JPH06276101A - Quantization circuit - Google Patents

Quantization circuit

Info

Publication number
JPH06276101A
JPH06276101A JP6355493A JP6355493A JPH06276101A JP H06276101 A JPH06276101 A JP H06276101A JP 6355493 A JP6355493 A JP 6355493A JP 6355493 A JP6355493 A JP 6355493A JP H06276101 A JPH06276101 A JP H06276101A
Authority
JP
Japan
Prior art keywords
rounding
circuit
rounding constant
quantization
dct coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6355493A
Other languages
Japanese (ja)
Other versions
JP3107676B2 (en
Inventor
Kunihiro Katayama
邦弘 片山
Kenji Kawahara
健児 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6355493A priority Critical patent/JP3107676B2/en
Publication of JPH06276101A publication Critical patent/JPH06276101A/en
Application granted granted Critical
Publication of JP3107676B2 publication Critical patent/JP3107676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the quantization circuit of a reduced circuit scale, which executes at high speed. CONSTITUTION:A rounding constant X is stored in a rounding constant register 101 for inputting a positive number when a DCT coefficient R is positive and a rounding constant X is stored in a rounding constant register 102 for inputting a negative number when a DCT coefficient R is negative. A selecting circuit 103 selects a rounding constant for a positive or negative number by the code bit of a DCT coefficient R and inputs it to an adder 105. On the other hand, a multiplier 104 obtains the product of the DCT coefficient R and the inverse number A of a quantization threshold value. The adder 105 obtains (AR+X), a shifter 106 shifts it to right by S bits and a range limitting circuit 107 limits the range of a quantization coefficient to a specified value. Thereby, the DCT coefficient R is quantized by the quantization threshold value Q to obtain the result L rounded into an integer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像データの圧縮装置
等に用いられる量子化回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantizing circuit used in an image data compressing device or the like.

【0002】[0002]

【従来の技術】カラー及びモノクロの静止画像や動画像
を圧縮する方式は、ISOやCCITTの国際機関によ
って検討され、JPEG[Joint Photogr
aphic Experts Group]やMPEG
[Moving Picture Experts G
roup]およびH.261などが標準化されている。
2. Description of the Related Art A method for compressing color and monochrome still images and moving images has been studied by international organizations such as ISO and CCITT, and has been reviewed by JPEG [Joint Photogr.
apic Experts Group] and MPEG
[Moving Picture Experts G
group] and H.H. 261 is standardized.

【0003】JPEGは、カラー静止画像を1/8〜1
/100程度に圧縮する方式である。1991年11月
に国際標準案となっている。符号化方式を表すブロック
図を図7に示す。入力画像71が符号器72に入力され
る。符号器72においては、入力された入力画像71が
DCT部721に入力されDCT(離散コサイン変換)
が行われる。次に、量子化部722においてテーブル7
23を参照してDCT部の出力は量子化され、さらにエ
ントロピー符号化部724においてテーブル725を参
照して量子化部722の出力はエントロピー符号化され
る。その結果、テーブルとヘッダ情報を有する圧縮デー
タ73が伝送路74に転送される。
According to JPEG, a color still image is 1/8 to 1
This is a method of compressing to about / 100. It became an international standard draft in November 1991. FIG. 7 is a block diagram showing the encoding method. The input image 71 is input to the encoder 72. In the encoder 72, the input image 71 that has been input is input to the DCT unit 721 and DCT (discrete cosine transform)
Is done. Next, in the quantizer 722, the table 7
23, the output of the DCT section is quantized, and the entropy coding section 724 refers to the table 725 to entropy code the output of the quantization section 722. As a result, the compressed data 73 having the table and the header information is transferred to the transmission line 74.

【0004】MPEGは、カラー動画像を圧縮する方式
である。CD−ROM等のディジタル記録媒体(DS
M:Digital Storage Media)を
対象とする。1991年11月に勧告草案(CD:Co
mittee Draft)としてまとまった。符号化
方式を表すブロック図を図8に示す。この方式による符
号化回路は、入力画像データと差分値の小さい予測画像
データを生成する予測器88と、入力画像データより予
測器88からの予測画像データ出力を減算する減算器8
9と、減算器89の差分出力に対しDCT演算を行うD
CT部81と、DCT部81のDCT係数出力(C)に
対し量子化をおこなう量子化部82と、量子化部82の
量子化係数出力(QC)に対し可変長符号化を行うVL
C部83と、バッファ部84と、量子化部82の量子化
係数出力に対し逆量子化を行う逆量子化部85と、逆量
子化部85の出力に対し逆DCTを行う逆DCT部86
と、逆DCT部86の出力と予測器88からの予測画像
データ出力を加算し、新たな予測画像データを生成する
加算器87とから構成される。
MPEG is a method for compressing a color moving image. Digital recording medium such as CD-ROM (DS
M: Digital Storage Media). In November 1991, the draft recommendation (CD: Co
Mittee Draft). FIG. 8 is a block diagram showing the encoding method. The encoding circuit according to this method includes a predictor 88 that generates predicted image data having a small difference value from the input image data, and a subtractor 8 that subtracts the predicted image data output from the predictor 88 from the input image data.
9 and D that performs DCT operation on the difference output of the subtractor 89
A CT unit 81, a quantization unit 82 that quantizes the DCT coefficient output (C) of the DCT unit 81, and a VL that performs variable-length coding on the quantized coefficient output (QC) of the quantization unit 82.
C section 83, buffer section 84, inverse quantization section 85 that performs inverse quantization on the quantized coefficient output of quantization section 82, and inverse DCT section 86 that performs inverse DCT on the output of inverse quantization section 85.
And an adder 87 that adds the output of the inverse DCT unit 86 and the predicted image data output from the predictor 88 to generate new predicted image data.

【0005】H.261は、テレビ会議/電話用符号化
方式であり、CCITT勧告H.261のことである。
1991年に国際標準(IS)となった。ISDNをネ
ットワークとして想定しており、64k〜1.5Mビッ
ト/秒で動画像を伝送する。符号化方式を表すブロック
図を図9に示す。
H. H. 261 is a video conference / telephone coding system, which is recommended by CCITT Recommendation H.264. It is 261.
It became an International Standard (IS) in 1991. ISDN is assumed as a network, and moving images are transmitted at 64 k to 1.5 Mbit / sec. FIG. 9 is a block diagram showing the encoding method.

【0006】この方式による符号化回路は、DCT変換
器92と、DCT変換器の出力を量子化し、変換係数の
量子化インデクス(q)を出力する量子化器93と、量
子化器93の出力を逆量子化する逆量子化器94と、逆
量子化器94の出力を逆DCT変換する逆DCT器95
と、スイッチ99および逆DCT器95の出力の加算を
行う加算器96と、加算器96の出力を受け、動きベク
トルを出力する動き補償用可変遅延機能を持つ画像メモ
リ97と、画像メモリ97の出力を受け、動き補償フレ
ーム間予測精度を上げ、ループ内フィルタのオン/オフ
信号を出力するループ内フィルタ98と、ビデオ入力に
ループ内フィルタ98の出力を負帰還する100と、ス
イッチ101および量子化器93を制御し、フレーム間
/フレーム内の識別フラグ(p)および伝送/非伝送識
別フラグ(t)および量子化器種別(qz)を出力する
符号化制御部91とから構成される。
The coding circuit according to this method quantizes the output of the DCT converter 92 and the DCT converter, and outputs the quantizing index (q) of the transform coefficient, and the output of the quantizer 93. And an inverse DCT unit 95 for inverse DCT transforming the output of the inverse quantizer 94.
Of the switch 99 and the inverse DCT unit 95, an image memory 97 having a variable delay function for motion compensation that receives the output of the adder 96 and outputs a motion vector, and an image memory 97 Receives the output, improves the motion-compensated inter-frame prediction accuracy, outputs an on / off signal of the in-loop filter, an in-loop filter 98, 100 which negatively feeds back the output of the in-loop filter 98 to a video input, a switch 101 and a quantum. The encoding control unit 91 which controls the quantizer 93 and outputs the inter-frame / intra-frame identification flag (p), the transmission / non-transmission identification flag (t), and the quantizer type (qz).

【0007】以上3つの画像圧縮方式では、共通して図
6に示すような手法が採用されている。すなわち、画像
データ621に対してDCT[Discrete Co
sine Transform]611を行いDCT係
数622に変換し、その後DCT係数622に対して量
子化612を行い、量子化係数623を得る。
The above three image compression methods commonly employ the method shown in FIG. That is, DCT [Discrete Co
[Sine Transform] 611 is performed to convert the DCT coefficient 622, and then the DCT coefficient 622 is quantized 612 to obtain a quantized coefficient 623.

【0008】量子化の処理は、画像圧縮の方式ごとに個
別に定義されているが、いずれも次の3つのステップか
ら構成される。
The quantization process is individually defined for each image compression method, but each is composed of the following three steps.

【0009】(1)DCT係数を量子化閾値で除算す
る。(除算処理) (2)除算結果を小数部を除いた整数にまるめる。(ま
るめ処理) (3)まるめられた結果を定められた範囲を超えない値
に制限する。(値域制限処理) ただし、(2)のまるめ処理は画像圧縮の方式ごとに
「切り捨て」の場合と「四捨五入」の場合がある。
(1) The DCT coefficient is divided by the quantization threshold. (Division processing) (2) Round the division result to an integer excluding the fractional part. (Rounding process) (3) Limit the rounded result to a value that does not exceed a specified range. (Binary range limiting process) However, the rounding process of (2) may be "rounding down" or "rounding down" depending on the image compression method.

【0010】例えば、JPEGおよびH.261におけ
る量子化は次のとおりである。ただし、RはDCT係
数、Lは量子化係数、Qは量子化閾値である。
For example, JPEG and H.264. The quantization in 261 is as follows. However, R is a DCT coefficient, L is a quantization coefficient, and Q is a quantization threshold value.

【0011】1)JPEG(8ビットモード) (−1
024≦L≦1023) L=R/Q まるめ方式は図2に示すように四捨五入である。図2は
たとえば0.5以上1.5未満の数は1として、まるめ
られることを示す。
1) JPEG (8-bit mode) (-1
024 ≦ L ≦ 1023) L = R / Q The rounding method is rounding as shown in FIG. FIG. 2 shows that a number greater than or equal to 0.5 and less than 1.5 is rounded as 1.

【0012】2)H.261(−127≦L≦127) L=R/2Q (Q:奇数) =(R+1)/2Q (Q:偶数、R≧0) =(R−1)/2Q (Q:偶数、R<0) まるめ方式は図3に示すように切り捨てである。図3は
たとえば1以上2未満の数は1として、まるめられるこ
とを示す。
2) H. 261 (-127 ≦ L ≦ 127) L = R / 2Q (Q: odd number) = (R + 1) / 2Q (Q: even number, R ≧ 0) = (R−1) / 2Q (Q: even number, R <0 The rounding method is rounding down as shown in FIG. FIG. 3 shows that a number greater than or equal to 1 and less than 2 is rounded as 1, for example.

【0013】量子化を実現する方法は、ソフトウエアで
行う方法とハードウエアで行う方法の大きく2つに分類
される。
The method of realizing the quantization is roughly classified into two, that is, the method performed by software and the method performed by hardware.

【0014】ソフトウエアで実現する方法は、図4に示
すように、ステップS41においてDCT係数を量子化
閾値で割り、ステップS42、S43、S44において
符号の正負それぞれの場合に対応して、出力された結果
を画像圧縮規格に規定された方法で整数値にまるめた
後、ステップS45において値域制限処理を行う。
As shown in FIG. 4, the method implemented by software divides the DCT coefficient by the quantization threshold in step S41, and outputs it in steps S42, S43, and S44 corresponding to each of the positive and negative signs. The result is rounded to an integer value by the method defined in the image compression standard, and then the range limiting process is performed in step S45.

【0015】ハードウエアで行う方法は、量子化処理の
(1)の除算処理で、(a)除算器を用いる方法と、
(b)量子化閾値の逆数をあらかじめ計算しておき、乗
算器を用いてDCT係数とその逆数を乗算する方法が知
られている。
The method performed by hardware is the division processing of (1) of the quantization processing, and (a) the method of using a divider,
(B) A method is known in which the reciprocal of the quantization threshold is calculated in advance and the multiplier is used to multiply the DCT coefficient by the reciprocal thereof.

【0016】また、量子化処理の(2)のまるめ方式に
ついては画像圧縮の方式に対応して「切り捨て」、「四
捨五入」の専用回路、さらに値域制限回路を付加してい
た。量子化処理のハードウエアによるブロック図を図5
に示す。量子化回路は、被量子化係数Rと量子化閾値Q
を入力とする除算回路501と、除算回路501の出力
を入力とする符号判定回路502と、符号判定回路50
2の出力を入力とする正数用小数部分切り捨て回路50
3、負数用小数部分切り捨て回路504と、正数用小数
部分切り捨て回路503、負数用小数部分切り捨て回路
504の出力を入力とする値域制限回路505から構成
される。
As for the rounding method (2) of the quantization processing, a dedicated circuit for "rounding down" and "rounding off" corresponding to the image compression method and a range limiting circuit are added. Figure 5 is a block diagram of the quantization processing hardware.
Shown in. The quantization circuit uses a quantized coefficient R and a quantization threshold Q.
, A code determination circuit 502 that receives the output of the division circuit 501, and a code determination circuit 50.
Decimal fractional truncation circuit 50 for positive numbers with the output of 2 as input
3, a fractional part truncation circuit 504 for negative numbers, a fractional part truncation circuit for positive numbers 503, and a range limiting circuit 505 which receives the output of the fractional part truncation circuit for negative numbers 504 as an input.

【0017】除算回路501は被量子化係数Rを量子化
閾値Qで除算する。符号判定回路502は除算結果の符
号を判定する。符号が正の場合には、正数用小数部分切
り捨て回路503が、切り捨て処理を行う。符号が負の
場合には、負数用小数部分切り捨て回路504が、切り
捨て処理を行う。値域制限回路505は、量子化係数の
値域を定められた値に制限する。
The division circuit 501 divides the quantized coefficient R by the quantization threshold value Q. The sign determination circuit 502 determines the sign of the division result. When the sign is positive, the fractional fractional part truncation circuit 503 for positive numbers performs the truncation process. If the sign is negative, the fractional part truncation circuit for negative numbers 504 performs the truncation process. The range limiting circuit 505 limits the range of the quantized coefficient to a predetermined value.

【0018】[0018]

【発明が解決しようとする課題】従来のソフトウエアに
よる実現方法ではDCT係数の正負の判断が必要であ
り、複数ステップの命令が必要となるため、スピードが
遅くなるという問題がある。
In the conventional software implementation method, it is necessary to determine whether the DCT coefficient is positive or negative, and a plurality of steps of instructions are required. Therefore, there is a problem that the speed becomes slow.

【0019】また、従来のハードウエアによる実現方法
では、前記した量子化のための3つのステップの内、特
に(2)のまるめ処理のために、回路規模が大きくな
り、また、実行スピードが遅いという問題があった。
Further, in the conventional hardware implementation method, the circuit scale becomes large and the execution speed is slow because of the rounding processing of (2) among the three steps for quantization described above. There was a problem.

【0020】本発明は、実行スピードが高速で、回路規
模が縮小化された量子化回路を提供することを目的とす
る。
An object of the present invention is to provide a quantizer circuit which has a high execution speed and a reduced circuit scale.

【0021】[0021]

【課題を解決するための手段】本発明の量子化回路は、
正数入力用まるめ定数を保持する保持手段と、負数入力
用まるめ定数を保持する保持手段と、入力の正負判定に
従って正数入力用まるめ定数、負数入力用まるめ定数の
一方を選択するまるめ定数選択手段と、DCT係数およ
び量子化閾値の逆数を入力としこれらを乗算する乗算手
段と、前記まるめ定数選択手段の出力および前記乗算手
段の出力を入力としこれらを加算する加算手段と、前記
加算手段の出力を入力とし入力された値にシフト処理を
施すシフト手段と、前記シフト手段の出力を入力とし値
域を制限する値域制限手段とを具備することを特徴とす
る。
The quantization circuit of the present invention comprises:
Holding means for holding a rounding constant for positive number input, holding means for holding a rounding constant for negative number input, and rounding constant selection for selecting one of a rounding constant for positive number input and a rounding constant for negative number input according to the positive / negative judgment of the input Means, multiplication means for inputting the inverse of the DCT coefficient and the quantization threshold and multiplying them, addition means for adding these with the output of the rounding constant selection means and the output of the multiplication means as input, and the addition means of the addition means. It is characterized by comprising shift means for inputting an output and subjecting the input value to shift processing, and range limiting means for limiting the range by using the output of the shift means as input.

【0022】[0022]

【作用】DCT係数が正数の場合のまるめ定数を正数入
力用まるめ定数保持手段に、DCT係数が負数の場合の
まるめ定数を負数入力用まるめ定数保持手段にそれぞれ
格納する。まるめ定数選択手段は、DCT係数の符号ビ
ットにより正数用または負数用まるめ定数を選択し、加
算手段の入力端子の一方に入力する。一方、乗算手段に
よってDCT係数と量子化閾値の逆数の積が求められ、
求められた結果は加算手段の入力端子の他方に入力され
る。加算手段の出力はシフタ手段でシフトされ、値域制
限手段で量子化係数の値域内に制限される。
The rounding constant when the DCT coefficient is a positive number is stored in the rounding constant holding means for positive number input, and the rounding constant when the DCT coefficient is a negative number is stored in the rounding constant holding means for negative number input. The rounding constant selection means selects a rounding constant for positive numbers or negative numbers according to the sign bit of the DCT coefficient, and inputs it to one of the input terminals of the adding means. On the other hand, the product of the reciprocal of the DCT coefficient and the quantization threshold is obtained by the multiplication means,
The obtained result is input to the other input terminal of the adding means. The output of the adding means is shifted by the shifter means, and is limited within the range of the quantized coefficient by the range limiting means.

【0023】[0023]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】DCT係数をR、量子化閾値をQ、まるめ
関数をF(x)とすると、値域制限を行う前の量子化係
数Lは次のように表される。
When the DCT coefficient is R, the quantization threshold is Q, and the rounding function is F (x), the quantized coefficient L before the range limitation is expressed as follows.

【0025】L=F(R/Q)………(式1) ここで、 (1/Q)=(A/2S)………(式2) となるようなAとSを選択すると L=F(AR/2S)………(式3) =F(AR>>S)………(式4) (ただし、>>Sは2の補数表現においてSビット右シ
フトすることを表す。)ここで、乗算後のLの値を整数
にまるめるために、まるめ定数としてXを用いると、ま
るめ定数Xの値を変えることにより、次のようにDCT
係数Rを量子化閾値Qで割った結果の小数部分のまるめ
方式を自由に選択することができる。
L = F (R / Q) ... (Equation 1) Here, if A and S such that (1 / Q) = (A / 2 S ) ... (Equation 2) are selected, L = F (AR / 2 S ) ... (Equation 3) = F (AR >> S) ... (Equation 4) (where >> S is right-shifted by S bits in the two's complement representation). Here, when X is used as a rounding constant to round the value of L after multiplication into an integer, by changing the value of the rounding constant X, the DCT is calculated as follows.
It is possible to freely select the rounding method for the decimal part of the result obtained by dividing the coefficient R by the quantization threshold Q.

【0026】 L=(AR+X)>>S・・・・・(式5) R≧0のとき X=0 :切り捨て =A/2:四捨五入 R<0のとき X=2S−1 :切り捨て =A/2−1:四捨五入 と表すことができる。L = (AR + X) >> S ... (Equation 5) When R ≧ 0, X = 0: round down = A / 2: round off When R <0, X = 2 S −1: round down = It can be expressed as A / 2-1: rounding off.

【0027】図1は、本発明の量子化回路の1つの構成
例を示すブロック図である。
FIG. 1 is a block diagram showing an example of the configuration of the quantization circuit of the present invention.

【0028】図1の量子化回路は、正数入力用まるめ定
数レジスタ101、負数入力用まるめ定数レジスタ10
2、まるめ定数レジスタ101,102に接続された選
択回路103、DCT係数Rと量子化閾値の逆数Aを入
力とする乗算器104、選択回路103と乗算器104
に接続された加算器105、加算器105に接続された
シフタ106、シフタ106に接続された値域制限回路
107によって構成される。
The quantizing circuit shown in FIG. 1 includes a rounding constant register 101 for positive number input and a rounding constant register 10 for negative number input.
2, a selection circuit 103 connected to the rounding constant registers 101 and 102, a multiplier 104 having the DCT coefficient R and the reciprocal A of the quantization threshold as inputs, a selection circuit 103 and a multiplier 104
The adder 105 connected to the shifter 106, the shifter 106 connected to the adder 105, and the range limiting circuit 107 connected to the shifter 106.

【0029】(式5)におけるDCT係数Rが正数の場
合のまるめ定数Xを正数入力用まるめ定数レジスタ10
1に、DCT係数Rが負数の場合のまるめ定数Xを負数
入力用まるめ定数レジスタ102にそれぞれ格納する。
The rounding constant X when the DCT coefficient R in (Equation 5) is a positive number is used as a rounding constant register 10 for inputting a positive number.
The rounding constant X when the DCT coefficient R is a negative number is stored in the negative number input rounding constant register 102.

【0030】選択回路103は、DCT係数Rの符号ビ
ットにより正数用または負数用まるめ定数を選択し、加
算器105に入力する。
The selection circuit 103 selects a rounding constant for positive numbers or negative numbers according to the sign bit of the DCT coefficient R, and inputs it to the adder 105.

【0031】一方、乗算器104によってDCT係数R
と量子化閾値の逆数Aの積が求められる。加算器105
で(AR+X)を求め、シフタ106でSビット右シフ
トされ、値域制限回路107で量子化係数の値域を定め
られた値に制限する。
On the other hand, the multiplier 104 controls the DCT coefficient R
And the reciprocal A of the quantization threshold are obtained. Adder 105
Then, (AR + X) is obtained, the shifter 106 shifts it to the right by S bits, and the range limiting circuit 107 limits the range of the quantized coefficient to a predetermined value.

【0032】これにより、(式5)の計算が実現されD
CT係数Rを量子化閾値Qで量子化し、整数にまるめら
れた結果Lが得られる。
As a result, the calculation of (Equation 5) is realized and D
The CT coefficient R is quantized with the quantization threshold Q, and the result L rounded to an integer is obtained.

【0033】本実施例の量子化回路は、二つのまるめ定
数レジスタを備えることにより、従来の課題であった、
ソフトウエアでの実現方法における実行スピードの高速
化、ハードウエアでの実現方法における小数部分の種々
のまるめ方式に対し1つのハードウエアで実現でき、従
来の方式に比較して回路規模の削減が可能となる。
The quantizing circuit of the present embodiment has two conventional rounding constant registers, which is a conventional problem.
Higher execution speed in the software implementation method, one hardware implementation for various rounding methods for the decimal part in the hardware implementation method, and reduction in circuit scale compared to conventional methods Becomes

【0034】[0034]

【発明の効果】本発明の量子化回路は、正数入力用まる
め定数保持手段と、負数入力用まるめ定数保持手段と、
入力の正負判定に従って正数入力用まるめ定数、負数入
力用まるめ定数の一方を選択するまるめ定数選択手段
と、乗算手段と、加算手段と、シフト手段および値域制
限手段とを具備しているので、実行スピードが高速で、
回路規模が縮小化された量子化回路を提供できる。
The quantizing circuit of the present invention comprises rounding constant holding means for positive number input, rounding constant holding means for negative number input,
Since the rounding constant selecting means for selecting one of the rounding constant for positive number input and the rounding constant for negative number input according to the positive / negative judgment of the input, the multiplying means, the adding means, the shifting means and the range limiting means, The execution speed is high,
A quantizer circuit having a reduced circuit scale can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による量子化回路の構成図であ
る。
FIG. 1 is a configuration diagram of a quantization circuit according to an embodiment of the present invention.

【図2】四捨五入によるまるめ方式の説明図である。FIG. 2 is an explanatory diagram of a rounding method by rounding.

【図3】切り捨てによるまるめ方式の説明図である。FIG. 3 is an explanatory diagram of a rounding method by rounding down.

【図4】ソフトウエアによる従来の技術である。FIG. 4 is a conventional technique using software.

【図5】ハードウエアよる従来の技術である(まるめ方
式が切り捨ての場合)。
FIG. 5 is a conventional technique using hardware (when the rounding method is truncation).

【図6】画像圧縮方式の構成図である。FIG. 6 is a configuration diagram of an image compression method.

【図7】JPEG方式符号化回路のブロック図である。FIG. 7 is a block diagram of a JPEG encoding circuit.

【図8】MPEG方式符号化回路のブロック図である。FIG. 8 is a block diagram of an MPEG encoding circuit.

【図9】H.261方式符号化回路のブロック図であ
る。
9: H. It is a block diagram of a H.261 system encoding circuit.

【符号の説明】[Explanation of symbols]

101 正数入力用まるめ定数レジスタ 102 負数入力用まるめ定数レジスタ 103 選択回路 104 乗算器 105 加算器 106 シフタ 107 値域制限回路 611 DCT実行手段 612 量子化実行手段 621 画像データ 622 DCT係数 623 量子化係数 101 Rounding constant register for positive number input 102 Rounding constant register for negative number input 103 Selection circuit 104 Multiplier 105 Adder 106 Shifter 107 Range limiting circuit 611 DCT execution means 612 Quantization execution means 621 Image data 622 DCT coefficient 623 Quantization coefficient

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正数入力用まるめ定数を保持する保持手
段と、負数入力用まるめ定数を保持する保持手段と、入
力の正負判定に従って正数入力用まるめ定数、負数入力
用まるめ定数の一方を選択するまるめ定数選択手段と、
DCT係数および量子化閾値の逆数を入力としこれらを
乗算する乗算手段と、前記まるめ定数選択手段の出力お
よび前記乗算手段の出力を入力としこれらを加算する加
算手段と、前記加算手段の出力を入力とし入力された値
にシフト処理を施すシフト手段と、前記シフト手段の出
力を入力とし値域を制限する値域制限手段とを具備する
ことを特徴とする量子化回路。
1. A holding means for holding a rounding constant for a positive number input, a holding means for holding a rounding constant for a negative number input, and one of a rounding constant for a positive number input and a rounding constant for a negative number input depending on whether the input is positive or negative. Rounding constant selection means to select,
A multiplication means for inputting the DCT coefficient and the reciprocal of the quantization threshold and multiplying them, an addition means for adding the outputs of the rounding constant selection means and the output of the multiplication means, and an output of the addition means The quantizing circuit is provided with: shift means for performing shift processing on the input value; and range limiting means for limiting the range with the output of the shift means as input.
JP6355493A 1993-03-23 1993-03-23 Quantization circuit Expired - Fee Related JP3107676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6355493A JP3107676B2 (en) 1993-03-23 1993-03-23 Quantization circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6355493A JP3107676B2 (en) 1993-03-23 1993-03-23 Quantization circuit

Publications (2)

Publication Number Publication Date
JPH06276101A true JPH06276101A (en) 1994-09-30
JP3107676B2 JP3107676B2 (en) 2000-11-13

Family

ID=13232563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6355493A Expired - Fee Related JP3107676B2 (en) 1993-03-23 1993-03-23 Quantization circuit

Country Status (1)

Country Link
JP (1) JP3107676B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331827B1 (en) 1999-06-29 2001-12-18 Nec Corporation Huffman decoder using two priority encoder to reduce circuit scale
KR100348210B1 (en) * 2000-07-21 2002-08-09 (주)씨앤에스 테크놀로지 Device for quantization of image conpression/restoration
JP2009278625A (en) * 2008-05-14 2009-11-26 Thomson Licensing Method of processing compressed image into gamut mapped image using spatial frequency analysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331827B1 (en) 1999-06-29 2001-12-18 Nec Corporation Huffman decoder using two priority encoder to reduce circuit scale
KR100348210B1 (en) * 2000-07-21 2002-08-09 (주)씨앤에스 테크놀로지 Device for quantization of image conpression/restoration
JP2009278625A (en) * 2008-05-14 2009-11-26 Thomson Licensing Method of processing compressed image into gamut mapped image using spatial frequency analysis
US9113113B2 (en) 2008-05-14 2015-08-18 Thomson Licensing Method of processing of compressed image into a gamut mapped image using spatial frequency analysis

Also Published As

Publication number Publication date
JP3107676B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
JP2969867B2 (en) High-efficiency encoder for digital image signals.
KR940006737B1 (en) Picture image coding and decording apparatus
KR0184905B1 (en) Code amount control device and encoding apparatus using the same
KR100335707B1 (en) Coding method, coding apparatus, decoding method and decoding apparatus of image signal
JP3199371B2 (en) Rounding device
US20030063667A1 (en) Optimal encoding of motion compensated video
JPH07262175A (en) Function transformation arithmetic unit
JP3356516B2 (en) Video encoding device
JP2911682B2 (en) Motion compensation using the minimum number of bits per motion block as a criterion for block matching
JP2003032677A (en) Compressive coder for moving image
WO2000002381A1 (en) Image processing circuit and method for modifying a pixel value
JPH05211648A (en) Filter circuit
JP3107676B2 (en) Quantization circuit
US5825970A (en) Quantization number selecting apparatus for DVCR and method therefor
JP2768260B2 (en) Image coding control method
EP1368748A2 (en) Method and system to encode a set of input values into a set of coefficients using a given algorithm
JP3689437B2 (en) Image signal encoding method and apparatus
JP3032213B2 (en) Image encoding device and image decoding device
JPH0537916A (en) Image transmission equipment
JP4089025B2 (en) Image encoding apparatus, image encoding method, image transmission system, and image transmission method
JP2537246B2 (en) Image coding method
JPH05308662A (en) High efficiency encoder
JP2776425B2 (en) Cell loss compensation image decoding method
JP3689626B2 (en) Image signal decoding method and apparatus
JPH09247668A (en) Image signal coding system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees