JPH06276159A - Transmitting device - Google Patents

Transmitting device

Info

Publication number
JPH06276159A
JPH06276159A JP5084050A JP8405093A JPH06276159A JP H06276159 A JPH06276159 A JP H06276159A JP 5084050 A JP5084050 A JP 5084050A JP 8405093 A JP8405093 A JP 8405093A JP H06276159 A JPH06276159 A JP H06276159A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
frequency
converting
optical
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5084050A
Other languages
Japanese (ja)
Inventor
Munenori Mikami
宗紀 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5084050A priority Critical patent/JPH06276159A/en
Publication of JPH06276159A publication Critical patent/JPH06276159A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce the change of a frequency characteristic in a transmission loss and to obtain a device usable in water by converting input electromagnetic wave into an optical signal and converting it into electromagnetic wave with the same frequency as that of an input after transmission through an optical fiber. CONSTITUTION:A semi-conductor laser as an electromagnetic wave-optical converter 8 modulates oscillation light by electromagnetic wave by superimposing electromagnetic wave on an impression voltage. The modulated optical signal is transmitted to an optical-electromagnetic converter 9 at a fixing side with an optical fiber cable 13. The converter 9 consists of an avalanche photodiode, etc., which is satisfactory in high speed responsiveness and gets the modulated optical signal back to original electromagnetic wave so as to output it. In result, the optical signal can be transmitted even in water in the part of a cable 13 so that the frequency characteristic of the transmission loss with small change can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、比較的高い周波数の
電磁波を水中において伝送するための伝送装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission device for transmitting electromagnetic waves of relatively high frequency in water.

【0002】[0002]

【従来の技術】図4は例えば特開昭56−47101号
公報に示された従来の伝送装置の一例を示す一部切開斜
視図であり、図において、1は入力端、2は出力端、3
は矩形導波管、15は矩形導波管3のH面(磁界面)の
中央に軸方向に沿って設けられたスリットである。4は
同軸線路であり、その内導体4aは上記矩形導波管3の
スリット15をとおって導波管3内に挿入されている。
5は導波管3の一端に接続された無反射終端器である。
6は入力端1と同軸線路4の間に設けられたアイソレー
タであり、電磁波は入力端1から同軸線路4の方へのみ
伝送される。7は上記同軸線路4の外導体4bに機械的
に固定され、上記矩形導波管3を抱くように取付けられ
た可動体としての台である。この台7は上記同軸線路4
の内導体4aが矩形導波管3のスリット15をとおして
矩形導波管3内に挿入される長さを一定に保ちつつ、上
記同軸線路4を矩形導波管3のスリット15に沿って移
動できる。
2. Description of the Related Art FIG. 4 is a partially cutaway perspective view showing an example of a conventional transmission device disclosed in, for example, Japanese Patent Laid-Open No. 56-47101, in which 1 is an input end, 2 is an output end, Three
Is a rectangular waveguide, and 15 is a slit provided in the center of the H surface (magnetic field surface) of the rectangular waveguide 3 along the axial direction. Reference numeral 4 denotes a coaxial line, and its inner conductor 4a is inserted into the waveguide 3 through the slit 15 of the rectangular waveguide 3.
Reference numeral 5 is a non-reflection terminator connected to one end of the waveguide 3.
Reference numeral 6 is an isolator provided between the input end 1 and the coaxial line 4, and electromagnetic waves are transmitted only from the input end 1 to the coaxial line 4. Reference numeral 7 is a stand as a movable body which is mechanically fixed to the outer conductor 4b of the coaxial line 4 and is attached so as to hold the rectangular waveguide 3. This stand 7 is the above coaxial line 4
The inner conductor 4a of the coaxial waveguide 4 is inserted along the slit 15 of the rectangular waveguide 3 into the rectangular waveguide 3 while keeping the length of the inner conductor 4a constant. You can move.

【0003】次に動作について説明する。ここでは、入
力端1を移動側、出力端2を固定側として説明する。入
力端1に加えられた電磁波はアイソレータ6を経て同軸
線路4に伝送され、矩形導波管3のスリット15をとお
って矩形導波管3内に突出した同軸線路4の内導体4a
によって矩形導波管3内にそのエネルギーの一部を伝え
る。矩形導波管3内に伝えられた電磁波は、同軸線路4
との結合点から矩形導波管3の軸方向の双方に進んでい
く。一方は出力端2の方向に進んで出力端2に至り、他
方は無反射終端器5の方向に進み、そのエネルギーは無
反射終端器5に吸収される。アイソレータ6は入力端1
からの電磁波を同軸線路4の方向へのみ伝送し、反対方
向から入力する電磁波は吸収してしまい、出力しない。
即ち、同軸線路4から矩形導波管3に結合されないで残
った電磁波は、同軸線路4からアイソレータ6に入り、
アイソレータ6でそのエネルギーが吸収され、入力端1
へは伝送されない。無反射終端器5は、上述のように結
合点から該無反射終端器5の方に伝送される電磁波を吸
収する。従って、無反射終端器5がない場合は、この方
向に進む電磁波がここで反射されて出力端2の方向に進
み、結合点から直接出力端2に向かう電磁波と干渉する
ことになるが、この無反射終端器5によりこの干渉を除
くことができる。従って、入,出力端1,2のそれぞれ
に、それぞれの有する特性インピーダンスと等しい特性
インピーダンスの伝送線路を接続することにより、反射
による影響のない伝送線路が得られ、この伝送線路は、
台7の移動により矩形導波管3に設けるスリット15の
長さにほぼ等しい距離だけ可動側の入力端1を移動させ
ることができる。
Next, the operation will be described. Here, the input end 1 will be described as the moving side and the output end 2 as the fixed side. The electromagnetic wave applied to the input end 1 is transmitted to the coaxial line 4 via the isolator 6, and passes through the slit 15 of the rectangular waveguide 3 to project into the rectangular waveguide 3 and the inner conductor 4a of the coaxial line 4a.
Conveys some of its energy into the rectangular waveguide 3. The electromagnetic wave transmitted to the rectangular waveguide 3 is transmitted through the coaxial line 4
From the point of coupling with and, it advances in both directions of the rectangular waveguide 3. One proceeds toward the output end 2 and reaches the output end 2, and the other proceeds toward the non-reflection terminator 5, and the energy thereof is absorbed by the non-reflection terminator 5. Isolator 6 is input end 1
The electromagnetic wave from is transmitted only in the direction of the coaxial line 4, and the electromagnetic wave input from the opposite direction is absorbed and is not output.
That is, the electromagnetic wave remaining from the coaxial line 4 not coupled to the rectangular waveguide 3 enters the isolator 6 from the coaxial line 4,
The energy is absorbed by the isolator 6, and the input terminal 1
Is not transmitted to. The non-reflection terminator 5 absorbs the electromagnetic wave transmitted from the coupling point to the non-reflection terminator 5 as described above. Therefore, if there is no anti-reflection terminator 5, the electromagnetic wave traveling in this direction is reflected here and travels in the direction of the output end 2 and interferes with the electromagnetic wave traveling directly from the coupling point to the output end 2. This interference can be eliminated by the non-reflective terminator 5. Therefore, by connecting to each of the input and output ends 1 and 2 a transmission line having a characteristic impedance equal to the characteristic impedance of the input and output ends, a transmission line that is not affected by reflection can be obtained.
By moving the table 7, the movable input end 1 can be moved by a distance substantially equal to the length of the slit 15 provided in the rectangular waveguide 3.

【0004】[0004]

【発明が解決しようとする課題】従来の伝送装置は以上
のように構成されているので、矩形導波管3のスリット
15から矩形導波管3内に水が入り、矩形導波管3内は
電磁波の伝送ができなくなるので、水中では使用できな
いという欠点がある。そこで、水中で使用する伝送線路
として、図5に示すように可撓性,耐水性を有する同軸
ケーブルを利用することが考えられる。図において、1
Aは移動側の入力端、2Aは固定側の出力端であり、4
Aは耐水性,可撓性を有する同軸ケーブルである。入力
端1Aは同図上で左右に移動し、入,出力端1,2間の
距離はほぼ同軸ケーブル14の長さ分だけ変えることが
できる。しかしながら同軸ケーブルは機械的な曲げ回数
が多くなると信頼性,耐水性が悪くなるとともに、伝送
する電磁波の周波数がXバンド帯(8GHz〜12GH
z)以上になると、伝送損失の周波数特性が悪くなる。
このような欠点をクリアする同軸ケーブルは現状では皆
無である。すなわち、現状においては、水中で使用で
き、しかも伝送線路自体の信頼性,耐水性を維持できる
とともに、高い周波数の電磁波伝送においても伝送損失
の周波数特性が良いという伝送装置はなかった。
Since the conventional transmission device is constructed as described above, water enters the rectangular waveguide 3 through the slit 15 of the rectangular waveguide 3 and the inside of the rectangular waveguide 3 is prevented. Has the drawback that it cannot be used in water because it cannot transmit electromagnetic waves. Therefore, it is conceivable to use a coaxial cable having flexibility and water resistance as a transmission line used in water as shown in FIG. In the figure, 1
A is an input end on the moving side, 2A is an output end on the fixed side, and
A is a coaxial cable having water resistance and flexibility. The input end 1A moves to the left and right in the figure, and the distance between the input and output ends 1 and 2 can be changed by the length of the coaxial cable 14. However, the reliability and water resistance of the coaxial cable deteriorate as the number of mechanical bends increases, and the frequency of the electromagnetic wave to be transmitted is in the X band (8 GHz to 12 GHz).
z) or more, the frequency characteristic of transmission loss deteriorates.
At present, there is no coaxial cable that clears such drawbacks. That is, under the present circumstances, there is no transmission device that can be used underwater, can maintain the reliability and water resistance of the transmission line itself, and has good frequency characteristics of transmission loss even in high frequency electromagnetic wave transmission.

【0005】この発明は、上述のように同軸ケーブルで
は伝送損失の周波数特性が悪くなるような高い周波数の
電磁波の伝送において、伝送損失の周波数特性が良く、
水中で使用でき、しかも水中において入,出力間の距離
を変化させることができる伝送装置を得ることを目的と
している。
According to the present invention, the frequency characteristic of the transmission loss is good in the transmission of electromagnetic waves of high frequency where the frequency characteristic of the transmission loss is deteriorated in the coaxial cable as described above.
An object of the present invention is to obtain a transmission device that can be used in water and can change the distance between input and output in water.

【0006】[0006]

【課題を解決するための手段】請求項1の装置は、比較
的周波数の高い入力電磁波を光信号に変換する電磁波−
光変換手段(変換器8)と、光信号を伝送する耐水,可
撓性を有する光ファイバー伝送路(ケーブル13)と、
伝送されてきた光信号を上記入力電磁波と同じ周波数の
電磁波に変換する光−電磁波変換手段(変換器9)とを
備えたものである。
The apparatus of claim 1 is an electromagnetic wave for converting an input electromagnetic wave having a relatively high frequency into an optical signal.
An optical converting means (converter 8), a water resistant and flexible optical fiber transmission line (cable 13) for transmitting an optical signal,
An optical-electromagnetic wave converting means (converter 9) for converting the transmitted optical signal into an electromagnetic wave having the same frequency as the input electromagnetic wave is provided.

【0007】請求項2の装置は、比較的周波数の高い電
磁波を光信号に変換する電磁波−光変換手段(変換器8
a)と、光信号を伝送する耐水,可撓性を有する光ファ
イバー伝送路(ケーブル13A)と、伝送されてきた光
信号を上記電磁波と同じ周波数の電磁波に変換する光−
電磁波変換手段(変換器9a)と、上記各変換手段で応
答可能な周波数の基準電磁波を発生する基準信号発生手
段(発生器10)と、上記基準電磁波10dに基づいて
上記電磁波−光変換手段(変換器8a)の応答周波数よ
り高い周波数の入力電磁波1dを上記電磁波−光変換手
段が応答可能な周波数の電磁波に周波数変換して上記電
磁波−光変換手段に出力する入力電磁波周波数変換手段
16aと、この入力電磁波周波数変換手段に送出する基
準電磁波とは別に、基準電磁波を上記光−電磁波変換手
段(変換器9a)側に伝送するための上記電磁波−光変
換手段,光ファイバー伝送路及び光−電磁波変換手段と
同様の構成から成る基準電磁波伝送手段20と、この伝
送手段を介して伝送されてきた基準電磁波に基づいて上
記光−電磁波変換手段(変換器9a)より出力される電
磁波の周波数を上記入力電磁波と同じ周波数に変換する
出力側周波数変換手段16bとを備えて成るものであ
る。
The apparatus of claim 2 is an electromagnetic wave-optical conversion means (converter 8) for converting an electromagnetic wave having a relatively high frequency into an optical signal.
a), a water resistant and flexible optical fiber transmission line (cable 13A) for transmitting an optical signal, and light for converting the transmitted optical signal into an electromagnetic wave having the same frequency as the electromagnetic wave.
Electromagnetic wave converting means (converter 9a), reference signal generating means (generator 10) for generating a reference electromagnetic wave having a frequency that can be responded by each of the converting means, and the electromagnetic wave-to-light converting means (based on the reference electromagnetic wave 10d). An input electromagnetic wave frequency converting means 16a for frequency-converting an input electromagnetic wave 1d having a frequency higher than the response frequency of the converter 8a) into an electromagnetic wave having a frequency which can be responded by the electromagnetic wave-optical converting means, and outputting the electromagnetic wave to the electromagnetic wave-optical converting means. Apart from the reference electromagnetic wave sent to the input electromagnetic wave frequency converting means, the electromagnetic wave-optical converting means, the optical fiber transmission line and the light-electromagnetic wave converting means for transmitting the reference electromagnetic wave to the light-electromagnetic wave converting means (converter 9a) side. The reference electromagnetic wave transmitting means 20 having the same structure as the means, and the light-electromagnetic wave conversion based on the reference electromagnetic wave transmitted through the transmitting means. The frequency of the electromagnetic wave output from stage (converter 9a) are those comprising an output-side frequency conversion means 16b for converting the same frequency as the input electromagnetic wave.

【0008】請求項3の装置は、請求項第1項または第
2項記載の伝送装置の各変換手段及び電磁波の入力,出
力端1B,2Bに防水処理を施して成るものである。
A third aspect of the present invention is a transmission apparatus according to the first or second aspect of the present invention, in which each conversion means and electromagnetic wave input / output terminals 1B and 2B are waterproofed.

【0009】[0009]

【作用】請求項1では、電磁波−光変換手段は、光を搬
送波,電磁波を変調波として光を電磁波で変調する。こ
れにより、入力電磁波を光信号に変え、光ファイバー伝
送路を介して伝送する。光−電磁波変換手段では、変調
を受けた光信号を元の電磁波に戻す。
According to the first aspect of the invention, the electromagnetic wave-to-light converting means modulates the light with the electromagnetic wave using the light as a carrier wave and the electromagnetic wave as a modulating wave. As a result, the input electromagnetic wave is converted into an optical signal and transmitted via the optical fiber transmission line. The light-electromagnetic wave converting means returns the modulated optical signal to the original electromagnetic wave.

【0010】請求項2のものでは、入力電磁波周波数変
換手段は、電磁波−光,光−電磁波変換手段で対応しき
れない高い周波数の入力電磁波を、基準電磁波に基づい
て電磁波−光変換手段が対応しきれる周波数の電磁波に
変換して電磁波−光変換手段に供給する。このように周
波数変換された電磁波は請求項1と同様に電磁波−光変
換手段で光信号に変換され、光−電磁波変換手段に伝送
されてここで電磁波に戻る。また、基準電磁波は請求項
1と同様の構成の伝送装置により別ルートで出力側に伝
送される。出力側周波数変換手段は、伝送されてきた基
準電磁波に基づいて上記光−電磁波変換手段からの電磁
波の周波数を入力電磁波の周波数に戻す。
In the second aspect of the present invention, the input electromagnetic wave frequency converting means corresponds to the input electromagnetic wave having a high frequency which cannot be handled by the electromagnetic wave-light and light-electromagnetic wave converting means, based on the reference electromagnetic wave. It is converted into an electromagnetic wave having a frequency that can be cut off and supplied to the electromagnetic wave-light conversion means. The electromagnetic wave thus frequency-converted is converted into an optical signal by the electromagnetic wave-optical conversion means, transmitted to the optical-electromagnetic wave conversion means, and returned to the electromagnetic wave as in the first aspect. Further, the reference electromagnetic wave is transmitted to the output side by another route by the transmission device having the same configuration as that of claim 1. The output side frequency conversion means restores the frequency of the electromagnetic wave from the light-electromagnetic wave conversion means to the frequency of the input electromagnetic wave based on the transmitted reference electromagnetic wave.

【0011】請求項3では、装置全体を水中で使用す
る。特に水中において入出力間の距離を変えたい場合、
ほぼ光ファイバー伝送路の長さの範囲で変えることが可
能である。
In the third aspect, the entire apparatus is used in water. Especially when you want to change the distance between the input and output in water,
It can be changed within the range of the length of the optical fiber transmission line.

【0012】[0012]

【実施例】実施例1(請求項1に対応).以下、この発
明の伝送装置の一実施例を図について説明する。図1に
おいて、1Bは移動側の入力端、2Bは固定側の出力端
である。8は電磁波を光に変換する電磁波−光変換器、
9は光を元の電磁波に変換する光−電磁波変換器であ
る。13は耐水性及び可撓性を合わせもつ伝送路として
の光ファイバーケーブルである。
EXAMPLE Example 1 (corresponding to claim 1). An embodiment of the transmission device of the present invention will be described below with reference to the drawings. In FIG. 1, 1B is an input end on the moving side and 2B is an output end on the fixed side. 8 is an electromagnetic wave-optical converter that converts electromagnetic waves into light,
Reference numeral 9 denotes a light-electromagnetic wave converter that converts light into an original electromagnetic wave. Reference numeral 13 is an optical fiber cable as a transmission line having both water resistance and flexibility.

【0013】次に動作について説明する。電磁波−光変
換器8としては、例えば半導体レーザを使用する。半導
体レーザは、光発振を行うとともに、印可電圧に電磁波
を重畳することにより、光を電磁波で変調することがで
きる(光=搬送波,電磁波=変調波)。この特性を利用
して、入力端1Bに入ったXバンド帯,または近辺の比
較的周波数の高い電磁波−光変換器8に加えることによ
り電磁波を光信号に変換する。変換した光信号を光ファ
イバーケーブル13を介して固定側の光−電磁波変換器
9へ送る。光−電磁波変換器9としては、例えば高速応
答性の良いアバランシュホトダイオードを使用し、変調
を受けた光信号を元の電磁波に戻し、出力端2Bに出力
する。
Next, the operation will be described. As the electromagnetic wave-optical converter 8, for example, a semiconductor laser is used. The semiconductor laser can modulate light with an electromagnetic wave by superimposing an electromagnetic wave on an applied voltage while performing optical oscillation (light = carrier wave, electromagnetic wave = modulated wave). Utilizing this characteristic, the electromagnetic wave is converted into an optical signal by being applied to the electromagnetic wave-optical converter 8 having a relatively high frequency in the X band band or the vicinity of the input terminal 1B. The converted optical signal is sent to the fixed-side optical-electromagnetic wave converter 9 via the optical fiber cable 13. As the light-electromagnetic wave converter 9, for example, an avalanche photodiode having a good high-speed response is used, and the modulated optical signal is returned to the original electromagnetic wave and output to the output end 2B.

【0014】従って、この伝送装置では、光ファイバー
ケーブル13の部分は水中においても光信号を伝送でき
る。また、電磁波のXバンドにおける比帯域幅0.2の
帯域幅は光領域では0.6×10-14程度と比帯域幅は
小さくなるので、光ファイバーケーブル13での伝送損
失の周波数特性は変化が小さいものが得られる。また、
伝送路は、耐水性及び可撓性を有する光ファイバーケー
ブルなので、入出力間の距離を変えることができ、機械
的曲げに対する信頼性,耐水性も高い。
Therefore, in this transmission device, the optical fiber cable 13 can transmit an optical signal even underwater. Further, the bandwidth of the specific bandwidth 0.2 in the X band of electromagnetic waves is as small as about 0.6 × 10 −14 in the optical region, so that the frequency characteristic of the transmission loss in the optical fiber cable 13 does not change. You get a small one. Also,
Since the transmission line is an optical fiber cable having water resistance and flexibility, the distance between the input and output can be changed, and the reliability against mechanical bending and water resistance are high.

【0015】上記構成によれば、比較的高い周波数の電
磁波を伝送する装置で、伝送損失の周波数特性の変化が
少なく、水中において伝送が行える装置が得られる。
According to the above structure, it is possible to obtain a device that transmits electromagnetic waves having a relatively high frequency and that can perform transmission in water with little change in frequency characteristics of transmission loss.

【0016】実施例2.図2に実施例2を示す。実施例
1では、入力電磁波の周波数が、電磁波−光変換器,光
−電磁波変換器の応答周波数(変換器によりさまざまで
ある)を超えて高くなると使用できなくなる。実施例2
はこの問題に対処するものであり、入力電磁波の周波数
を、一旦、実施例1の伝送装置で伝送できる周波数に変
換した後、光信号に変換して伝送を行い、伝送波に戻し
て、更に入力電磁波と同じ周波数に変換して元の電磁波
に戻すようにしたものである。図2において、1Bは移
動側の入力端、2Bは固定側の出力端である。8a,8
bは電磁波−光変換器、9a,9bは光−電磁波変換器
である。10は基準電磁波を発生する基準信号発生器、
11は基準電磁波を分配する分配器である。12は基準
電磁波に同期して発振する同期発振器である。16aは
入力電磁波の周波数を、変換器8aが応答可能な低い周
波数に変換する入力電磁波周波数変換器であり、16b
は入力の電磁波を周波数の高い周波数に変換する出力側
周波数変換器である。13A,13Bは耐水性及び可撓
性を有する光ファイバーケーブルである。なお、電磁波
−光変換器8b,光ファイバーケーブル13B及び光−
電磁波変換器9bにより基準電磁波伝送手段20を構成
する。
Example 2. Example 2 is shown in FIG. In the first embodiment, if the frequency of the input electromagnetic wave exceeds the response frequency (which varies depending on the converter) of the electromagnetic wave-optical converter and the optical-electromagnetic wave converter, it cannot be used. Example 2
Solves this problem by once converting the frequency of the input electromagnetic wave into a frequency that can be transmitted by the transmission device of the first embodiment, then converting it into an optical signal for transmission, and returning it to the transmission wave. It is the one that is converted to the same frequency as the input electromagnetic wave and returned to the original electromagnetic wave. In FIG. 2, 1B is an input end on the moving side and 2B is an output end on the fixed side. 8a, 8
Reference numeral b is an electromagnetic wave-optical converter, and 9a and 9b are optical electromagnetic wave converters. 10 is a reference signal generator for generating reference electromagnetic waves,
Reference numeral 11 is a distributor for distributing the reference electromagnetic wave. Reference numeral 12 is a synchronous oscillator that oscillates in synchronization with the reference electromagnetic wave. Reference numeral 16a denotes an input electromagnetic wave frequency converter that converts the frequency of the input electromagnetic wave into a low frequency that the converter 8a can respond to.
Is an output-side frequency converter that converts an input electromagnetic wave into a high frequency. 13A and 13B are optical fiber cables having water resistance and flexibility. In addition, the electromagnetic wave-optical converter 8b, the optical fiber cable 13B and the optical-
The electromagnetic wave converter 9b constitutes the reference electromagnetic wave transmission means 20.

【0017】次に動作について説明する。基準信号発生
器10からの基準電磁波10dを分配器11で2分配し
た後、その一方を同期発振器12に送って局部発振信号
12dを発生し、この局部発振信号を電磁波−光変換器
8aに送る。他方は、実施例1と同様の構成により、電
磁波−光変換器8bで光信号に変換され、光ファイバー
ケーブル13Bで伝送されて、光−電磁波変換器9bで
電磁波に変換される。そして同期発振器12に送られて
局部発振信号を発生し、この局部発振信号12dが出力
側が周波数変換器16bに加えられる。入力端1Bに入
った変換器8a,9aの応答周波数より高い周波数の電
磁波1dは、入力電磁波周波数変換器16aで同期発振
器12からの局部発信信号12dと混合され、電磁波−
光変換器8a及び光−電磁波変換器9aの応答周波数以
下の低い周波数に周波数変換され、電磁波−光変換器8
aで光信号に変換される。この光信号が光ファイバーケ
ーブル13Aで受端側の光−電磁波変換器9aに送られ
て電磁波9dに変換され、この電磁波9dを出力側周波
数変換器16bに送る。出力側周波数変換器16bは、
同期発振器12からの局部発振信号12dを電磁波9d
と混合して周波数の高い電磁波に変換することにより、
入力端1Bに入った元の電磁波の周波数に戻して出力端
2Bに出力する。
Next, the operation will be described. After the reference electromagnetic wave 10d from the reference signal generator 10 is divided into two by the distributor 11, one of them is sent to the synchronous oscillator 12 to generate a local oscillation signal 12d, and this local oscillation signal is sent to the electromagnetic wave-optical converter 8a. . On the other hand, with the same configuration as that of the first embodiment, the electromagnetic wave-optical converter 8b converts it into an optical signal, the optical signal is transmitted by the optical fiber cable 13B, and the optical-electromagnetic wave converter 9b converts it into an electromagnetic wave. Then, it is sent to the synchronous oscillator 12 to generate a local oscillation signal, and this local oscillation signal 12d is applied to the frequency converter 16b on the output side. The electromagnetic wave 1d having a frequency higher than the response frequencies of the converters 8a and 9a entering the input terminal 1B is mixed with the local oscillation signal 12d from the synchronous oscillator 12 by the input electromagnetic wave frequency converter 16a, and the electromagnetic wave-
The electromagnetic wave-optical converter 8 is frequency-converted to a low frequency lower than the response frequency of the optical converter 8a and the optical-electromagnetic wave converter 9a.
It is converted into an optical signal by a. This optical signal is sent to the optical-electromagnetic wave converter 9a on the receiving end side by the optical fiber cable 13A and converted into the electromagnetic wave 9d, and this electromagnetic wave 9d is sent to the output side frequency converter 16b. The output side frequency converter 16b is
The local oscillation signal 12d from the synchronous oscillator 12 is converted into the electromagnetic wave 9d.
By mixing with and converting to high frequency electromagnetic wave,
The frequency of the original electromagnetic wave that has entered the input terminal 1B is restored and output to the output terminal 2B.

【0018】従って、この伝送装置では、実施例1の装
置の効果に加え、入力電磁波の周波数が、電磁波光変換
器8d及び光電磁波変換器9aの応答周波数を超えた高
い周波数であっても伝送が可能な装置が得られる。
Therefore, in addition to the effect of the device of the first embodiment, this transmission device transmits even if the frequency of the input electromagnetic wave is a high frequency exceeding the response frequency of the electromagnetic wave optical converter 8d and the optical electromagnetic wave converter 9a. A device capable of

【0019】また、入力電磁波周波数変換器16aと出
力側周波数変換器16bに加える局部発振信号12d,
12dはいずれも基準信号(電磁波)に同期して発振す
る信号であるので周波数が等しくなるため、入力端1B
に入った電磁波の周波数を正確に出力端2Bに送ること
ができる。(なお、正確さを要求せず、伝送ということ
に着眼した場合においては、上記同期発振器を用いなく
ても伝送は行える。)なお、実施例1または2では入力
端1Bを移動側、送出端2Bを固定側としたが、入力端
1Bが固定側、出力端2Bが移動側であってもよい。
Further, the local oscillation signal 12d added to the input electromagnetic wave frequency converter 16a and the output side frequency converter 16b,
Since 12d are signals that oscillate in synchronization with the reference signal (electromagnetic wave), the frequencies are the same, so the input terminal 1B
The frequency of the electromagnetic wave that has entered can be accurately sent to the output end 2B. (Note that if accuracy is not required and transmission is focused, transmission can be performed without using the synchronous oscillator.) In the first or second embodiment, the input end 1B is located at the moving side and the sending end. Although 2B is the fixed side, the input end 1B may be the fixed side and the output end 2B may be the moving side.

【0020】実施例3.図3に他の実施例を示す。本実
施例は図1の実施例において、入力端1B,電磁波−光
変換器8並びに光−電磁波変換器9,出力端2Bをそれ
ぞれ防水ガラス,石英ガラス等の防水壁17で囲って防
水処理を施したものである。これにより、光ファイバー
ケーブル13の耐水性と合いまって伝送装置全てを水中
で使用することができ、水中で距離の変わる入力出力間
の電磁波伝送を行うことができる。なお、本実施例は実
施例2のものにおいても適用できる。
Example 3. FIG. 3 shows another embodiment. In this embodiment, in the embodiment shown in FIG. 1, the input end 1B, the electromagnetic wave-optical converter 8, the optical-electromagnetic wave converter 9, and the output end 2B are surrounded by a waterproof wall 17 made of waterproof glass, quartz glass or the like for waterproofing. It has been given. As a result, it is possible to use the entire transmission device underwater in combination with the water resistance of the optical fiber cable 13, and it is possible to perform electromagnetic wave transmission between input and output where the distance changes underwater. The present embodiment can be applied to the second embodiment.

【0021】すなわち、本実施例においては、比較的高
い周波数の電磁波を伝送する装置で、伝送損失の周波数
特性の変化が少なく、水中で使用でき、しかも水中にお
いて入,出力間の距離を変化させるような場合でも使用
できる伝送装置が得られる。
That is, in the present embodiment, the device for transmitting electromagnetic waves of relatively high frequency has little change in the frequency characteristic of transmission loss, can be used in water, and can change the distance between the input and output in water. A transmission device that can be used even in such a case is obtained.

【0022】[0022]

【発明の効果】請求項1の伝送装置は、比較的周波数の
高い入力電磁波を光信号に変換する電磁波−光変換手段
と、光信号を伝送する耐水,可撓性を有する光ファイバ
ー伝送路と、伝送されてきた光信号を上記入力電磁波と
同じ周波数の電磁波に変換する光−電磁波変換手段とよ
り構成されているので、同軸ケーブル伝送では伝送損失
の周波数特性が悪くなってしまう高い周波数の電磁波伝
送を水中で行え、しかも伝送損失の周波数特性の良い伝
送装置が得られる。
According to the transmission device of the present invention, an electromagnetic wave-optical conversion means for converting an input electromagnetic wave having a relatively high frequency into an optical signal, a water resistant and flexible optical fiber transmission line for transmitting the optical signal, Since it is composed of an optical-electromagnetic wave converting means for converting the transmitted optical signal into an electromagnetic wave having the same frequency as the input electromagnetic wave, the high frequency electromagnetic wave transmission in which the frequency characteristic of the transmission loss becomes worse in the coaxial cable transmission. It is possible to obtain a transmission device which can be performed in water and has good frequency characteristics of transmission loss.

【0023】請求項2の装置は、請求項1の変換器の応
答周波数以上の入力電磁波を基準電磁波に基づいて変換
器の応答可能な周波数に下げて伝送し、これを出力側に
おいて再び基準電磁波に基づいて元の周波数に戻して出
力するように構成されているので、請求項1の効果に加
え、請求項1の変換器の応答周波数以上の高い周波数の
電磁波を伝送できる。
According to a second aspect of the present invention, the input electromagnetic wave having a frequency equal to or higher than the response frequency of the converter according to the first aspect is lowered to a frequency at which the converter can respond on the basis of the reference electromagnetic wave and transmitted, and the reference electromagnetic wave is again output at the output side. Since it is configured to return to the original frequency and output based on the above, in addition to the effect of claim 1, it is possible to transmit an electromagnetic wave having a frequency higher than the response frequency of the converter of claim 1.

【0024】請求項3の装置では、請求項1または2の
伝送装置の各変換手段及び電磁波の入力,出力端に防水
処理を施しているので、請求項1または2の装置を全て
水中で使用でき、水中において入,出力間の距離を変え
ることができる装置が得られる。
According to the third aspect of the present invention, each of the converting means of the first or second aspect of the transmission device and the input and output ends of the electromagnetic wave are waterproofed, so that the entire device of the first or second aspect is used underwater. It is possible to obtain a device capable of changing the distance between the input and the output in water.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による伝送装置を示すブロ
ック図である。
FIG. 1 is a block diagram showing a transmission device according to a first embodiment of the present invention.

【図2】この発明の実施例2による伝送装置を示すブロ
ック図である。
FIG. 2 is a block diagram showing a transmission device according to a second embodiment of the present invention.

【図3】この発明の実施例3による伝送装置を示すブロ
ック図である。
FIG. 3 is a block diagram showing a transmission device according to a third embodiment of the present invention.

【図4】従来の伝送装置の一例を示す一部切開斜視図で
ある。
FIG. 4 is a partially cutaway perspective view showing an example of a conventional transmission device.

【図5】従来の他の伝送装置を示す断面図である。FIG. 5 is a cross-sectional view showing another conventional transmission device.

【符号の説明】[Explanation of symbols]

1B 入力端 2B 出力端 8,8a,8b 電磁波−光変換器 9,9a,9b 光−電磁波変換器 10 基準信号発生器 11 分配器 12 同期発振器 13 光ファイバーケーブル(伝送路) 16a 入力電磁波周波数変換器 16b 出力側周波数変換器 17 防水壁 20 基準電磁波伝送手段 1B input end 2B output end 8,8a, 8b electromagnetic wave-optical converter 9,9a, 9b optical-electromagnetic wave converter 10 reference signal generator 11 distributor 12 synchronous oscillator 13 optical fiber cable (transmission line) 16a input electromagnetic wave frequency converter 16b Output side frequency converter 17 Waterproof wall 20 Reference electromagnetic wave transmission means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 比較的周波数の高い入力電磁波を光信号
に変換する電磁波−光変換手段と、光信号を伝送する耐
水,可撓性を有する光ファイバー伝送路と、伝送されて
きた光信号を上記入力電磁波と同じ周波数の電磁波に変
換する光−電磁波変換手段とを備えたことを特徴とする
伝送装置。
1. An electromagnetic wave-optical conversion means for converting an input electromagnetic wave having a relatively high frequency into an optical signal, a water-proof and flexible optical fiber transmission line for transmitting the optical signal, and the transmitted optical signal as described above. A transmission device comprising: a light-electromagnetic wave converting means for converting an electromagnetic wave having the same frequency as an input electromagnetic wave.
【請求項2】 比較的周波数の高い電磁波を光信号に変
換する電磁波−光変換手段と、光信号を伝送する耐水,
可撓性を有する光ファイバー伝送路と、伝送されてきた
光信号を上記電磁波と同じ周波数の電磁波に変換する光
−電磁波変換手段とを備えた伝送装置であって、上記各
変換手段で応答可能な周波数の基準電磁波を発生する基
準信号発生手段と、上記基準電磁波に基づいて上記電磁
波−光変換手段の応答周波数より高い周波数の入力電磁
波を上記電磁波−光変換手段が応答可能な周波数の電磁
波に周波数変換して上記電磁波−光変換手段に出力する
入力電磁波周波数変換手段と、この入力電磁波周波数変
換手段に送出する基準電磁波とは別に、基準電磁波を上
記光−電磁波変換手段側に伝送するための上記電磁波−
光変換手段,光ファイバー伝送路及び光−電磁波変換手
段と同様の構成から成る基準電磁波伝送手段と、この伝
送手段を介して伝送されてきた基準電磁波に基づいて上
記光−電磁波変換手段より出力される電磁波の周波数を
上記入力電磁波と同じ周波数に変換する出力側周波数変
換手段とを備えて成ることを特徴とする伝送装置。
2. An electromagnetic wave-optical conversion means for converting an electromagnetic wave having a relatively high frequency into an optical signal, and water resistance for transmitting the optical signal,
A transmission device comprising a flexible optical fiber transmission line and a light-electromagnetic wave conversion means for converting the transmitted optical signal into an electromagnetic wave having the same frequency as the electromagnetic wave, wherein the conversion means can respond. A reference signal generating means for generating a reference electromagnetic wave having a frequency; and an input electromagnetic wave having a frequency higher than the response frequency of the electromagnetic wave-light converting means based on the reference electromagnetic wave is converted into an electromagnetic wave having a frequency at which the electromagnetic wave-light converting means can respond. In addition to the input electromagnetic wave frequency converting means for converting and outputting to the electromagnetic wave-optical converting means and the reference electromagnetic wave to be sent to the input electromagnetic wave frequency converting means, the reference electromagnetic wave is transmitted to the light-electromagnetic wave converting means side. Electromagnetic wave −
A reference electromagnetic wave transmitting means having the same configuration as the light converting means, the optical fiber transmission line, and the light-electromagnetic wave converting means, and the light-electromagnetic wave converting means based on the reference electromagnetic wave transmitted through the transmitting means. A transmission device comprising an output side frequency conversion means for converting the frequency of an electromagnetic wave into the same frequency as the input electromagnetic wave.
【請求項3】 上記各変換手段及び電磁波の入力,出力
端に防水処理を施して成ることを特徴とする請求項第1
項または第2項記載の伝送装置。
3. The conversion means and the electromagnetic wave input and output terminals are waterproofed.
Item 2. The transmission device according to Item 2.
JP5084050A 1993-03-18 1993-03-18 Transmitting device Pending JPH06276159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5084050A JPH06276159A (en) 1993-03-18 1993-03-18 Transmitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5084050A JPH06276159A (en) 1993-03-18 1993-03-18 Transmitting device

Publications (1)

Publication Number Publication Date
JPH06276159A true JPH06276159A (en) 1994-09-30

Family

ID=13819682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5084050A Pending JPH06276159A (en) 1993-03-18 1993-03-18 Transmitting device

Country Status (1)

Country Link
JP (1) JPH06276159A (en)

Similar Documents

Publication Publication Date Title
US5710651A (en) Remote millimeter-wave antenna fiber optic communication system using dual optical signal with millimeter-wave beat frequency
JP2718770B2 (en) Transceiver for bidirectional coherent optical transmission system
KR970705875A (en) COUPLING OF TELECOMMUNICATIONS SIGNALS TO A BALANCED POWER DISTRIBUTION NETWORK
US20050017825A1 (en) Method and system for high-speed communication over power line
EP0471226A2 (en) Optoelectronic wide bandwidth photonic beamsteering phased array
Kuroki et al. High-speed ASK transceiver based on the NRD-guide technology at 60-GHz band
DE3884553T2 (en) Radio frequency optical transmission system, especially for satellite radio.
KR960036415A (en) Interface device
JPH06276159A (en) Transmitting device
JP2855246B2 (en) Millimeter wave transmitting / receiving device, millimeter wave receiving device, and millimeter wave transmitting / receiving antenna
JP2695427B2 (en) Antenna feeding circuit
JPH06153255A (en) Optical fiber transmtter for radio signal
JP3718070B2 (en) NRD guide BPSK modulator
JP5601144B2 (en) High frequency oscillator and high frequency oscillation method
JPS5962226A (en) Power switching device
JPH04167645A (en) Ask modulator
JP3225113B2 (en) Frequency mixer equipment
KR200184136Y1 (en) Diversity type optical repeater for mobile communication
JP2002353897A (en) Electromagnetic wave transmitter, electromagnetic wave receiver and radio communication system
JPH0230232A (en) Noise reduction method for optical communication system
SU1672538A1 (en) Waveguide directional coupler
JPH04250504A (en) Remote movement device
JPS5832348B2 (en) Micro-Hatouchi
Grosskopf et al. 60 GHz-millimetre-wave generation and beam-forming in hybrid-fibre-radio systems for broadband-wireless access
JP3698894B2 (en) BPSK modulator