JPH062756B2 - Method for optical resolution of glycidyl compound - Google Patents

Method for optical resolution of glycidyl compound

Info

Publication number
JPH062756B2
JPH062756B2 JP23068685A JP23068685A JPH062756B2 JP H062756 B2 JPH062756 B2 JP H062756B2 JP 23068685 A JP23068685 A JP 23068685A JP 23068685 A JP23068685 A JP 23068685A JP H062756 B2 JPH062756 B2 JP H062756B2
Authority
JP
Japan
Prior art keywords
glycidyl
compound
glycidyl compound
group
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23068685A
Other languages
Japanese (ja)
Other versions
JPS6289673A (en
Inventor
芙三夫 戸田
耕一 田中
哲也 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP23068685A priority Critical patent/JPH062756B2/en
Priority to US06/918,724 priority patent/US4841081A/en
Priority to DE8686308033T priority patent/DE3672241D1/en
Priority to EP86308033A priority patent/EP0220887B1/en
Publication of JPS6289673A publication Critical patent/JPS6289673A/en
Publication of JPH062756B2 publication Critical patent/JPH062756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はグリシジル化合物の光学分割の方法に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for optical resolution of a glycidyl compound.

(従来技術) グリシジル化合物は種々の誘導体合成の中間体として、
また重合用モノマーとして工業的に利用価値の高い物質
である。
(Prior Art) Glycidyl compounds are used as intermediates in the synthesis of various derivatives.
In addition, it is a substance having a high industrial value as a monomer for polymerization.

近年生理的機能を有する化学的物質では、その一方の光
学異性体が特別の意味を有することはよく知られてお
り、このような生理的機能物質合成のための中間体とし
て光学活性なグリシジル化合物を得ることは大きな意義
をもっている。また高分子化学工業においても特定の立
体的構造のみを有するポリマーを合成することはそれに
よって特定の機能を有するポリマーが得られるというこ
とからも意義の高いことである。
In recent years, it is well known that one of optical isomers of a chemical substance having a physiological function has a special meaning, and an optically active glycidyl compound is used as an intermediate for the synthesis of such a physiologically functional substance. It is of great significance to obtain. Also in the polymer chemistry industry, synthesizing a polymer having only a specific three-dimensional structure is significant because a polymer having a specific function can be obtained thereby.

このように光学活性なグリシジル化合物を得ることは工
業的に非常に重要なことであるが、従来光学活性なグリ
シジル化合物を製造するには、天然の光学活性物質を出
発物質としたり、微生物学的な方法の援用によって光学
活性な前駆体をつくり、これを原料として合成的にグリ
シジル化合物を得る試みや光学活性化合物との化学反応
によって一度他の物質に変化させた後、再び化学反応に
よって目的物を得る方法などが試みられた。
Obtaining an optically active glycidyl compound is industrially very important, but conventionally, to produce an optically active glycidyl compound, a natural optically active substance is used as a starting material or a microbiological agent is used. Of an optically active precursor with the aid of various methods, and using this as a raw material to obtain a glycidyl compound synthetically or by chemically reacting with an optically active compound to change it to another substance once, and then again by the chemical reaction to obtain the target compound. Attempts have been made to obtain

しかし、これらの方法は極めて非能率的であり、光学的
純度が低いことや一方の対掌体が得られないことなど不
合理な問題があった。
However, these methods are extremely inefficient and have irrational problems such as low optical purity and the fact that one enantiomer cannot be obtained.

本発明者らは、本発明に用いる後記式(I)化合物の
1,1,6,6−テトラフェニルヘキサ−2,4−ジイ
ン−1,6−ジオール誘導体によってアルキル置換基を
有する環状ケトンなどを完全に光学分割できることを既
に報告した(J. Am. Chem. Soc. 1983 5151)。しかし
この方法を利用してグリシジル化合物の光学分割法につ
いては未だ知られていない。
The present inventors use a 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol derivative of the compound of the following formula (I) used in the present invention to give a cyclic ketone having an alkyl substituent, etc. Have already been reported to be completely resolvable (J. Am. Chem. Soc. 1983 5151). However, an optical resolution method of a glycidyl compound using this method has not yet been known.

(発明の目的) 本発明はラセミ体のグリシジル化合物から光学活性のグ
リシジル化合物を容易にしかも完全に光学分割する方法
を提供することを目的とする。
(Object of the Invention) An object of the present invention is to provide a method for easily and completely optically resolving an optically active glycidyl compound from a racemic glycidyl compound.

(発明の構成) 本発明はラセミ体のグリシジル化合物を光学活性な化合
物と接触させることにより、ラセミ体のグリシジル化合
物から一方の対掌体のみを取り込ませた錯体を形成させ
て光学分割を行う方法であり、即ち、ラセミ体のグリシ
ジル化合物と下記一般式(I) (但し、(I)式において、X,Yは水素原子,ハロゲ
ン原子,アルキル基,アリール基,アラルキル基,アル
コキシ基及びアルキルチオ基から選ばれる原子又は基で
あり、XとYがヘキサジインの同一の炭素に結合してい
る各フェニル基の炭素に対して同一の位置に結合してい
るときはXとYは同一の原子又は基ではない。) で表わされる光学活性な1,1,6,6−テトラフェニ
ルヘキサ−2,4−ジイン−1,6−ジオール誘導体と
から、上記グリシジル化合物を取り込んだ錯体を形成さ
せ、この錯体から光学活性なグリシジル化合物を取り出
すことを特徴とするグリシジル化合物の光学分割方法で
ある。
(Structure of the Invention) The present invention is a method of performing optical resolution by contacting a racemic glycidyl compound with an optically active compound to form a complex in which only one antipode is incorporated from the racemic glycidyl compound. That is, a racemic glycidyl compound and the following general formula (I) (However, in the formula (I), X and Y are an atom or a group selected from a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an aralkyl group, an alkoxy group and an alkylthio group, and X and Y are the same as hexadiyne. X and Y are not the same atom or group when they are bonded at the same position with respect to the carbon of each phenyl group bonded to carbon.) 1,1,6,6 -Tetraphenylhexa-2,4-diyne-1,6-diol derivative to form a complex incorporating the glycidyl compound, and an optically active glycidyl compound is extracted from the complex. It is a division method.

本発明の対象となるグリシジル化合物には広範囲の化合
物が含まれるが、特にグリシジルエステル類やグリシジ
ルエーテル類が安定な錯体を形成するので好ましい。
The glycidyl compound that is the subject of the present invention includes a wide range of compounds, and glycidyl esters and glycidyl ethers are particularly preferable because they form a stable complex.

グリシジルエステル類の具体例としては酢酸グリシジ
ル,プロピオン酸グリシジル,酪酸グリシジル,安息香
酸グリシジル,ケイ皮酸グリシジル,ナフトエ酸グリシ
ジル,ナフトキシ酢酸グリシジル,アクリル酸グリシジ
ル,メタクリル酸グリシジルなどがあり、グリシジルエ
ーテル類の具体例としてはメチルグリシジルエーテル,
アリルグリシジルエーテル,ブチルグリシジルエーテ
ル,フェニルグリシジルエーテル,ナフチルグリシジル
エーテルなどが挙げられる。
Specific examples of the glycidyl esters include glycidyl acetate, glycidyl propionate, glycidyl butyrate, glycidyl benzoate, glycidyl cinnamate, glycidyl naphthoate, glycidyl naphthoxyacetate, glycidyl acrylate, glycidyl methacrylate, and the like. As a specific example, methyl glycidyl ether,
Allyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, naphthyl glycidyl ether, etc. are mentioned.

本発明に用いられる上記(I)式化合物は既に知られて
おり、前駆体である下記(II)式化合物を酸化カップリ
ング、例えば塩化第一銅−ピリジン触媒の存在下アセト
ン溶液中で空気酸化することによって容易に製造でき
る。
The above formula (I) compound used in the present invention is already known, and the following formula (II) compound which is a precursor is oxidatively coupled, for example, air oxidation is carried out in an acetone solution in the presence of a cuprous chloride-pyridine catalyst. Can be easily manufactured.

また上記(II)式化合物は対応するケトンとアセチレンか
らエチニル化反応によって製造される。
Further, the above formula (II) compound is produced from the corresponding ketone and acetylene by an ethynylation reaction.

上記(I)式化合物の具体的な例としては、 1,6−ジ−o−クロロフェニル−1,6−ジフェニル
ヘキサ−2,4−ジイン−1,6−ジオール 1,6−ジ−o−フルオロフェニル−1,6−ジフェニ
ルヘキサ−2,4−ジイン−1,6−ジオール 1,6−ジ−p−クロロフェニル−1,6−ジフェニル
ヘキサ−2,4−ジイン−1,6−ジオール 1,6−ジ−p−t−ブチルフェニル−1,6−ジフェ
ニルヘキサ−2,4−ジイン−1,6−ジオール 1,6−ジ−o−メトキシフェニル−1,6−ジフェニ
ルヘキサ−2,4−ジイン−1,6−ジオール 1,6−ジ−p−フェニルチオフェニル−1,6−ジフ
ェニルヘキサ−2,4−ジイン−1,6−ジオール などを挙げることができる。
Specific examples of the above formula (I) compound include 1,6-di-o-chlorophenyl-1,6-diphenylhexa-2,4-diyne-1,6-diol 1,6-di-o- Fluorophenyl-1,6-diphenylhexa-2,4-diyne-1,6-diol 1,6-di-p-chlorophenyl-1,6-diphenylhexa-2,4-diyne-1,6-diol 1 , 6-di-pt-butylphenyl-1,6-diphenylhexa-2,4-diyne-1,6-diol 1,6-di-o-methoxyphenyl-1,6-diphenylhexa-2, 4-diyne-1,6-diol 1,6-di-p-phenylthiophenyl-1,6-diphenylhexa-2,4-diyne-1,6-diol and the like can be mentioned.

本発明において、ラセミ体のグリシジル化合物と(I)
式化合物とから錯体を形成させるには、これらを直接混
合するか又は溶液として混合することによって行われ
る。物質によって錯体形成反応の条件が異なるが、通常
室温乃至溶媒の還流温度の範囲で行われる。反応時間は
固態結晶として生成する錯体の沈澱生成をみて適宜定め
ればよい。錯体は、通常グリシジル化合物と式(I)化
合物とのモル比が3:1〜1:3の化合物として生成す
る。
In the present invention, a racemic glycidyl compound and (I)
The complex is formed with the formula compound by mixing them directly or as a solution. The conditions of the complex-forming reaction differ depending on the substance, but the reaction is usually performed at room temperature to the reflux temperature of the solvent. The reaction time may be appropriately determined depending on the precipitation of the complex that is formed as a solid crystal. The complex is usually produced as a compound having a molar ratio of the glycidyl compound to the compound of formula (I) of 3: 1 to 1: 3.

上記反応に用いられる溶媒としては、脂肪族炭化水素
類,芳香族炭化水素類,エーテル類あるいはこれらの混
合溶媒が一般的である。
As the solvent used in the above reaction, aliphatic hydrocarbons, aromatic hydrocarbons, ethers or a mixed solvent thereof is generally used.

上記得られた錯体から光学活性なグリシジル化合物を取
り出すには、反応によって生成した沈澱を濾別し、必要
に応じて、再結晶による精製を行った後、加熱蒸溜,極
性溶媒による置換又はクロマトグラフィ等によって一方
の光学活性なグリシジル化合物を容易に放出単離でき
る。
To take out the optically active glycidyl compound from the above-obtained complex, the precipitate formed by the reaction is filtered off and, if necessary, purified by recrystallization, and then heated, distilled, replaced with a polar solvent, or chromatographed. Thus, one of the optically active glycidyl compounds can be easily released and isolated.

また他方の光学異性体は上記沈澱濾別後の濾液から容易
に得ることができる。
Further, the other optical isomer can be easily obtained from the filtrate after the precipitation filtration.

(発明の効果) 本発明によれば、ラセミ体のグリシジル化合物から容易
に光学活性な両方の対掌体を得ることができ、得られた
光学活性グリシジル化合物は非常に純度の高いものであ
る。
(Effect of the Invention) According to the present invention, both optically active antipodes can be easily obtained from a racemic glycidyl compound, and the obtained optically active glycidyl compound is of extremely high purity.

(実施例) 実施例1 光学的な純粋な左旋性1,6−ジ−o−クロロフェニル
−1,6−ジフェニル−ヘキサ−2,4−ジイン−1,
6−ジオール(〔α〕D−122゜,mp127〜129℃)9.66g
(0.22モル)とラセミ体の酪酸グリシジル5.76g(0.04
モル)をエーテル10mlと石油エーテル20mlの混合溶媒に
溶解し12時間還流した。冷却後濾過により無色プリズム
結晶11.0gを濾取した(収率88%)。この結晶は上記化
合物のモル比が1:1の錯体であり、このものの融点は
72〜75℃,メタノール溶液で測定した比旋光度〔α〕D
(以下の測定において溶媒は同じ)は−93.5゜であっ
た。
Examples Example 1 Optically pure levorotatory 1,6-di-o-chlorophenyl-1,6-diphenyl-hexa-2,4-diyne-1,
6-diol ([α] D −122 °, mp 127-129 ° C.) 9.66 g
(0.22 mol) and racemic glycidyl butyrate 5.76 g (0.04
Mol) was dissolved in a mixed solvent of 10 ml of ether and 20 ml of petroleum ether and refluxed for 12 hours. After cooling, 11.0 g of colorless prism crystals was collected by filtration (yield 88%). This crystal is a complex in which the above compound has a molar ratio of 1: 1 and its melting point is
Specific rotation [α] D measured at 72-75 ℃ in methanol solution
(The same solvent was used in the following measurements) was -93.5 °.

次いでこの結晶を減圧下に加熱分解せしめて左旋性の酪
酸グリシジルを溜出させた。このものは〔α〕D−5.
7゜であった。
Next, the crystals were decomposed by heating under reduced pressure to distill out levorotatory glycidyl butyrate. This is [α] D- 5.
It was 7 °.

また上記プリズム結晶を5回再結晶させて得られたもの
は、融点72〜75℃,〔α〕D−94.1゜であった。これを
上記同様減圧下加熱分解させて左旋性の酪酸グリシジル
〔α〕D−11.8゜を得た。
The prism crystal obtained by recrystallizing the prism 5 times had a melting point of 72 to 75 ° C and [α] D- 94.1 °. This was heated and decomposed under reduced pressure in the same manner as above to obtain levorotatory glycidyl [α] D -11.8 °.

一方、プリズム結晶を分離した濾液を蒸留して右旋性の
酪酸グリシジル3.2gを得た。このものは〔α〕D
4.26゜であった。
On the other hand, the filtrate from which prism crystals were separated was distilled to obtain 3.2 g of dextrorotatory glycidyl butyrate. This one is [α] D +
It was 4.26 °.

実施例2 実施例1と同じ左旋性の1,6−ジ−o−クロロフェニ
ル−1,6−ジフェニル−ヘキサ−2,4−ジイン−
1,6−ジオール4.83g(0.01モル)とラセミ体のフェ
ニルグリシジルエーテル3.0g(0.02モル)をエーテ
ル5mlと石油エーテル20mlの混合溶媒に溶解し12時間還
流した。冷却後上記化合物のモル比が1:1の錯体であ
る無色プリズム結晶4.65g(収率73%)を得た。このも
のは融点79〜80℃,メタノール溶液で測定した〔α〕D
は−90.6゜であった。
Example 2 The same levorotatory 1,6-di-o-chlorophenyl-1,6-diphenyl-hexa-2,4-diyne-as in Example 1.
4.83 g (0.01 mol) of 1,6-diol and 3.0 g (0.02 mol) of racemic phenylglycidyl ether were dissolved in a mixed solvent of 5 ml of ether and 20 ml of petroleum ether and refluxed for 12 hours. After cooling, 4.65 g (yield 73%) of colorless prism crystals, which is a complex of the above compound in a molar ratio of 1: 1 was obtained. This product had a melting point of 79-80 ℃ and was measured with a methanol solution [α] D
Was -90.6 °.

次いでこの結晶を減圧下に蒸留して左旋性フェニルグリ
シジルエーテル〔α〕D−1.4゜を得た。
Then, the crystals were distilled under reduced pressure to obtain levorotatory phenyl glycidyl ether [α] D -1.4 °.

上記プリズム結晶を1回再結晶させて得られたものは融
点79〜81℃,〔α〕D−92.9゜であった。この結晶を減
圧下に蒸溜して〔α〕D−2.7゜のフェニルグリシジ
ルエーテルを得た。
The product obtained by recrystallizing the prism crystal once had a melting point of 79 to 81 ° C and [α] D -92.9 °. The crystals were distilled under reduced pressure to obtain [α] D -2.7 ° phenylglycidyl ether.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ラセミ体のグリシジル化合物と下記一般式
(I)で表わされる光学活性な1,1,6,6−テトラフェニルヘ
キサ−2,4−ジイン−1,6−ジオール誘導体とから、上記
グリシジル化合物を取り込んだ錯体を形成させ、この錯
体から光学活性なグリシジル化合物を取り出すことを特
徴とするグリシジル化合物の光学分割方法 (但し、(I)式において、X,Yは水素原子,ハロゲン
原子,アルキル基,アリール基,アラルキル基,アルコ
キシ基及びアルキルチオ基から選ばれる原子又は基であ
り、XとYがヘキサジインの同一の炭素に結合している
各フェニル基の炭素に対して同一の位置に結合するとき
はXとYは同一の原子又は基ではない。)
1. A racemic glycidyl compound and the following general formula
From the optically active 1,1,6,6-tetraphenylhexa-2,4-diyne-1,6-diol derivative represented by (I), a complex incorporating the above glycidyl compound is formed, and from this complex Method for optical resolution of glycidyl compound characterized by taking out optically active glycidyl compound (However, in the formula (I), X and Y are atoms or groups selected from a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an aralkyl group, an alkoxy group, and an alkylthio group, and X and Y are the same as hexadiyne. (X and Y are not the same atom or group when they are bonded at the same position with respect to the carbon of each phenyl group bonded to the carbon.)
JP23068685A 1985-10-16 1985-10-16 Method for optical resolution of glycidyl compound Expired - Lifetime JPH062756B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23068685A JPH062756B2 (en) 1985-10-16 1985-10-16 Method for optical resolution of glycidyl compound
US06/918,724 US4841081A (en) 1985-10-16 1986-10-14 Method of optically resolving a racemate or a diastereomeric mixture of glycidyl compound
DE8686308033T DE3672241D1 (en) 1985-10-16 1986-10-16 METHOD FOR OPTICALLY CLEAVING A RACEMAT OR DIASTEREOMERIC MIXING OF A GLYCIDYL COMPOUND.
EP86308033A EP0220887B1 (en) 1985-10-16 1986-10-16 Method of optically resolving a racemate or a diastereomeric mixture of glycidyl compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23068685A JPH062756B2 (en) 1985-10-16 1985-10-16 Method for optical resolution of glycidyl compound

Publications (2)

Publication Number Publication Date
JPS6289673A JPS6289673A (en) 1987-04-24
JPH062756B2 true JPH062756B2 (en) 1994-01-12

Family

ID=16911720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23068685A Expired - Lifetime JPH062756B2 (en) 1985-10-16 1985-10-16 Method for optical resolution of glycidyl compound

Country Status (1)

Country Link
JP (1) JPH062756B2 (en)

Also Published As

Publication number Publication date
JPS6289673A (en) 1987-04-24

Similar Documents

Publication Publication Date Title
US4224457A (en) Process for manufacturing optically active sulfur-containing carboxylic acid
US4841081A (en) Method of optically resolving a racemate or a diastereomeric mixture of glycidyl compound
JPH062756B2 (en) Method for optical resolution of glycidyl compound
US4918190A (en) Crystalline complex compounds of propargyl alcohols and tertiary diamines, and process of separation and purification of propargyl alcohols using the same
JPS60252441A (en) Naphthalene and naphthoquinone derivative
JP2573818B2 (en) Crystalline complex compounds of propargyl alcohols and tertiary diamines
JPS6032783A (en) Fluorine-containing coumarins
JPS6136254A (en) Preparation of optically active sulfoxide
KR930003757B1 (en) The producing method of substituted beta phenyl acrylic acid
JPH0761979A (en) Bisphenol derivative and its production
JPS604830B2 (en) Phenyl acetic acid derivative
JPH02233670A (en) Piperazinosulfonic acid derivative
JPH0643408B2 (en) Glycidyl compound incorporation complex
JPS6257194B2 (en)
JPS6023103B2 (en) Substituted phenacyl anthranilate and method for producing the same
JPS6399052A (en) Bis(1-isothiocyanatealkyl)ether and production thereof
JPH0578539B2 (en)
JPS59181251A (en) Benzophenone-2-carbamate derivative
EP0188185A1 (en) Novel n-acyl-isopropylglycine derivatives
JPS6156188A (en) Lactic acid silyl ester
IE43054B1 (en) Substituted phenyl acetic acids
JPS601312B2 (en) Novel imidazole derivative
JPS601313B2 (en) N↓-(ω↓-carboxyalkyl)imidazole
JPH0641459B2 (en) Method for separating optical isomers of epoxides having multiple asymmetric carbons
JPS601304B2 (en) New optically active amine derivative