JPH06275176A - Vacuum valve and its manufacture - Google Patents

Vacuum valve and its manufacture

Info

Publication number
JPH06275176A
JPH06275176A JP6058293A JP6058293A JPH06275176A JP H06275176 A JPH06275176 A JP H06275176A JP 6058293 A JP6058293 A JP 6058293A JP 6058293 A JP6058293 A JP 6058293A JP H06275176 A JPH06275176 A JP H06275176A
Authority
JP
Japan
Prior art keywords
glass
vacuum valve
vacuum
insulating cylinder
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6058293A
Other languages
Japanese (ja)
Inventor
Toru Tanimizu
徹 谷水
Akira Ozaka
章 尾坂
Yoshimi Hakamata
好美 袴田
Yoshio Koguchi
義雄 湖口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6058293A priority Critical patent/JPH06275176A/en
Priority to FR9403182A priority patent/FR2702878B1/en
Publication of JPH06275176A publication Critical patent/JPH06275176A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/66215Details relating to the soldering or brazing of vacuum switch housings

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To provide a vacuum valve having a small size as the whole form which is stably usable in a vacuum circuit breaker having a large breaking capacity. CONSTITUTION:Relatively movable electrodes 1, 3 and an electric filed shield 5 are enclosed by a glass insulating cylinder 10 formed by mutually connecting two cylinder bodies 11, 12 in their opening end parts. In each cylinder body, the connected opened end part is formed of a major diameter part, and the opposite side end part of a minor diameter part. Walls 11C, 12C are formed in such a manner that they never exceed the major diameter part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空遮断器の遮断部であ
る真空バルブ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum valve which is a breaking portion of a vacuum circuit breaker and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、遮断器として長期安定性がありか
つ小型であること等の理由から真空遮断器が多く用いら
れてきている。真空遮断器は真空バルブ内の真空中にお
いてアークを拡散遮断するものであって、環境の悪い場
所においても安心して長期間使用することができるよう
に、耐電圧が高くまた汚損特性のよい小型絶縁筒を備え
ることが期待される。耐電圧と汚損特性の向上の手段と
して、絶縁筒の沿面距離を長くするためにその表面に襞
をつけることは一つの有効な手段であり、その例とし
て、例えば、封着金具間の間隙長よりも長い沿面長とな
るように波形襞を有する形状に絶縁容器をセラミクスで
構成すると共に、波形ひだの谷部の内壁で中間シールド
筒を支持するようにしたもの(特開平1−107429
号公報参照)が知られている。
2. Description of the Related Art Recently, a vacuum circuit breaker has been widely used as a circuit breaker because of its long-term stability and small size. The vacuum circuit breaker diffuses and cuts off the arc in the vacuum inside the vacuum valve, and has a high withstand voltage and small insulation with good fouling characteristics so that it can be used safely for a long time even in a bad environment. Expected to have a tube. As a means for improving the withstand voltage and the fouling property, it is an effective means to make a fold on the surface of the insulating cylinder in order to increase the creepage distance thereof. The insulating container is formed of ceramics in a shape having corrugated folds so that the creeping length is longer than that, and the intermediate shield cylinder is supported by the inner wall of the valley portion of the corrugated folds (Japanese Patent Laid-Open No. 107429).
(See Japanese Patent Publication).

【0003】また、絶縁ガラス管と真空スイッチの間の
空間に伸縮性を有する袋状絶縁物を内蔵したクッション
ゴム層を設け、袋状絶縁物の中に液状ゴムを圧入、硬化
することにより、機械的、電気的特性を向上させたもの
(特開昭54−129369号公報参照)も知られてい
る。
Further, a cushion rubber layer containing a stretchable bag-shaped insulator is provided in the space between the insulating glass tube and the vacuum switch, and liquid rubber is pressed into the bag-shaped insulator and cured, Those having improved mechanical and electrical characteristics (see Japanese Patent Laid-Open No. 54-129369) are also known.

【0004】[0004]

【発明が解決しようとする課題】従来、真空遮断器に期
待されていた遮断容量はせいぜい60kA程度であり、
電極もそれを包囲する絶縁筒も比較的小寸法のもので十
分であったことから、その小型化には格別の配慮を払う
ことなく、絶縁筒として通常セラミクスの一体成形物が
用いられその成形も容易であった。
Conventionally, the breaking capacity expected for a vacuum circuit breaker is about 60 kA at most,
Since it was sufficient for the electrodes and the insulating cylinder surrounding them to be of relatively small dimensions, no special consideration was given to downsizing them, and an integrally molded ceramic product was usually used as the insulating cylinder. Was also easy.

【0005】近年にいたり、100kAを超える遮断容
量を持つ真空遮断器への要望が高まり、それにともない
電極及び絶縁筒の大型化が必要となっている。しかしな
がら大型の絶縁筒をセラミクスの一体成形物として製造
することは高度な技術を必要とし、特に、前記のよう
に、耐電圧と汚損特性の向上のために絶縁筒の表面に襞
を付けそれにより沿面距離を長くするものにあっては、
加工の困難性に加えさらに外径が一層大型化する不都合
があった。すなわち、内部の電極を一定の大きさとした
とき、絶縁筒の円周方向に襞をつけた場合、絶縁筒の絶
縁自体の厚みに襞の高さ分が加わり、その分だけ外形が
さらに大きくなる。また、絶縁ガラス管と真空スイッチ
との間に袋状絶縁物を介在させるものにあっても大型化
に対しては同様な不都合を有している。
In recent years, there has been an increasing demand for a vacuum circuit breaker having a breaking capacity of more than 100 kA, and accordingly, the size of the electrode and the insulating cylinder must be increased. However, manufacturing a large insulating cylinder as an integrally molded product of ceramics requires a high level of technology, and in particular, as described above, a fold is formed on the surface of the insulating cylinder to improve withstand voltage and fouling characteristics. If you want to increase the creepage distance,
In addition to the difficulty of processing, there was the inconvenience that the outer diameter was further increased. That is, when the inner electrode has a fixed size and a fold is provided in the circumferential direction of the insulating tube, the height of the fold is added to the thickness of the insulation of the insulating tube, and the outer shape is further increased by that amount. . Further, even in the case where the bag-shaped insulator is interposed between the insulating glass tube and the vacuum switch, there is a similar inconvenience in increasing the size.

【0006】すなわち、従来の真空遮断器に用いられる
真空バルブにおいては、小型でありかつ高性能化を図る
という点について充分な配慮がされていなかったといえ
る。本発明の目的は、大遮断容量を持つ真空遮断器に用
い得る比較的大型の真空バルブであっても容易に製造す
ることができる真空バルブの製造方法を提供することに
ある。本発明のさらに他の目的は、全体形状として小型
のものでありながら大遮断容量を持つ真空遮断器に安定
して用いることができる真空バルブ及びその真空バルブ
を製造する方法を提供することにある。
That is, it can be said that the vacuum valve used in the conventional vacuum circuit breaker has not been sufficiently considered in terms of its small size and high performance. It is an object of the present invention to provide a method for manufacturing a vacuum valve that can easily manufacture a relatively large vacuum valve that can be used in a vacuum circuit breaker having a large breaking capacity. Still another object of the present invention is to provide a vacuum valve which can be stably used in a vacuum circuit breaker having a large breaking capacity while having a small overall shape, and a method of manufacturing the vacuum valve. .

【0007】[0007]

【課題を解決するための手段】この目的の達成のため
に、本発明においては基本的に、同軸線上に向かい合っ
て配置されかつ該軸線方向に相対的に移動可能な電極及
び該電極を覆うガラス絶縁筒とを備えた真空遮断器の真
空バルブにおいて、前記ガラス絶縁筒を該軸線方向で相
対向する2つの筒体から構成し、その開口端部同志を接
合した真空バルブを開示する。
In order to achieve this object, according to the present invention, basically, electrodes arranged coaxially opposite to each other and movable in the axial direction and a glass covering the electrodes are basically provided. Disclosed is a vacuum valve of a vacuum circuit breaker having an insulating cylinder, wherein the glass insulating cylinder is composed of two cylindrical bodies opposed to each other in the axial direction, and their open end portions are joined together.

【0008】さらに本発明は基本的に、軸線方向で相対
向しうる高融点ガラス製の2つの筒体を用意し、各筒体
の内部にそれぞれ電極を組立収納後、その接合部近傍に
低融点ガラスを配置し、真空圧力高温槽内において前記
2つの筒体に対して真空下で高温を与え、その接合部分
の低融点ガラスを溶融させて2つの筒体を接合する態様
である。
Further, according to the present invention, basically, two cylinders made of high-melting glass which can face each other in the axial direction are prepared, the electrodes are assembled and housed in the respective cylinders, and then the electrodes are placed near the joints. This is a mode in which a melting point glass is placed and a high temperature is applied to the two cylinders under vacuum in a vacuum pressure high temperature tank to melt the low melting point glass at the bonding portion to bond the two cylinders.

【0009】必要に応じて、前記ガラス絶縁筒の内部に
電界シールドをガラス絶縁筒の内壁に挟持させた状態で
保持するようにする。また、相対向する2つの筒体の開
口端部の一方には凹溝を他方には前記凹溝に対向する凸
溝を形成すること、さらに、前記凹溝にガラス絶縁筒の
構成材料より融点が低いガラス材料を配置して、その溶
融により2つの筒体を接合することは好ましい態様であ
る。
If necessary, the electric field shield is held inside the glass insulating cylinder while being sandwiched by the inner wall of the glass insulating cylinder. Further, a concave groove may be formed on one of the opening ends of the two cylinders facing each other, and a convex groove facing the concave groove may be formed on the other end, and the concave groove may have a melting point higher than that of the constituent material of the glass insulating cylinder. It is a preferable embodiment to dispose a glass material having a low heat resistance and to bond the two cylindrical bodies by melting the glass material.

【0010】上記の構成により、比較的大型のガラス絶
縁筒であっても容易に製造することができる。本発明の
さらに他の態様において、前記した2つの筒体の少なく
とも一方(好ましくは双方)の形状を、前記接合する側
の開口端部を大きな開口部とし、それと反対側の端部を
前記接合した開口部よりも小さいものとする。そして、
ガラス絶縁筒すなわち各筒体の外周に、ガラス絶縁筒の
最大外径を超えない範囲で、襞を形成する。襞の方向は
前記軸線方向と同じ方向であってもよく、軸線に対して
傾斜した方向(好ましくは直角方向)であってもよい。
With the above structure, even a relatively large glass insulating cylinder can be easily manufactured. In still another aspect of the present invention, the shape of at least one (preferably both) of the above-mentioned two cylinders is such that the opening end on the side of joining is a large opening and the end on the opposite side is the joining. It should be smaller than the opening. And
Folds are formed on the outer circumference of the glass insulating cylinder, that is, on the outer periphery of each cylinder, within a range not exceeding the maximum outer diameter of the glass insulating cylinder. The direction of the folds may be the same as the axial direction, or may be the direction inclined with respect to the axis (preferably the direction perpendicular to the axis).

【0011】上記の構成により、各筒体の内部にそれぞ
れ電極を組立収納後、筒体内部に電界シールドを配置し
たものを、真空圧力高温槽内において処理するようにし
てもよい。
With the above structure, after the electrodes are assembled and housed in the respective cylinders, the one in which the electric field shield is arranged inside the cylinders may be processed in the vacuum pressure high temperature tank.

【0012】[0012]

【作用】本発明によれば、電極の軸線方向に2分割され
た筒体をその開口端部同志を接合することによりガラス
絶縁筒が形成されることから、比較的大型の真空ブルブ
であってもそのガラス絶縁筒を容易に成形することが可
能となる。また、2分割したことにより、製造に際し
て、その接合端となる開口部側から電極を絶縁筒内部に
挿入することができ、構造的に導体部分に比べて径の大
きいものとならざるを得ない電極部分を、筒体の接合端
となる前記開口部近傍に位置するように装着することに
より、結果として筒体の反対側の端部の径を小径のもの
として成形することが可能となる。それにより、真空バ
ルブの全体容積をその径の差に基づく分だけ小型とする
ことができる。
According to the present invention, since the glass insulating cylinder is formed by joining the open ends of the cylindrical body divided into two in the axial direction of the electrode, a relatively large vacuum bulb is provided. Also, it becomes possible to easily form the glass insulating cylinder. Further, since the electrode is divided into two parts, the electrode can be inserted into the insulating cylinder from the opening side which is the joining end of the electrode when manufacturing, and the diameter is structurally larger than that of the conductor part. By mounting the electrode portion so as to be located in the vicinity of the opening that serves as the joining end of the tubular body, it is possible to form the end portion on the opposite side of the tubular body with a small diameter as a result. As a result, the total volume of the vacuum valve can be reduced by the amount based on the difference in diameter.

【0013】本発明において、さらに、いわゆる襞を前
記筒体の表面にその両端部の径の差により形成される空
間域をも含めて軸線と平行にあるいは傾斜させて形成す
ることにより、従来形式の円筒状の絶縁筒体に襞を形成
する場合に比較して襞の全有効面積を増大することが可
能となり、絶縁筒の沿面距離を一層長くすることができ
る。襞をガラス絶縁筒すなわち各筒体の外周にガラス絶
縁筒の最大外径を超えない範囲で形成する場合にあって
は、真空バルブの最大外径をガラス絶縁筒の最大外径内
に収めることが可能となり、一層の小型化が可能とな
る。
In the present invention, a so-called fold is further formed on the surface of the cylindrical body in parallel with or inclined with respect to the axis line including the space area formed by the difference in diameter between both ends thereof. It is possible to increase the total effective area of the folds as compared with the case where the folds are formed in the cylindrical insulating cylinder body, and the creepage distance of the insulating cylinder can be further lengthened. If the folds are formed on the glass insulation cylinder, that is, on the outer circumference of each cylinder within a range that does not exceed the maximum outside diameter of the glass insulation cylinder, the maximum outside diameter of the vacuum valve must be within the maximum outside diameter of the glass insulation cylinder. It becomes possible, and further miniaturization becomes possible.

【0014】筒体同志の接合を、相対向する開口先端部
に形成した凹溝と凸溝のうちの凹溝内に低融点ガラスを
充填して、その溶融により行うようにする。それにより
2つの筒体を接合した形態でありながらその表面に不必
要な充電部がなく、安定した電気的性能を得ることがで
きる。また、2つの筒体の接合は従来知られた真空圧力
高温槽内において前記2つの筒体に対して真空下で高温
を与え、前記凹溝に充填した低融点ガラスを溶融するこ
とにより容易に行うことが可能であり、製造過程の簡素
化も図れる。
The joining of the cylindrical bodies is carried out by filling the low-melting glass in the concave grooves formed in the tip ends of the openings facing each other and the concave grooves of the convex grooves and melting them. As a result, even though the two cylinders are joined together, there is no unnecessary charging section on the surface, and stable electrical performance can be obtained. Further, the joining of the two cylinders can be easily carried out by applying a high temperature to the two cylinders under vacuum in a conventionally known vacuum pressure high temperature tank to melt the low melting point glass filled in the groove. This can be done, and the manufacturing process can be simplified.

【0015】[0015]

【実施例】以下、本発明による真空バルブ及びその製造
方法の幾つかの実施例を図1ないし図3により説明す
る。図1は本発明による真空バルブの一実施例の断面図
を示しており、固定電極1と該固定電極に機械的に接続
した固定導体2及び可動電極3と該可動電極3に同様に
機械的に接続した移動導体4とがそれぞれ同軸線上に向
かい合って配置されている。前記の固定電極1と固定導
体2及び可動電極3と移動導体4とは、前記電極と同一
の軸線方向で相対向する二つの筒体から構成される高融
点ガラス製の絶縁筒10内に、前記二つの電極の接触部
が二つの筒体の接合部近傍に位置するよう収容されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Several embodiments of a vacuum valve and a method of manufacturing the same according to the present invention will be described below with reference to FIGS. FIG. 1 shows a cross-sectional view of an embodiment of a vacuum valve according to the present invention, in which a fixed electrode 1 and a fixed conductor 2 and a movable electrode 3 mechanically connected to the fixed electrode and a movable electrode 3 are similarly mechanically connected. And the moving conductors 4 connected to each other are arranged to face each other on the coaxial line. The fixed electrode 1 and the fixed conductor 2, and the movable electrode 3 and the movable conductor 4 are provided in an insulating cylinder 10 made of high melting point glass, which is composed of two cylinders facing each other in the same axial direction as the electrodes. The contact portion of the two electrodes is housed so as to be located in the vicinity of the joint portion of the two cylindrical bodies.

【0016】二つの筒体すなわち固定絶縁筒体11及び
移動絶縁筒体12は、いずれも相対向する開口端部11
B、12B側は大径部にまた反対側の開口端部11A、
12A側は小径部に形成されている。そして、大径側開
口端部と小径側開口端部との間は連続した壁部すなわち
大径筒部11E、12E、縮径部11F、12F及び小
径筒部11G、12Gとにより構成される。大径側開口
端部11B、12Bには図2に示すように、一方に凹溝
11Dが他方には該凹溝に嵌入する凸溝12Dが形成さ
れ、後記するように凹溝と凸溝との間に配置した低融点
ガラスを溶融することにより両者は一体に接合されてい
る。
The two tubular bodies, ie, the fixed insulating tubular body 11 and the movable insulating tubular body 12, are both open end portions 11 facing each other.
B and 12B side is the large diameter portion and the opposite opening end portion 11A,
The 12A side is formed in the small diameter portion. The large-diameter-side opening end portion and the small-diameter-side opening end portion are formed by continuous wall portions, that is, large-diameter tubular portions 11E and 12E, reduced-diameter portions 11F and 12F, and small-diameter tubular portions 11G and 12G. As shown in FIG. 2, the large-diameter-side open end portions 11B and 12B are provided with a concave groove 11D on one side and a convex groove 12D on the other side to be fitted into the concave groove. As will be described later, the concave groove and the convex groove are formed. The two are integrally joined by melting the low melting glass placed between the two.

【0017】前記固定導体2の固定電極1との接続部と
は反対側の端部近傍には固定側キャップ7が接続してお
り、該固定側キャップ7の周囲は前記小径側端部11A
において固定絶縁筒体11に接続している。可動導体4
の中間部位にはベローズ6の一端が接続しておりかつ該
ベロース6の他端部には可動側キャップ8が接続してい
て、該可動側キャップ8の周囲は前記小径側端部12A
において可動絶縁筒体12に接続している。それによ
り、二つの絶縁筒体11、12で構成されるガラス絶縁
筒10の内部は外部とは遮断した環境におかれ、高度の
真空状態に維持される。
A fixed cap 7 is connected near the end of the fixed conductor 2 opposite to the connection with the fixed electrode 1, and the periphery of the fixed cap 7 is the small diameter end 11A.
In, it is connected to the fixed insulating cylinder 11. Movable conductor 4
One end of the bellows 6 is connected to the intermediate part of the bellows 6, and the movable side cap 8 is connected to the other end of the bellows 6, and the periphery of the movable side cap 8 is the small diameter side end 12A.
In, it is connected to the movable insulating cylinder 12. As a result, the inside of the glass insulating cylinder 10 made up of the two insulating cylinders 11 and 12 is placed in an environment that is shielded from the outside, and is maintained in a high vacuum state.

【0018】ガラス絶縁筒10内には従来知られた絶縁
シールド5が固定電極1と可動電極3とから絶縁距離を
持った状態で配置される。絶縁シールド5は図1に示す
ように両端部が内方に湾曲した断面を持つ筒状体であっ
て、筒状部分の長さは固定絶縁筒体11の大径筒部11
Eと移動絶縁筒体12の大径筒部12Eとを合わせた長
さとほぼ同じであり、その湾曲部が各筒体11、12の
前記縮径部11F、12Fの肩部に挟持されることによ
り、ガラス絶縁筒10内に固定されている。
In the glass insulating cylinder 10, a conventionally known insulating shield 5 is arranged with an insulating distance from the fixed electrode 1 and the movable electrode 3. As shown in FIG. 1, the insulating shield 5 is a tubular body having a cross section in which both ends are curved inward, and the length of the tubular portion is the large diameter tubular portion 11 of the fixed insulating tubular body 11.
E and the large-diameter tubular portion 12E of the movable insulating tubular body 12 are approximately the same in length, and the curved portion is sandwiched between the shoulder portions of the reduced diameter portions 11F, 12F of the tubular bodies 11, 12. Is fixed in the glass insulating cylinder 10.

【0019】さらに、各筒体の小径筒部11G、12G
には軸線に垂直な方向に襞11C及び12Cが形成され
ている。図1に示すものにおいて、この襞11C及び1
2Cはいずれもガラス絶縁筒10の最大外径を超えない
範囲で、すなわち大径筒部11E、12Eの外径を超え
ない範囲で軸線に垂直な方向に形成されている。上記の
真空バルブにおいては、ガラス絶縁筒を2分割し、各筒
体を一方端部を大径部に他方端部を小径部としている。
従って、比較的大きな寸法とならざるを得ない電極部を
前記大径側の端部近傍に位置させ、電極に接続した導体
の先端を小径側の端部から外部に延出させるようにし、
さらにガラス絶縁筒の最大外径と最小外径との間の空間
に襞を構成することが可能となり、結果として、大きな
遮断容量を持つ真空遮断機の場合であっても、真空バル
ブ自体は全体として小型のものとして構成することがで
きる。
Further, the small-diameter cylindrical portions 11G and 12G of each cylindrical body
The folds 11C and 12C are formed in the direction perpendicular to the axis. In the one shown in FIG. 1, this fold 11C and 1
2C is formed in a direction perpendicular to the axis within a range that does not exceed the maximum outer diameter of the glass insulating cylinder 10, that is, within a range that does not exceed the outer diameters of the large-diameter cylindrical portions 11E and 12E. In the above vacuum valve, the glass insulating cylinder is divided into two parts, and each cylinder has a large diameter portion at one end and a small diameter portion at the other end.
Therefore, the electrode portion which must be relatively large in size is located in the vicinity of the end portion on the large diameter side, and the tip of the conductor connected to the electrode is extended to the outside from the end portion on the small diameter side,
Furthermore, it becomes possible to construct a fold in the space between the maximum outer diameter and the minimum outer diameter of the glass insulating cylinder, and as a result, even in the case of a vacuum circuit breaker having a large breaking capacity, the vacuum valve itself is Can be configured as a small one.

【0020】なお、上記の構成の真空バルブ10におい
て、その遮断時の作動、及び電極や電極に機械的に接続
した導体の構成、さらには固定キャップや可動電極を移
動可能とするためのベロースの構成等は、従来の真空バ
ルブにおけるものと同様であるので、詳細な説明は省略
する。図2は本発明による真空バルブの他の実施例を示
している。この実施例による真空バルブは各筒体に形成
される襞の構成が図1のものと異ることを除き他の構成
は図1のものと同様である。すなわち、この実施例にお
いては、襞21C及び22Cは電極の軸線方向と平行な
方向にかつ前記した縮径部11F、12Fの部分に形成
されている。このものにおいても、図1のものと同じ作
用効果を奏しうることは容易に理解される。
In the vacuum valve 10 having the above-mentioned structure, the operation of the vacuum valve 10 at the time of disconnection, the structure of the electrodes and the conductors mechanically connected to the electrodes, and the bellows for moving the fixed cap and the movable electrode. The configuration and the like are the same as those in the conventional vacuum valve, and thus detailed description will be omitted. FIG. 2 shows another embodiment of the vacuum valve according to the present invention. The vacuum valve according to this embodiment has the same structure as that of FIG. 1 except that the structure of the folds formed on each cylinder is different from that of FIG. That is, in this embodiment, the folds 21C and 22C are formed in the direction parallel to the axial direction of the electrodes and in the above-described reduced diameter portions 11F and 12F. It is easily understood that this one can also achieve the same effects as those of FIG.

【0021】次に、上記した真空バルブの製造方法につ
いて説明する。先ず、前記した形態の二つの筒体すなわ
ち固定絶縁筒体11及び移動絶縁筒体12を用意する。
素材としては高融点ガラスを用い従来知られた任意の製
法により製造する。次いで、固定絶縁筒体11及び移動
絶縁筒体12の内部にそれぞれ電極、キヤップ、ベロー
ズ等を組立収納する。その後に、組付け後の固定絶縁筒
体11をその小径開口端部11Aを底部側として真空圧
力高温槽内に金型で支持て設置し、かつその大径開口端
部11Bに形成した凹溝11D内に低融点ガラス粉末を
配置する。さらに、固定絶縁筒体11の内壁に沿って絶
縁シールド5をその湾曲部が前記縮径部11Fに接する
ように挿入する。
Next, a method of manufacturing the above vacuum valve will be described. First, the two cylindrical bodies of the above-mentioned form, that is, the fixed insulating cylinder 11 and the movable insulating cylinder 12 are prepared.
A high melting point glass is used as a raw material and is manufactured by any conventionally known manufacturing method. Next, the electrodes, caps, bellows, etc. are assembled and housed inside the fixed insulating cylinder 11 and the movable insulating cylinder 12, respectively. After that, the fixed insulating cylindrical body 11 after assembly is installed by being supported by a mold in a vacuum pressure high temperature tank with the small-diameter opening end 11A as the bottom side, and the concave groove formed in the large-diameter opening end 11B. A low melting glass powder is placed in 11D. Further, the insulating shield 5 is inserted along the inner wall of the fixed insulating cylindrical body 11 so that the curved portion thereof contacts the reduced diameter portion 11F.

【0022】その状態で、もう一つの筒体である組付け
後の移動絶縁筒体12を、その大径開口端部12Bに形
成した凸部12Dがすでに設置してある固定絶縁筒体1
1の大径開口端部11Bに形成した凹溝11D内に入り
込むようにして、固定絶縁筒体11の上に配置する。し
かる後、真空圧力高温槽内を真空引きしかつ加熱する。
それにより、凹溝と凸溝からなる接合部分に位置する低
融点ガラスは溶融して2つの筒体は一体に接合する。接
合の後、真空圧力高温槽を開放して成形された真空バル
ブを槽外に取り出すことにより、本発明による真空バル
ブは形成される。
In this state, the movable insulating cylinder 12 after assembly, which is another cylindrical body, has the convex portion 12D formed on the large-diameter open end 12B thereof and the fixed insulating cylinder 1 is already installed.
It is arranged on the fixed insulating cylindrical body 11 so as to enter the concave groove 11D formed in the large-diameter open end portion 11B of No. 1. Then, the inside of the vacuum pressure high temperature chamber is evacuated and heated.
As a result, the low-melting-point glass located at the joint portion composed of the concave groove and the convex groove is melted and the two cylinders are integrally joined. After the joining, the vacuum pressure high temperature tank is opened and the molded vacuum valve is taken out of the tank to form the vacuum valve according to the present invention.

【0023】他の製造方法として、電極等の組付けた状
態の固定絶縁筒体11及び移動絶縁筒体12とを前記接
合部に低融点ガラスを配置した状態で組み立てたもの
を、前記真空圧力高温槽内に挿入固定し、その後に真空
圧力高温槽内を真空引きしかつ加熱するようにしてもよ
い。上記の説明は本発明による真空バルブ及びその製造
方法の好ましい態様のいくつかを説明したものであっ
て、他に多くの変形例が存在する。例えば、特に図示し
ないが、ガラス絶縁筒を構成する2つの筒体を実質的に
同一外径のもの、すなわち両端部における外径に変化を
持たせない形状のものとすることもできる。その場合で
あってもガラス絶縁体を2分割することにより各筒体の
製造が容易となるという発明の目的は達せられる。
As another manufacturing method, the fixed insulating cylinder 11 and the movable insulating cylinder 12 in which electrodes and the like are assembled are assembled with a low melting point glass arranged at the joint, It may be inserted and fixed in the high temperature tank, and then the vacuum pressure high temperature tank may be evacuated and heated. The above description describes some of the preferred embodiments of the vacuum valve and the manufacturing method thereof according to the present invention, and there are many other variations. For example, although not particularly shown, the two cylindrical bodies forming the glass insulating cylinder may have substantially the same outer diameter, that is, a shape in which the outer diameters at both ends do not change. Even in such a case, the object of the invention that the respective glass bodies can be easily manufactured by dividing the glass insulator into two can be achieved.

【0024】さらに、ガラス絶縁体の表面に形成する襞
をその最大外径内において形成することも必須でなく、
使用環境が許す場合には最大外径を超えた長さの襞を形
成してもよいことは容易に理解されよう。
Furthermore, it is not essential to form the folds formed on the surface of the glass insulator within the maximum outer diameter,
It will be readily appreciated that folds may be formed that exceed the maximum outer diameter if the environment of use allows.

【0025】[0025]

【発明の効果】以上のように、本発明によればガラス絶
縁筒を2分割して形成したことから、比較的大型の真空
ブルブであっても容易に成形することができる。また、
2分割したことにより、一方側の端部を大径とし反対側
の端部を小径のものとして筒体を形成することが可能と
なる。それにより、真空バルブの全体容積をその径の差
に基づく分だけ小型とすることができる。さらに、いわ
ゆる襞を前記筒体の表面にその両端部の径の差により形
成される空間域に形成することも可能となり襞の全有効
面積を増大させることができる。前記空間域にのみ襞を
形成する場合には一層の小型化が可能となる。
As described above, according to the present invention, since the glass insulating tube is divided into two parts, a relatively large vacuum bulb can be easily formed. Also,
By dividing into two, it is possible to form a cylindrical body with one end having a large diameter and the other end having a small diameter. As a result, the total volume of the vacuum valve can be reduced by the amount based on the difference in diameter. Furthermore, it is possible to form a so-called fold in the space area formed on the surface of the cylindrical body by the difference in the diameters of both ends thereof, and the total effective area of the fold can be increased. When the folds are formed only in the space area, the size can be further reduced.

【0026】また、筒体同志の接合を、好ましくは相対
向する開口先端部に形成した凹溝と凸溝のうちの凹溝内
に低融点ガラスを充填して、その溶融により行うように
したことにより、2つの筒体を接合した形態でありなが
らその表面に不必要な充電部が形成されず、安定した電
気的性能を得られる。さらに、2つの筒体の接合は従来
知られた真空圧力高温槽内において容易に行うことがで
きる。
Further, the joining of the cylindrical bodies is preferably carried out by filling the low melting point glass into the concave groove formed in the opening tips facing each other and the concave groove among the convex grooves and melting the glass. As a result, although the two cylinders are joined together, an unnecessary charging portion is not formed on the surface thereof, and stable electrical performance can be obtained. Furthermore, the joining of the two cylinders can be easily performed in a conventionally known vacuum pressure high temperature tank.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の真空バルブの一実施例の断面図。FIG. 1 is a sectional view of an embodiment of a vacuum valve of the present invention.

【図2】接続部の拡大断面図。FIG. 2 is an enlarged cross-sectional view of a connection portion.

【図3】本発明の真空バルブの他の実施例の断面図。FIG. 3 is a cross-sectional view of another embodiment of the vacuum valve of the present invention.

【符号の説明】[Explanation of symbols]

1…固定電極、2…固定導体、3…可動電極、4…可動
導体、5…絶縁シールド、6…ベローズ、7…固定側キ
ャップ、8…可動側キャップ、11…固定絶縁筒、11
A…小径開口端部、11B…大径開口端部、11C…
襞、11D…凹溝、12…可動絶縁筒、12A…小径開
口端部、12B…大径開口端部、12C…襞、12D…
凸部、13…接合部、
DESCRIPTION OF SYMBOLS 1 ... Fixed electrode, 2 ... Fixed conductor, 3 ... Movable electrode, 4 ... Movable conductor, 5 ... Insulation shield, 6 ... Bellows, 7 ... Fixed side cap, 8 ... Movable side cap, 11 ... Fixed insulating cylinder, 11
A ... small diameter opening end, 11B ... large diameter opening end, 11C ...
Folds, 11D ... Grooves, 12 ... Movable insulating cylinder, 12A ... Small diameter opening end, 12B ... Large diameter opening end, 12C ... Folding, 12D ...
Convex part, 13 ... junction part,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湖口 義雄 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshio Koguchi 1-1-1 Kokubuncho, Hitachi City, Ibaraki Prefecture Hitachi Co., Ltd. Kokubun Plant

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 同軸線上に向かい合って配置されかつ該
軸線方向に相対的に移動可能な電極及び該電極を覆うガ
ラス絶縁筒とを備えた真空遮断器の真空バルブであっ
て、前記ガラス絶縁筒は、該軸線方向で相対向する2つ
の筒体をその開口端部同志を接合することにより形成さ
れていることを特長とする真空バルブ。
1. A vacuum valve of a vacuum circuit breaker, comprising: electrodes arranged coaxially to face each other and movable relative to each other in the axial direction; and a glass insulating cylinder covering the electrode, wherein the glass insulating cylinder. Is a vacuum valve characterized in that it is formed by joining two cylindrical bodies opposed to each other in the axial direction to each other at their open end portions.
【請求項2】 同軸線上に向かい合って配置されかつ該
軸線方向に相対的に移動可能な電極及び該電極を覆うガ
ラス絶縁筒とを備えた真空遮断器の真空バルブであっ
て、前記ガラス絶縁筒は該軸線方向で相対向する2つの
筒体をその開口端部同志を接合することにより形成され
ており、かつ前記ガラス絶縁筒の内部には電界シールド
がガラス絶縁筒の内壁部で挟持さた状態で保持されてい
ることを特徴とする真空バルブ。
2. A vacuum valve of a vacuum circuit breaker, comprising: electrodes which are coaxially opposed to each other and which are relatively movable in the axial direction; and a glass insulating cylinder which covers the electrode. Is formed by joining two cylindrical bodies opposed to each other in the axial direction to each other at their opening end portions, and an electric field shield is sandwiched by the inner wall portion of the glass insulating cylinder inside the glass insulating cylinder. A vacuum valve characterized by being held in a state.
【請求項3】 前記相対向する2つの筒体の前記開口端
部の一方には凹溝が他方には前記凹溝に対向する凸溝が
形成されていることを特徴とする請求項1又は2記載の
真空バルブ。
3. A concave groove is formed on one of the opening ends of the two cylinders facing each other, and a convex groove is formed on the other end so as to face the concave groove. The vacuum valve described in 2.
【請求項4】 前記開口端部同志の接合は、ガラス絶縁
筒の構成材料より融点が低いガラス材料を溶融すること
によりなされていることを特徴とする請求項1ないし3
いずれか記載の真空バルブ。
4. The joining of the opening end portions is performed by melting a glass material having a melting point lower than that of the constituent material of the glass insulating tube.
Vacuum valve according to any of the above.
【請求項5】 前記2つの筒体のうち少なくとも一方の
筒体は、前記接合した開口端部とは反対側の端部が前記
接合した開口端部よりも小さく形成されていることを特
長とする請求項1ないし4いずれか記載の真空バルブ。
5. The at least one tubular body of the two tubular bodies is characterized in that an end opposite to the joined open end is formed smaller than the joined open end. The vacuum valve according to any one of claims 1 to 4.
【請求項6】 前記ガラス絶縁筒はその外周に襞を有し
ていることを特徴とする請求項1ないし5いずれか記載
の真空バルブ。
6. The vacuum valve according to claim 1, wherein the glass insulating cylinder has a fold on its outer circumference.
【請求項7】 前記襞は、ガラス絶縁筒の最大外径を超
えない範囲で、前記軸線方向に向けて及び/又は軸線に
傾斜した方向に向けて形成されていることを特徴とする
請求項6記載の真空バルブ。
7. The folds are formed toward the axial direction and / or in a direction inclined to the axial line within a range that does not exceed the maximum outer diameter of the glass insulating cylinder. 6. The vacuum valve according to 6.
【請求項8】 同軸線上に向かい合って配置されかつ該
軸線方向に相対的に移動可能な電極及び該電極を覆うガ
ラス絶縁筒とを備えた真空遮断器の真空バルブの製造方
法であって、該軸線方向で相対向しうる高融点ガラス製
の2つの筒体を用意し、各筒体の内部にそれぞれ電極を
組立収納後、その接合部近傍に低融点ガラスを配置し、
真空圧力高温槽内において前記2つの筒体に対して真空
下で高温を与え、その接合部分の低融点ガラスを溶融さ
せて2つの筒体を接合することを特長とする真空バルブ
の製造方法。
8. A method of manufacturing a vacuum valve of a vacuum circuit breaker, comprising electrodes arranged coaxially opposite to each other and movable relatively in the axial direction, and a glass insulating cylinder covering the electrodes. Two cylinders made of high-melting glass that can face each other in the axial direction are prepared, and electrodes are assembled and housed inside each cylinder, and a low-melting glass is arranged near the joint,
A method for manufacturing a vacuum valve, characterized in that a high temperature is applied to the two cylinders in a vacuum pressure high temperature tank under vacuum to melt the low melting point glass in the joint portion to bond the two cylinders.
【請求項9】 同軸線上に向かい合って配置されかつ該
軸線方向に相対的に移動可能な電極及び該電極を覆うガ
ラス絶縁筒とを備えた真空遮断器の真空バルブの製造方
法であって、該軸線方向で相対向しうる高融点ガラス製
の2つの筒体を用意し、各筒体の内部にそれぞれ電極を
組立収納後、その接合部近傍に低融点ガラスを配置しか
つ筒体内部に電界シールドを配置し、真空圧力高温槽内
において前記2つの筒体に対して真空下で高温を与え、
その接合部分の低融点ガラスを溶融させて2つの筒体を
接合することを特長とする真空バルブの製造方法。
9. A method for manufacturing a vacuum valve of a vacuum circuit breaker, comprising electrodes arranged coaxially to face each other and relatively movable in the axial direction, and a glass insulating cylinder covering the electrodes, Prepare two cylinders made of high melting point glass that can face each other in the axial direction, assemble and house the electrodes inside each cylinder, place the low melting point glass in the vicinity of the joint, and place the electric field inside the cylinder. A shield is arranged, and a high temperature is applied to the two cylinders under vacuum in a vacuum pressure high temperature tank.
A method for manufacturing a vacuum valve, characterized in that the low melting point glass in the joint portion is melted to join the two cylindrical bodies.
【請求項10】 2分割されたガラス絶縁筒を突き合わ
せ、該突き合わせ部を低融点ガラスの溶融により接合し
て一体化することを特徴とする真空遮断器に用いる真空
バルブのガラス絶縁筒の製造方法。
10. A method for manufacturing a glass insulating cylinder of a vacuum valve used in a vacuum circuit breaker, characterized in that the glass insulating cylinders divided into two are butted, and the butted portions are joined and integrated by melting the low melting point glass. .
JP6058293A 1993-03-19 1993-03-19 Vacuum valve and its manufacture Pending JPH06275176A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6058293A JPH06275176A (en) 1993-03-19 1993-03-19 Vacuum valve and its manufacture
FR9403182A FR2702878B1 (en) 1993-03-19 1994-03-18 Vacuum type electrical circuit breaker and process for its manufacture.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6058293A JPH06275176A (en) 1993-03-19 1993-03-19 Vacuum valve and its manufacture

Publications (1)

Publication Number Publication Date
JPH06275176A true JPH06275176A (en) 1994-09-30

Family

ID=13146384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6058293A Pending JPH06275176A (en) 1993-03-19 1993-03-19 Vacuum valve and its manufacture

Country Status (2)

Country Link
JP (1) JPH06275176A (en)
FR (1) FR2702878B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205335165U (en) * 2015-08-31 2016-06-22 西门子公司 Modified contact maker

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3143979A1 (en) * 1981-11-05 1983-05-11 Siemens AG, 1000 Berlin und 8000 München Housing for a vacuum switching tube
DE3344643A1 (en) * 1983-12-09 1985-06-20 Siemens AG, 1000 Berlin und 8000 München Vacuum switching tube for medium-voltage switching apparatuses
US4757166A (en) * 1987-06-15 1988-07-12 Westinghouse Electric Corp. Vacuum interrupter with ceramic enclosure

Also Published As

Publication number Publication date
FR2702878B1 (en) 1995-12-01
FR2702878A1 (en) 1994-09-23

Similar Documents

Publication Publication Date Title
US3770878A (en) Hermetically sealed electrical terminal
JPS6180723A (en) Solid insulation vacuum switch
JPH0361310B2 (en)
US6642833B2 (en) High-voltage current-limiting fuse
JP4845745B2 (en) Vacuum switch
CN103198970A (en) Vacuum envelope with double-fracture structure
US5039831A (en) Circuit breaker
US4933518A (en) Vacuum interrupter
JPH06275176A (en) Vacuum valve and its manufacture
CA1319729C (en) Vacuum interrupter with ceramic enclosure
US5677589A (en) Capped high-pressure discharge lamp
US3590185A (en) Vacuum interrupter with single insulating member having conical exterior attaching surfaces and supporting a floating shield
US4780577A (en) Electrical bushing of a gas insulated electrical apparatus
JP2001093596A (en) Sealed terminal
JPH07254330A (en) Vacuum changeover chamber
CN1186792C (en) Circuit breaker
JP3568093B2 (en) Polymer support insulator
CN1328741C (en) Insulant housing comprising an inner ribbed contour
JPH01213927A (en) Insulator type gas shutoff device
JP2005527945A (en) Ceramic tube for vacuum circuit breaker
JPS5913722Y2 (en) Vacuum cutter
JP3796871B2 (en) Gas insulated current transformer
KR960025890A (en) Vacuum Valves and Vacuum Circuit Breakers Using the Same
KR100379570B1 (en) vacuum interrupter
KR200321626Y1 (en) Gas insulation bus