JPH06275144A - Superconducting stranded cable - Google Patents

Superconducting stranded cable

Info

Publication number
JPH06275144A
JPH06275144A JP5059905A JP5990593A JPH06275144A JP H06275144 A JPH06275144 A JP H06275144A JP 5059905 A JP5059905 A JP 5059905A JP 5990593 A JP5990593 A JP 5990593A JP H06275144 A JPH06275144 A JP H06275144A
Authority
JP
Japan
Prior art keywords
superconducting
coil
optical fiber
wire
stranded cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5059905A
Other languages
Japanese (ja)
Inventor
Tetsuaki Sashita
哲明 指田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5059905A priority Critical patent/JPH06275144A/en
Publication of JPH06275144A publication Critical patent/JPH06275144A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/15Machines characterised by cable windings, e.g. high-voltage cables, ribbon cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Windings For Motors And Generators (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To easily and accurately analyze the cooling characteristic of a superconducting coil, grasp the cooled state of the coil at the start of actual operation, and control the temperature of the coil during operation. CONSTITUTION:A superconducting stranded cable 1 constituting a superconducting coil is so formed that at least one of superconducting wires 2 is replaced by an optical fiber 3. The optical fiber 3 is inserted into a protective pipe 4. By coiling the superconducting stranded cable 1 a temperature distribution measuring system with the optical fiber 3 as a temperature sensor is constructed and the above purpose can be accomplished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導発電機や核融合
実験炉用を始めとする各種用途の超電導マグネットにコ
イル線材として使用される超電導撚り線に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting stranded wire used as a coil wire in a superconducting magnet for various applications including superconducting generators and nuclear fusion experimental reactors.

【0002】[0002]

【従来の技術】例えば、超電導マグネットは、運転中に
コイルが発熱して温度が高まるとクエンチを起こして焼
損したりする。また、クエンチが起こると冷却系等にも
トラブルが生じたりする。
2. Description of the Related Art For example, in a superconducting magnet, when the coil heats up during operation and the temperature rises, it causes quenching and burning. In addition, if quenching occurs, problems may occur in the cooling system or the like.

【0003】このため、熱電対等の温度計を巻線時或い
は巻線後にコイル内やコイル表面の各所に取付け、マグ
ネット全体の冷却状態をモニタしてこのデータを実際の
運転に活用する方法が採られている。
For this reason, a method is employed in which thermometers such as thermocouples are attached to the coil during winding or after winding, at various points on the coil surface and the cooling state of the entire magnet is monitored to utilize this data for actual operation. Has been.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の方法に
よると温度計の取付けに多大の労力を要する上に、温度
計の設置により極低温での取り回しも困難になる。
According to the above-mentioned conventional method, a great deal of labor is required for mounting the thermometer, and the installation of the thermometer also makes it difficult to handle it at cryogenic temperatures.

【0005】また、マグネットに電流を流すと測定部が
磁場雰囲気になり、かつ、温度センサに対して測定上有
害な電圧がかかることもあるため、正確な温度データが
得られない。
Further, when an electric current is applied to the magnet, the measuring portion is placed in a magnetic field atmosphere, and a voltage harmful to the measurement may be applied to the temperature sensor, so that accurate temperature data cannot be obtained.

【0006】さらに、運転、休止を繰り返す超電導マグ
ネット等においては繰り返しの熱履歴に耐える温度計や
メンテナンスの容易な構造が要求される。
Furthermore, in a superconducting magnet or the like that is repeatedly operated and stopped, a thermometer that can withstand repeated thermal history and a structure that is easy to maintain are required.

【0007】本発明は、これ等の問題解決策となる超電
導コイル用の超電導撚り線を提供しようとするものであ
る。
The present invention is intended to provide a superconducting stranded wire for a superconducting coil which solves these problems.

【0008】[0008]

【課題を解決するための手段】上記の課題を解決する本
発明の超電導撚り線は、互いに撚り合わせる複数本の超
電導素線のうち少なくとも1本の素線を光ファイバに置
き換えた構造にしてその光ファイバを光ファイバ温度分
布計測システムの温度センサとして使用するようにした
ものである。
The superconducting stranded wire of the present invention for solving the above problems has a structure in which at least one of a plurality of superconducting element wires to be twisted with each other is replaced with an optical fiber. The optical fiber is used as a temperature sensor of the optical fiber temperature distribution measuring system.

【0009】[0009]

【作用】超電導コイルは、液体窒素、液体ヘリウム等の
冷媒に接触した部分から順に冷やされていく。その際、
コイル線材中に撚り込んだ光ファイバも超電導素線と同
一温度に冷却され、従って、この光ファイバを温度セン
サとして利用する温度分布計測システムを構築しておく
ことにより、超電導コイル各部の冷却過程における経時
的な温度変化や運転中の温度変化を測定することができ
る。
The superconducting coil is cooled in order from the portion in contact with the refrigerant such as liquid nitrogen and liquid helium. that time,
The optical fiber twisted into the coil wire is also cooled to the same temperature as the superconducting element wire. Therefore, by constructing a temperature distribution measurement system that uses this optical fiber as a temperature sensor, the process of cooling each part of the superconducting coil It is possible to measure temperature changes over time and temperature changes during operation.

【0010】このように、光ファイバを撚り線製造時に
一緒に撚り込んでおけば、巻き線を行うだけで温度セン
サ内蔵の超電導コイルが得られ、温度計取付けの手間が
不要になる。
As described above, if the optical fibers are twisted together at the time of manufacturing the twisted wire, a superconducting coil having a built-in temperature sensor can be obtained only by winding the wire, and the labor for mounting the thermometer is unnecessary.

【0011】また、光ファイバは周辺の磁場による影響
を全く受けないため、測定の信頼性も確保できる。
Further, since the optical fiber is not affected by the surrounding magnetic field at all, the reliability of measurement can be secured.

【0012】さらに、光ファイバを後述するように保護
パイプに収納して撚り込めばメンテナンスにも殆ど気を
配らずに済む。
Further, if the optical fiber is housed in a protective pipe and twisted, as will be described later, little attention is paid to maintenance.

【0013】[0013]

【実施例】図1及び図2に、本発明の超電導撚り線の一
例を示す。例示の超電導撚り線1は1+6の撚り構造を
もつもので、通常は超電導素線2を7本撚り合わせて構
成されるが、ここでは、中心の素線を保護パイプ入りの
光ファイバ3に置き換えてある。保護パイプ4は、超電
導素線1と同一外径のパイプを用いており、従って、撚
り線1の断面形状が崩れる心配はない。
1 and 2 show an example of a superconducting stranded wire of the present invention. The illustrated superconducting twisted wire 1 has a twist structure of 1 + 6, and is usually constructed by twisting seven superconducting wires 2, but here, the central wire is replaced with an optical fiber 3 containing a protective pipe. There is. As the protection pipe 4, a pipe having the same outer diameter as that of the superconducting wire 1 is used, and therefore, there is no fear that the cross-sectional shape of the stranded wire 1 will collapse.

【0014】なお、効果の確認のため、外径1.4mm、
内径1.0mmのステンレスパイプにGI型石英光ファイ
バを挿入した素線を中心に配し、その周りに線径1.4
mmのCu/NbTi超電導素線を6本撚り合わせて図に
示す構造の超電導撚り線を得た。そして、この撚り線1
をボビンに巻いて超電導コイルを作り、事前に撚り込ん
だ光ファイバをセンサ素子とする温度分布計測システム
を利用して超電導コイル各部の模擬冷却時の温度分布を
調べたところ正確なデータが得られ、冷却特性の解析に
役立てることができた。
In order to confirm the effect, the outer diameter is 1.4 mm,
A stainless steel pipe with an inner diameter of 1.0 mm is placed with a GI-type quartz optical fiber inserted into the center of the element wire, and a wire diameter of 1.4
Six 6 mm / Cu / NbTi superconducting element wires were twisted together to obtain a superconducting twisted wire having the structure shown in the figure. And this stranded wire 1
By winding a coil on a bobbin to make a superconducting coil, and using a temperature distribution measurement system that uses a pre-twisted optical fiber as a sensor element, we investigated the temperature distribution of each part of the superconducting coil during simulated cooling, and obtained accurate data. , It was useful for the analysis of cooling characteristics.

【0015】[0015]

【発明の効果】以上述べたように、本発明の超電導撚り
線を用いると、超電導コイルの全域の温度分布を手間を
かけずに正確に測定することができ、冷却特性の解析、
実運転開始時の冷却状況の把握、運転中の温度管理等に
大きく貢献することができる。
As described above, when the superconducting stranded wire of the present invention is used, the temperature distribution over the entire area of the superconducting coil can be accurately measured without any trouble, and the cooling characteristics can be analyzed.
It can greatly contribute to grasping the cooling status at the start of actual operation and temperature management during operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導撚り線の一例を示す断面図FIG. 1 is a sectional view showing an example of a superconducting stranded wire of the present invention.

【図2】同上の撚り線の斜視図FIG. 2 is a perspective view of the same stranded wire.

【符号の説明】[Explanation of symbols]

1 超電導撚り線 2 超電導素線 3 光ファイバ 4 保護パイプ 1 Superconducting stranded wire 2 Superconducting element wire 3 Optical fiber 4 Protective pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 互いに撚り合わせる複数本の超電導素線
のうち少なくとも1本の素線を光ファイバに置き換えて
ある超電導撚り線。
1. A superconducting twisted wire in which at least one of the plurality of superconducting wires twisted together is replaced with an optical fiber.
JP5059905A 1993-03-19 1993-03-19 Superconducting stranded cable Pending JPH06275144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5059905A JPH06275144A (en) 1993-03-19 1993-03-19 Superconducting stranded cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5059905A JPH06275144A (en) 1993-03-19 1993-03-19 Superconducting stranded cable

Publications (1)

Publication Number Publication Date
JPH06275144A true JPH06275144A (en) 1994-09-30

Family

ID=13126611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5059905A Pending JPH06275144A (en) 1993-03-19 1993-03-19 Superconducting stranded cable

Country Status (1)

Country Link
JP (1) JPH06275144A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496595A3 (en) * 2003-07-11 2005-10-05 Alstom Technology Ltd Electric conductor assembly with integrated optical fibres
JP2010092715A (en) * 2008-10-08 2010-04-22 Sumitomo Electric Ind Ltd Superconductive cable
KR20140114183A (en) * 2013-03-18 2014-09-26 엘에스전선 주식회사 Superconducting cable
CN113488284A (en) * 2021-06-28 2021-10-08 国网上海市电力公司 Superconducting cable comprising optical cable and consisting of square thin wires

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496595A3 (en) * 2003-07-11 2005-10-05 Alstom Technology Ltd Electric conductor assembly with integrated optical fibres
US7174075B2 (en) 2003-07-11 2007-02-06 Alstom Technology Ltd. Integrated arrangement of optical fibers in a conductor
JP2010092715A (en) * 2008-10-08 2010-04-22 Sumitomo Electric Ind Ltd Superconductive cable
KR20140114183A (en) * 2013-03-18 2014-09-26 엘에스전선 주식회사 Superconducting cable
CN113488284A (en) * 2021-06-28 2021-10-08 国网上海市电力公司 Superconducting cable comprising optical cable and consisting of square thin wires

Similar Documents

Publication Publication Date Title
JP7048771B2 (en) Temperature measurement system for high-temperature superconducting cables
EP2587254B1 (en) Method for detecting transition to normal state of a superconducting wire material
Nijhuis et al. Impact of spatial periodic bending and load cycling on the critical current of a Nb3Sn strand
CN110021459B (en) Embedded optical fiber superconducting strip and preparation method thereof
EP2787341A1 (en) Method for detecting normal conduction transition of superconducting wire rod
Jiang et al. Spatial and temporal resolution optimization on Raman distributed temperature sensor system for quench detection in a no-insulated coil
Nijhuis et al. Critical current and strand stiffness of three types of Nb3Sn strand subjected to spatial periodic bending
JPH06275144A (en) Superconducting stranded cable
Ye et al. On the Causes of Degradation in $\hbox {Bi} _ {2}\hbox {Sr} _ {2}\hbox {CaCu} _ {2}\hbox {O} _ {8+{\rm x}} $ Round Wires and Coils by Quenching at 4.2 K
JP2007141713A (en) Superconducting equipment
US7838774B2 (en) Low AC loss single-filament superconductor for a superconducting magnet and method of making same
Yagai et al. Stability analysis of MgB 2 coils for SMES application consisting of large-scale rutherford cables
Bruzzone et al. Results of Thermal Strain and Conductor Elongation Upon Heat Treatment for ${\rm Nb} _ {3}{\rm Sn} $ Cable-in-Conduit Conductors
JP5229482B2 (en) Superconducting cable soundness inspection method
Nijhuis et al. Spatial Periodic Bending and Critical Current of Bronze and PIT ${\rm Nb} _ {3}{\rm Sn} $ Strands in a Steel Tube
Young et al. Temperature and Background Field Dependence of a Compact React and Wind $\hbox {MgB} _ {2} $ Solenoid Coil
Heller et al. Evaluation of the current sharing temperature of the ITER toroidal field model coil
Baldini et al. Application of Distributed Fiber Optic Strain Sensors to LMQXFA Cold Mass Welding
Mitchell Possible causes of the premature voltage gradient of the CS insert coil [for ITER]
JPH08222426A (en) Coil structure of superconducting magnet
JPH0878241A (en) Winding wire temperature measuring device of transformer
Schermer et al. Conductor qualification tests for the 30-MJ Bonneville power administration SMES coil
Bajas et al. Advanced Nb 3 Sn conductors tested in racetrack coil configuration for the 11T dipole project
KR102650438B1 (en) Method and apparatus for monitoring temperature of insulating material in spacer of gas-insulated switchgear
Velez Quench detection logic for high temperature superconducting magnets based on distributed optical fiber sensing