device 14 of the base station.

【0036】本発明を、小電力の携帯機や中電力の車載
機、大電力の固定局など、最大送信電力が異なる複数の
種類のリモート局が同時に存在するCDMA通信システ
ムにおいて適用する場合、基地局及びリモート局の構成
は図4および図5の構成と同じであるが、さらに次のよ
うな機能をもつ必要がある。すなわち、リモート局は自
局の最大送信電力に関する情報を基地局に通知し、基地
局では受信レベルと最大の送信電力とからリモート局に
割り当てるチップレートを決定する。各リモート局の最
大送信電力とそのリモート局のID番号が1対1に対応
がつく場合の例を図7および図8に示す。
When the present invention is applied to a CDMA communication system in which a plurality of types of remote stations having different maximum transmission powers are simultaneously present, such as a small power portable device, a medium power vehicle-mounted device, and a large power fixed station, a base station is used. The configurations of the station and the remote station are the same as those of FIGS. 4 and 5, but it is necessary to further have the following functions. That is, the remote station notifies the base station of information about the maximum transmission power of the local station, and the base station determines the chip rate to be assigned to the remote station from the reception level and the maximum transmission power. 7 and 8 show an example in which the maximum transmission power of each remote station and the ID number of the remote station have a one-to-one correspondence.

【0037】図7に示す基地局と図8に示すリモート局
の各構成は、それぞれ図4に示された基地局と図5に示
されたリモート局の各構成と基本的に同じである。しか
し図7の基地局では、ID−最大送信電力テーブル22
が設けられており、リモート局のIDに対応する最大送
信電力を識別できるようになっている。図8のリモート
局では、ID情報23をもち、通信開始時にIDを図7
の基地局に通知する。基地局の制御装置14は、通知さ
れたリモート局RSのIDを用いてID−最大送信電力
テーブル22を参照し、たとえば送信電力の小さい携帯
機であることを識別するとチップレート決定装置15に
チップレートの変更を行わせる。また送信電力の大きい
リモート局に対しては、制御が可能な範囲でリモート局
の送信電力を制御し、制御限度を超える場合にチップレ
ートの変更で対応することができる。
The configurations of the base station shown in FIG. 7 and the remote station shown in FIG. 8 are basically the same as the configurations of the base station shown in FIG. 4 and the remote station shown in FIG. 5, respectively. However, in the base station of FIG. 7, the ID-maximum transmission power table 22
Is provided so that the maximum transmission power corresponding to the ID of the remote station can be identified. The remote station of FIG. 8 has the ID information 23, and the ID is set when the communication starts.
Notify the base station of. The control device 14 of the base station refers to the ID-maximum transmission power table 22 by using the notified ID of the remote station RS, and when it is identified that the mobile device has a small transmission power, the chip rate determination device 15 chips. Make the rate change. For a remote station with a large transmission power, the transmission power of the remote station can be controlled within a controllable range, and when the control limit is exceeded, the chip rate can be changed.

【0038】[0038]

【発明の効果】以上に説明したように、本発明により複
数のチップレートを用意し、リモート局毎に適宜割り当
てることにより、送信電力制御とは別の観点からCDM
A通信方式における遠近問題を解決することができる。
As described above, according to the present invention, a plurality of chip rates are prepared and appropriately allocated to each remote station, so that the CDM can be viewed from a different viewpoint from the transmission power control.
It is possible to solve the near-far problem in the A communication system.

【0039】チップレートの切り替えはディジタル回路
で実現できるので、従来のアナログ方式による送信電力
制御に比べ高精度かつ高安定で、実現も容易である。ま
た、本発明の方式と送信電力制御を組み合わせることに
より、制御範囲と精度等の最適化が可能となる。
Since the switching of the chip rate can be realized by a digital circuit, it is highly accurate and highly stable as compared with the transmission power control by the conventional analog system, and is easy to realize. Further, by combining the method of the present invention and the transmission power control, the control range and accuracy can be optimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】本発明によるチップレート変更例の説明図であ
る。
FIG. 2 is an explanatory diagram of an example of changing a chip rate according to the present invention.

【図3】本発明によるチップレート変更の作用説明図で
ある。
FIG. 3 is an explanatory view of the operation of changing the chip rate according to the present invention.

【図4】本発明実施例による基地局の構成図である。FIG. 4 is a configuration diagram of a base station according to an embodiment of the present invention.

【図5】本発明実施例によるリモート局の構成図であ
る。
FIG. 5 is a block diagram of a remote station according to an embodiment of the present invention.

【図6】本発明実施例によるCDMA衛星通信システム
の概要図である。
FIG. 6 is a schematic diagram of a CDMA satellite communication system according to an embodiment of the present invention.

【図7】本発明の他の実施例による基地局の構成図であ
る。
FIG. 7 is a block diagram of a base station according to another embodiment of the present invention.

【図8】本発明の他の実施例によるリモート局の構成図
である。
FIG. 8 is a block diagram of a remote station according to another embodiment of the present invention.

【図9】CDMA通信方式における遠近問題の説明図で
ある。
FIG. 9 is an explanatory diagram of a perspective problem in a CDMA communication system.

【図10】CDMA通信方式における遠近問題により生
じる復調信号の干渉の説明図である。
FIG. 10 is an explanatory diagram of interference of demodulated signals caused by a near-far problem in a CDMA communication system.

【図11】従来の遠近問題の解決方法である送信電力制
御方法の説明図である。
FIG. 11 is an explanatory diagram of a transmission power control method that is a conventional solution to the near-far problem.

【符号の説明】[Explanation of symbols]

1 リモート局RS1 2 リモート局RS2 3 基地局BS 4 スペクトル逆拡散復調部 5 受信電力検出部 6 チップレート決定部 7 チップレート通知部 8 拡散符号生成部 9 スペクトル拡散変調部 1 Remote Station RS1 2 Remote Station RS2 3 Base Station BS 4 Spectrum Despreading Demodulation Section 5 Received Power Detection Section 6 Chip Rate Determining Section 7 Chip Rate Notification Section 8 Spreading Code Generation Section 9 Spread Spectrum Modulation Section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基地局と複数のリモート局からなり、基
地局と複数のリモート局との間の多元接続をCDMA方
式で行う無線通信システムにおいて、 CDMAのチップレートを複数段階に制御可能とし、 基地局とリモート局との間の無線通信における電波伝播
損失に基づきチップレートを選択して、CDMAのチッ
プレート制御を行うことを特徴とするCDMA通信方
式。
1. In a wireless communication system comprising a base station and a plurality of remote stations, and performing multiple access between the base station and the plurality of remote stations by a CDMA system, the chip rate of the CDMA can be controlled in a plurality of steps. A CDMA communication system characterized in that a chip rate is selected based on a radio wave propagation loss in wireless communication between a base station and a remote station, and CDMA chip rate control is performed.
【請求項2】 基地局と複数の移動局からなり、基地局
と複数の移動局との間の多元接続をCDMA方式で行う
移動通信システムにおいて、 CDMAのチップレートを複数段階に制御可能とし、 基地局と移動局との間の距離に応じた電波伝播損失に基
づきチップレートを選択して、適応的にチップレート制
御を行うことを特徴とするCDMA通信方式。
2. A mobile communication system comprising a base station and a plurality of mobile stations, wherein multiple access between the base station and the plurality of mobile stations is performed by a CDMA system, and a CDMA chip rate can be controlled in a plurality of steps. A CDMA communication system characterized in that a chip rate is selected based on a radio wave propagation loss according to a distance between a base station and a mobile station, and the chip rate is adaptively controlled.
【請求項3】 衛星を介して接続される基地局と複数の
子局からなり、基地局と複数の子局との間の多元接続を
CDMA方式で行う衛星通信システムにおいて、 CDMAのチップレートを複数段階に制御可能とし、 子局と衛星との間の降雨による電波伝播損失に基づきチ
ップレートを選択して、適応的にチップレート制御を行
うことを特徴とするCDMA通信方式。
3. A satellite communication system comprising a base station connected via a satellite and a plurality of slave stations, and performing multiple access between the base station and a plurality of slave stations by a CDMA system, wherein the chip rate of CDMA is A CDMA communication system characterized in that it can be controlled in multiple stages and that the chip rate is adaptively selected by selecting the chip rate based on the radio wave propagation loss due to rainfall between the slave station and the satellite.
【請求項4】 請求項1ないし請求項3において、リモ
ート局、移動局あるいは子局の最大送信電力が複数種類
存在している場合、チップレート制御対象のリモート局
あるいは子局の最大送信電力を識別して、適切なチップ
レートの選択を行うことを特徴とするCDMA通信方
式。
4. The maximum transmission power of a chip-rate-controlled remote station or slave station when a plurality of types of maximum transmission power of a remote station, a mobile station, or a slave station exist in any one of claims 1 to 3. A CDMA communication system characterized by identifying and selecting an appropriate chip rate.
JP5058457A 1993-03-18 1993-03-18 Cdma communication system Pending JPH06276176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5058457A JPH06276176A (en) 1993-03-18 1993-03-18 Cdma communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5058457A JPH06276176A (en) 1993-03-18 1993-03-18 Cdma communication system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002099340A Division JP3380862B2 (en) 2002-04-01 2002-04-01 Base station and remote station

Publications (1)

Publication Number Publication Date
JPH06276176A true JPH06276176A (en) 1994-09-30

Family

ID=13084958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5058457A Pending JPH06276176A (en) 1993-03-18 1993-03-18 Cdma communication system

Country Status (1)

Country Link
JP (1) JPH06276176A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060889A1 (en) * 1999-04-01 2000-10-12 Matsushita Electric Industrial Co., Ltd. Cdma base station device and cdma communication method
US6351459B1 (en) 1997-11-28 2002-02-26 Nec Corporation Control random access in mobile communication system without interrrupting continuous communications
US6542471B1 (en) 1997-09-24 2003-04-01 Toyota Jidosha Kabushiki Kaisha Radio communication system for mobile objects and radio communication mobile station used in the system
US6580748B1 (en) 1998-09-11 2003-06-17 Nec Corporation Spread spectrum communication method and spread spectrum communication apparatus
US6621808B1 (en) 1999-08-13 2003-09-16 International Business Machines Corporation Adaptive power control based on a rake receiver configuration in wideband CDMA cellular systems (WCDMA) and methods of operation
WO2004012474A1 (en) * 2002-07-30 2004-02-05 Fujitsu Limited Radio base station device, base station control device, radio terminal device, and radio transmission system
US6690652B1 (en) 1998-10-26 2004-02-10 International Business Machines Corporation Adaptive power control in wideband CDMA cellular systems (WCDMA) and methods of operation
JP2006509451A (en) * 2002-12-09 2006-03-16 アイピーワイヤレス,インコーポレイテッド Support for multiple chip rates in CDMA systems
US7209749B2 (en) 2003-01-04 2007-04-24 Samsung Electronics Co., Ltd. Method for determining data rate of user equipment supporting EUDCH service
US7359424B2 (en) 2000-06-28 2008-04-15 Nec Corporation Spread spectrum communication system and method therefor
US7706332B2 (en) 1995-06-30 2010-04-27 Interdigital Technology Corporation Method and subscriber unit for performing power control
US7756190B2 (en) 1995-06-30 2010-07-13 Interdigital Technology Corporation Transferring voice and non-voice data
US7903613B2 (en) 1995-06-30 2011-03-08 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US7929498B2 (en) 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756190B2 (en) 1995-06-30 2010-07-13 Interdigital Technology Corporation Transferring voice and non-voice data
US9564963B2 (en) 1995-06-30 2017-02-07 Interdigital Technology Corporation Automatic power control system for a code division multiple access (CDMA) communications system
US8737363B2 (en) 1995-06-30 2014-05-27 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US7929498B2 (en) 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US7903613B2 (en) 1995-06-30 2011-03-08 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US7706332B2 (en) 1995-06-30 2010-04-27 Interdigital Technology Corporation Method and subscriber unit for performing power control
US6542471B1 (en) 1997-09-24 2003-04-01 Toyota Jidosha Kabushiki Kaisha Radio communication system for mobile objects and radio communication mobile station used in the system
US6351459B1 (en) 1997-11-28 2002-02-26 Nec Corporation Control random access in mobile communication system without interrrupting continuous communications
US6580748B1 (en) 1998-09-11 2003-06-17 Nec Corporation Spread spectrum communication method and spread spectrum communication apparatus
US6690652B1 (en) 1998-10-26 2004-02-10 International Business Machines Corporation Adaptive power control in wideband CDMA cellular systems (WCDMA) and methods of operation
WO2000060889A1 (en) * 1999-04-01 2000-10-12 Matsushita Electric Industrial Co., Ltd. Cdma base station device and cdma communication method
US6621808B1 (en) 1999-08-13 2003-09-16 International Business Machines Corporation Adaptive power control based on a rake receiver configuration in wideband CDMA cellular systems (WCDMA) and methods of operation
US7359424B2 (en) 2000-06-28 2008-04-15 Nec Corporation Spread spectrum communication system and method therefor
WO2004012474A1 (en) * 2002-07-30 2004-02-05 Fujitsu Limited Radio base station device, base station control device, radio terminal device, and radio transmission system
JP2006509451A (en) * 2002-12-09 2006-03-16 アイピーワイヤレス,インコーポレイテッド Support for multiple chip rates in CDMA systems
US9094095B2 (en) 2002-12-09 2015-07-28 Nvidia Corporation Support of plural bandwidths in a telecommunications system
US7209749B2 (en) 2003-01-04 2007-04-24 Samsung Electronics Co., Ltd. Method for determining data rate of user equipment supporting EUDCH service

Similar Documents

Publication Publication Date Title
JP4750275B2 (en) System and method for reducing call drop rate in a multi-beam communication system
US6507574B1 (en) Transmission/reception apparatus and transmit power control method
JP2697306B2 (en) Multi-user spread spectrum communication system
EP1042884B1 (en) Channel assigning device and method in cdma communication system
US7006463B2 (en) CDMA communication system and its transmission power control method
JP3195355B2 (en) Method and apparatus for performing handoff between sectors of a common base station
EP0809365B1 (en) Scheme for controlling transmission powers during soft handover in a cdma mobile communication system
KR100615865B1 (en) Method and apparatus for transmitting reverse link power control signals based on the probability that the power control command is in error
CA2120768C (en) Transmitter power control system
US7280829B2 (en) Method and system for improved beacon acquisition performance with time slot and antenna sector reuse
US6477157B1 (en) Dedicated control channel handoff in CDMA communication system
JP2812318B2 (en) Spread spectrum communication method and apparatus
CA2294224A1 (en) Sectorization of cellular cdma-system
CA2370695A1 (en) System and method for implementing multiple carriers in cellular networks
JPH06276176A (en) Cdma communication system
KR100331010B1 (en) Directivity control circuitry for an adaptive antenna
US6831909B1 (en) Channel assigning device and method in CDMA communication system
EP0991204B1 (en) A transmission power control method using a pilot symbol pattern
EP1044516B1 (en) Tstd transmitter for limiting transmission power of antenna and controlling method thereof for base station in mobile communication system
KR100340831B1 (en) Spread spectrum communication system and base station thereof
US5903841A (en) System and method for simplified handoff operation in a cellular mobile communication system
US6175736B1 (en) Method and system for providing a power-efficient soft handoff in a multicarrier CDMA cellular system
JPH06268575A (en) Channel access system for mobile communications system
KR100462093B1 (en) Method and apparatus for fast handoff in a communication system
JP3380862B2 (en) Base station and remote station

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020129